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Abstract: Advances and cost reductions in Light Detection and Ranging (LiDAR) sensor technology
have allowed for their implementation in detecting vehicles, cyclists, and pedestrians at signalized
intersections. Most LiDAR use cases have focused on safety analyses using its high-fidelity tracking
capabilities. This study presents a methodology to transform LiDAR data into localized, verified,
and linear-referenced trajectories to derive Purdue Probe Diagrams (PPDs). The following four
performance measures are then derived from the PPDs: arrivals on green (AOG), split failures (SF),
downstream blockage (DSB), and control delay level of service (LOS). Noise is filtered for each
detected vehicle by iteratively projecting each sample’s future location and keeping the subsequent
sample that is close enough to the estimated destination. Then, a far side is defined for the analyzed
intersection’s movement to linear reference sampled trajectories and to remove those that do not
cross through that point. The technique is demonstrated by using over one hour of LiDAR data
at an intersection in Utah to derive PPDs. Signal performance is then estimated from these PPDs.
The results are compared to those obtained from comparable PPDs derived from connected vehi-
cle (CV) trajectory data. The generated PPDs from both data sources are similar, with relatively
modest differences of 1% AOG and a 1.39 s/veh control delay. Practitioners can use the presented
methodology to estimate trajectory-based traffic signal performance measures from their deployed
LiDAR sensors. The paper concludes by recommending that unfiltered LiDAR data are used for
deriving PPDs and extending the detection zones to cover the largest observed queues to improve
performance estimation reliability.

Keywords: LiDAR; trajectory; traffic signal; performance measures; connected vehicle

1. Introduction

Light Detection and Ranging (LiDAR) technology estimates the relative location
of surrounding objects and surfaces by calculating the round-trip delay of light signals
generated by lasers. In a LiDAR system, a transmitter emits light, and a receiver gathers the
bounced signal and computes its traveled distance. A collection of distance measurements
in a specific environment creates a point cloud, which is a three-dimensional representation
of the space [1]. From the point cloud, diverse characteristics of the environment can be
analyzed, and objects can be identified and tracked.

The use of LiDAR sensors has increased across state transportation agencies. The main
reasons for this growth are an increase in the knowledge and acceptance of the technol-
ogy and its cost-effectiveness benefits in comparison with other conventional surveying
techniques [2,3].

Emerging uses of LiDAR in transportation include bridge assessment [4], road map-
ping [5], pavement analysis [6,7], and traffic sign inventories [8,9]. In the area of mobility,
safety assessments have been the focus of LiDAR applications due its mode detection and
tracking capabilities [10,11]. Bandaru et al. created a device and designed algorithms to
identify traffic conflicts, analyze speeds, and visualize the presence of pedestrians at road
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intersections or segments [12]. Ansariyar deployed two LiDAR sensors at an intersection to
identify crash-prone areas by evaluating near-misses [13]. Kilani et al. used this technology
to evaluate sight distance challenges at urban intersections [14].

In addition to evaluating intersection safety, LiDAR data can also be utilized to gen-
erate traffic signal performance measures. Traffic signal operations have a significant
impact on road transportation networks [15,16]. It is therefore important for agencies to
actively monitor performance at this type of intersection to identify locations where signal
retiming [17,18] or capital investment [19] can improve operations.

LiDAR data are able to replicate not only detector-based [20] but also more reliable [21,22]
trajectory-based traffic signal performance measures [23–26], such as

• Arrivals on green (AOG): this operational measurement indicates the level of progres-
sion at an intersection by providing the percentage of vehicles that traverse without
stopping.

• Split failures (SF): this operational measurement indicates the level of congestion at an
intersection by providing the percentage of vehicles that stop more than once during
their approach; that is, the percentage of vehicles that wait longer than one cycle length
before crossing.

• Downstream blockage (DSB): this operational measurement indicates the level of
obstruction that an adjacent intersection induces at the studied location. DSB is
calculated as the percentage of vehicles that experience significant delay after crossing.

• Control delay: this delay measurement quantifies the effects that a traffic control
device, such as a traffic signal, has on travel time. Traditionally, control delay has
been used to assign a Highway Capacity Manual (HCM) level of service (LOS) rating
(Table 1) to analyzed intersections [27].

Table 1. LOS criteria for signalized intersections.

LOS Weighted Avg. Control Delay (s/veh) Description

A ≤10 Exceptionally favorable progression
B >10–20 Highly favorable progression
C >20–35 Favorable progression
D >35–55 Ineffective progression
E >55–80 Unfavorable progression
F >80 Very poor progression

1.1. Motivation

Recently, trajectory-based traffic signal performance measures have been derived from
commercial connected vehicle (CV) trajectory data [23]. The CV dataset provides significant
scalability benefits as it has nationwide coverage, but has representativeness challenges
as it only counts with a small sample of all traversing vehicles [23,28]. Nevertheless, this
is not a limitation of LiDAR-derived trajectory data, as they represent almost all vehicles
entering the intersection. For this reason, the performance measures derived from LiDAR
systems can be much more robust than those obtained from CV data and transportation
agencies can immediately act upon the results.

Traffic delay were previously calculated from LiDAR sensors at signalized intersec-
tions [29]. However, no prior research has been identified on the use of LiDAR’s vehicle
trajectory detection capabilities to derive trajectory-based traffic signal performance mea-
sures such as AOG, SF, and DSB.

1.2. Objective and Paper Structure

The objective of this study is to provide an accurate technique to estimate movement-
level traffic signal AOG, SF, DSB, control delay, and LOS from LiDAR-derived data. The
following paper structure is as follows:

• Section 2. provides a summary of the datasets used in the study.
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• Section 3.1. describes the study location.
• Section 3.2. presents the technique used to prepare LiDAR data to evaluate the

movement-level traffic signal performance.
• Section 3.3. explains how to linear reference the selected data in order to create a

Purdue Probe Diagram (PPD), which is a time–space visualization of the trajectories
from which the desired performance measures can be calculated.

• Section 4. provides a comparison of the performance estimations derived from LiDAR
and CV PPDs.

• Section 5. presents a discussion of the study.

2. Datasets

The two-dimensional LiDAR data of tracked objects collected on 30 December 2022,
from 15:49:25 to 17:14:00 h. and CV trajectory data collected on August 2021 weekdays
from 15:49:25 to 17:14:00 h. were used in this study. This section describes each dataset.

2.1. LiDAR Trajectories

This dataset contains two-dimensional trajectories of traversing objects at a signalized
intersection in Utah and is published in an open access repository [30]. The dataset was
derived from three-dimensional point cloud data [1] of the environment generated from
four solid-state LiDAR sensors installed at each corner of the intersection.

The dataset consists of the set of estimated waypoints of traversing objects with a
tenth-of-a-second sampling frequency. Each waypoint includes the following information:
timestamp, x-location, y-location, speed, heading, length, number of points reflected, and
an anonymous object identifier. It is important to note that this dataset does not include the
information of any object traveling below 10 mph.

By linking individual waypoints with the same object identifier and sorting them by
timestamp, a complete chronological object journey can be obtained. Therefore, a LiDAR-
derived trajectory TL of a particular object is defined as the set of its waypoints WLi, with
i = 1, 2, . . . , k, where i = 1 is the first collected sample of the object and i = k is the last
sample collected of the same object.

TL = {WLi}k
i=1 (1)

WLi =
{

identifier, x − locationi, y − locationi, timestampi, speedi, headingi, lengthi, pointsi
}

(2)

Limitations

The main challenge in using LiDAR-derived trajectory data is that the detection area is
limited. If increased visibility is desired, additional sensors need to be installed, which can
increase costs and maintenance requirements. Additionally, adverse weather conditions
can also affect measurements [31].

2.2. Connected Vehicle Trajectories

Commercially available CV trajectory data have a typical market penetration rate
(MPR) of 3–7% [28]. In this study, CV trajectory data were obtained from a third-party
provider with an estimated MPR of approximately 3% at the evaluated location.

The dataset consists of a set of waypoints for entire vehicle trips (i.e., from on to
off). The data were collected from passenger vehicles that were factory-equipped with
the required technology for sampling and transmission. There is typically a three-second
reporting interval between samples, each with a three-meter (~10 ft.) spatial accuracy.
Every waypoint has the following information: latitude, longitude, speed, heading, and an
anonymous vehicle trajectory identifier.

By linking individual waypoints with the same vehicle trajectory identifier and sorting
them by timestamp, a complete chronological vehicle journey can be obtained. Therefore, a
CV-derived trajectory TCV for the same vehicle is defined as the set of its waypoints WCVi,
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with i = 1, 2, . . . , k, where i = 1 is the first sample collected after the vehicle is turned on
and i = k is the last sample collected before the vehicle is turned off.

TCV = {WCVi}k
i=1 (3)

WCVi =
{

identifier, longitudei, latitudei, timestampi, speedi, headingi
}

(4)

A detailed description of the acquisition, storage, data access, and costs of the CV
dataset is available in [23].

Limitations

The CV trajectory data used for this study have a latency from 30 to 60 s, which is
not fast enough to be used in the real-time analysis and control of signalized intersections.
Additionally, the currently available low MPR requires the aggregation of data over several
days to obtain representative performance measures. Using this approach, operational
irregularities on a cycle-by-cycle basis are difficult to detect. For this reason, cycle-by-cycle
performance evaluations using CV data are not yet feasible [23].

Another limitation of the CV dataset is that it only contains information about pas-
senger vehicles. Additional datasets would have to be evaluated if other vehicle classes or
modes of transportation need to be evaluated.

3. Methodology

This section first provides a brief description of the studied location. Then, the pro-
posed technique to extract valid vehicle trajectories from the LiDAR-derived data is pre-
sented. Finally, the process used to linear refence the validated vehicle trajectories in a
PPD [23] to estimate signal performance measures is provided.

3.1. Study Location

In this study, traffic signal performance was estimated for the northbound (NB)
through movement at the US-89 and 600 N intersection located in a suburban area of
Salt Lake City, Utah (Figure 1). This signalized intersection is managed by the Utah Depart-
ment of Transportation (UDOT) and usually serves Annual Average Daily Traffic (AADT)
values of under 25,000 vehicles per day on each of its approaches [32].

The LiDAR sensors installed at this location were implemented for testing purposes.
The LiDAR sensor at the northeast corner (Figure 1b, callout ii) serves as the origin of the
estimated object locations [30].

3.2. Relevant Vehicle Trajectory Extraction

Figure 2 depicts all the sampled moving objects detected by the LiDAR sensors in
Figure 1b during the analysis period. These data cannot be utilized in their raw state for
estimating movement-level traffic signal performance measures. The following process
was used to prepare and filter the data for the subsequent derivation of movement-level
traffic signal performance measures:

1. Identify noise in the data.
2. Verify likely accurate trajectories and filter unreliable samples.
3. Select pertinent vehicle trajectories for the movement of interest based on the intersec-

tion geometric features.
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The following subsections discuss each of these steps.
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3.2.1. Noise

Two different types of noise were identified, which could significantly affect the
accurate estimation of traffic signal performance measures. Figure 3 shows an example of
each case.
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The first type of noise (Figure 3a) occurs when two waypoints of a trajectory TL
are estimated to occur at the same timestamp n at different locations. Since a vehicle
cannot be in two locations at the same time, one waypoint needs to be discarded from
TL. This selection needs to be carefully made as either choice can result in different
signal performance estimations being made for the traversing vehicle. For example, in
the hypothetical case of a vehicle traveling NB-through presented in Figure 3a, selecting
callout i would likely result in a larger estimated delay than if callout ii was selected. This
is because callout i is farther away from exiting the intersection at the same timestamp as
callout ii.

The second type of noise (Figure 3b) occurs when the waypoint sampled after the
current timestamp n (i.e., n + 1, callout iii) is located opposite to the vehicle’s direction of
travel (i.e., the n waypoint’s heading). Usually, the subsequent sample after the erroneous
case (i.e., n + 2, callout iv) is congruously located in relation to the original direction of
travel. In these scenarios, the sample that appeared in an unexpected location (in this case
n + 1) needs to be discarded.

The discussed noise in this subsection could be the result of the sensor configuration,
environmental conditions, or the trajectory generation algorithms. Further investigation
into these challenges is beyond the scope of this study and additional research should focus
on these topics. The following subsection describes how to handle trajectories with noise.

3.2.2. Verification

LiDAR-sampled vehicle trajectories need to be verified, and erroneous samples dis-
carded, based on the challenges discussed in Figure 3. The proposed technique to ac-
complish this objective chronologically iterates through each waypoint of each trajectory,
projects future locations, and keeps subsequent samples that are close enough to the es-
timated destinations. The step-by-step process used to verify a trajectory’s TL waypoints
sampled at contiguous timestamps n and n + 1 is provided below and is graphically
depicted in Figure 4:
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1. A destination vector
→
D for waypoint WLn sampled at timestamp (t) n, which points at

the expected location of the next waypoint WL(n+1) sampled at n + 1, is calculated as
follows:

∆t = tn+1 − tn (5)

D =

∣∣∣∣→D∣∣∣∣ = ∆t × speedn (6)

→
D = Dcos(headingn)î + Dsin(headingn) ĵ, headingn ∈ [0, 2π) (7)

where tn (seconds), speedn (m/s), and headingn (radians) are the attributes of WLn
and tn+1 is the timestamp of WL(n+1). Heading values increase counterclockwise,
where zero points to the positive direction of the x-axis. Unit vectors î and ĵ denote
the positive directions in the x-axis and the y-axis, respectively.

2. From the position indicated by
→
D, an acceptable location area for WL(n+1) with radius

r (meters), is defined as follows:

r = min
(

r f + ra, D
)

(8)

where r f (meters) is an arbitrary fixed value (10 m in this study) that always allows
for some variation in the sampling results, and ra (meters) dynamically extends r by
considering the likely vehicle acceleration a (m/s2). The calculation of ra is as follows:

ra =
1
2

a(∆t)2 (9)

In this study, a equals 3 m/s2, which is a probable vehicle acceleration and acceleration
at signalized intersections [33,34]. If r f + ra is longer than D, then r equals D to avoid
accepting samples that go against the direction of travel (Figure 3b).

3. Keep in ITL the waypoint sampled at n + 1 closest to the position indicated by
→
D if it

lies within the acceptable area with radius r. If that is the case, go back to the first step
and repeat the process with the n + 1 waypoint as n.

If no waypoint sampled at n + 1 is found within the acceptable area, discard them.
Then, return to the first step to repeat the process, now comparing the waypoint sampled
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at n with the waypoints sampled at n + 1 + i, where i is a count of how many iterations
have failed to update n.

This process is run for all trajectories and starts with the first sampled waypoint. In
most cases, the presented technique successfully filters incorrect waypoints for the noise
discussed in Figure 3.

A limitation of this approach is that it assumes that the first sampled waypoint is not
noise, as future projections depend on it. However, even if the initially sampled waypoint
is not accurate, the acceptable threshold r eventually accepts correct samples. The following
subsection describes how to keep only relevant data to analyze the movement-level traffic
signal performance.

3.2.3. Selection

After the noise in the raw data (Figure 2) has been identified (Figure 3), and vehicle
trajectories have been verified (Figure 4), the pertinent data to evaluate the traffic signal
performance for the movement of interest need to be selected.

In this study, the objective was to analyze traffic signal performance for the NB-through
movement. To ensure a focused analysis based on trajectories that significantly contribute
to the estimation of performance metrics, only the trajectories that comply with all the
following predicates were chosen:

• All waypoints have a heading between 150◦ and 210◦, where the heading values
increase counterclockwise, with zero pointing to the positive direction of the x-axis;

• The trajectory crosses the movement’s far side (callout i);
• The trajectory traveled at least 75 m (~246 ft.).

Figure 5 shows the result of applying these predicates, in addition to the trajectory
verification algorithm (Figure 4), to the raw data (Figure 2). Only vehicles that traveled
NB-through over a significant distance were selected. This subset of the LiDAR data could
then be analyzed to derive movement-level traffic signal performance measures.
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It is important to note the data gap shown in callout ii. This is likely the result of the
dataset not containing the waypoints of vehicles traveling under 10 mph, in combination
with the effects that the sensor configuration and environmental conditions have on data
sampling. Further investigation is beyond the scope of this study and future research
should further investigate this.

3.3. Linear-Referencing LiDAR Data in a PPD

PPDs derived from the selected LiDAR data in Figure 5 can be used to estimate traffic
signal performance measures for the NB-through movement at the intersection of US-89 and
600 N (Figure 1). A PPD is a time–space diagram that shows the experience of traversing
trajectories at an intersection. Figure 6 shows how a verified vehicle trajectory identified as
traveling NB-through is linear-referenced to create a PPD from its geospatial representation.

Future Transp. 2024, 4, FOR PEER REVIEW  10 
 

 

3.3. Linear-Referencing LiDAR Data in a PPD 
PPDs derived from the selected LiDAR data in Figure 5 can be used to estimate traffic 

signal performance measures for the NB-through movement at the intersection of US-89 
and 600 N (Figure 1). A PPD is a time–space diagram that shows the experience of trav-
ersing trajectories at an intersection. Figure 6 shows how a verified vehicle trajectory iden-
tified as traveling NB-through is linear-referenced to create a PPD from its geospatial rep-
resentation. 

In a PPD, plotted trajectories pivot on the far side of the intersection (Figure 6, callout 
FS), which means that the time and space at which the vehicle is estimated to cross over 
this line is taken as the origin (Figure 6, callout i). The vertical axis represents the distance 
(ft.) from a sampled waypoint to the far side, where 𝑑(𝐴, 𝐵) is the distance between points 
A and B. The horizontal axis represents the time needed (s) for a vehicle trajectory to reach 
the far side, where ∆𝑡஻,஺ is the time difference between points B and A. 

 
Figure 6. Linear referencing of a vehicle trajectory in a PPD (FS: far side) (map data: Google). 

Based on how long it took a vehicle to cross through the intersection, and how many 
times and where it stopped, AOG, SF, DSB, and control delay can be calculated. A detailed 
PPD explanation, how to construct them from verified vehicle trajectories, and how to 
derive performance measures from this are available in the open access Next Generation 
Traffic Signal Performance Measures: Leveraging Connected Vehicle Data report [23]. 

  

Figure 6. Linear referencing of a vehicle trajectory in a PPD (FS: far side) (map data: Google).

In a PPD, plotted trajectories pivot on the far side of the intersection (Figure 6, callout
FS), which means that the time and space at which the vehicle is estimated to cross over
this line is taken as the origin (Figure 6, callout i). The vertical axis represents the distance
(ft.) from a sampled waypoint to the far side, where d(A, B) is the distance between points
A and B. The horizontal axis represents the time needed (s) for a vehicle trajectory to reach
the far side, where ∆tB,A is the time difference between points B and A.

Based on how long it took a vehicle to cross through the intersection, and how many
times and where it stopped, AOG, SF, DSB, and control delay can be calculated. A detailed
PPD explanation, how to construct them from verified vehicle trajectories, and how to
derive performance measures from this are available in the open access Next Generation
Traffic Signal Performance Measures: Leveraging Connected Vehicle Data report [23].



Future Transp. 2024, 4 774

4. Comparison of PPDs Generated by LiDAR and CV Data

This section presents and compares PPD operational and delay performance estima-
tions derived from LiDAR data collected from 15:49:25 to 17:14:00 h on 30 December 2022,
and from CV trajectory data collected on weekdays in August 2021 during the same time
frame. The temporal differences between the analyzed datasets are a result of their limited
availability. Nevertheless, since AADT in 2022 (LiDAR data availability) is only 2% higher
than in 2021 (CV data availability), a performance comparison between the two is valid [32].
To generate comparable PPDs from both datasets in terms of the amount of data analyzed,
the CV trajectory data analysis period is 22 times larger than that for LiDAR due to its low
currently commercial MPR.

4.1. Operations-Oriented Purdue Probe Diagram

Figure 7 shows a LiDAR-derived (Figure 7a) and a CV-derived (Figure 7b) PPD, color-
coded based on the estimated number of stops that each sampled vehicle experienced
during its approach. Overall, the shape of the PPDs is similar. Both present a significant
proportion of vehicles that do not have to stop before crossing through the intersection
(green, callout i). Furthermore, the maximum amount of time that stopping vehicles
(orange) have to wait before continuing their progression is alike (callout ii). Nevertheless,
some important differences do exist.
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The one-stop trajectories in Figure 7a show a particular shape, where instead of pre-
senting horizontal segments during the time that vehicles are stopped, diagonal segments
are shown (callout iii). This occurs because the LiDAR dataset does not include any way-
point of vehicles traveling under 10 mph. Therefore, for each vehicle that stops, there is a
data gap between when it slows down and when it speeds up over the 10 mph threshold.
Due to this limitation, this study assumes that a vehicle trajectory stops if there is a data gap
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longer than 5 s between two consecutive waypoints where the necessary speed to travel
between them is less than 5 mph.

Additionally, LiDAR-sampled vehicle trajectories are not visible much farther than 400
ft. upstream of the far side (callout iv) due to sensor limitations. In contrast, the CV dataset
provides trajectory locations from the time vehicles are turned on until they are turned
off. Table 2 provides a comparison of AOG, SF, and DSB estimations from each source [23].
Similar results are shown. The only difference is that AOG decreased 1% during the period
analyzed with LiDAR data, likely due to the different data sources’ intricacies and the 2%
increase in AADT from 2021 to 2022.

Table 2. Operational performance measures by source.

Measurement LiDAR CV Difference

AOG 89% 90% −1%
SF 0% 0% 0%
DSB 0% 0% 0%

4.2. Delay-Oriented Purdue Probe Diagram

Figure 8 shows the same PPDs as Figure 7, but the trajectories are color-coded based
on their estimated control delay LOS (Table 1). Table 3 provides a data source comparison
of delay-focused performance estimations. Both PPDs are assigned an LOS A, and only
an increase of 1.39 sec/veh in the weighted average control delay is estimated from the
LiDAR data. This change is consistent with the 2% AADT increase that occurred during
the LiDAR analysis period. The largest discrepancy is the percentage of vehicles assigned
an LOS B (callout i).
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Table 3. Delay performance measures by source.

Measurement LiDAR CV Difference

Avg. control delay (s/veh) 4.51 3.12 +1.39
Movement LOS A A
Sampled vehicles with LOS A 88% 83% +5%
Sampled vehicles with LOS B 2% 12% −10%
Sampled vehicles with LOS C 5% 3% +2%
Sampled vehicles with LOS D 5% 1% +4%
Sampled vehicles with LOS E 0% 0% 0%
Sampled vehicles with LOS F 0% 0% 0%

5. Discussion

Both evaluated data sources obtained similar performance measures for vehicles
following the same movement at the same signalized intersection. The only discrepancies
(Tables 2 and 3) are 1% in AOG, a 1.39 s/veh in average control delay, and ≤10% in the
distribution of LOS. These small differences indicate that the proposed techniques can
generate accurate LiDAR-derived movement-level traffic signal performance estimations.
The minor discrepancies in the results are likely a consequence of the analyses being based
on different time periods that differ by 2% in AADTs. Additionally, the different intricacies
of each analyzed data source, such as data collection rates, MPR, and detection areas, also
affect traffic signal performance estimations.

An advantage of using LiDAR-derived vehicle trajectories for performance estimations
is that virtually all traversing vehicles are represented; therefore, shorter time frames are
required for analysis than those needed in studies that use CV data. Additionally, based on
LiDAR’s mode detection and tracking capabilities, it is possible to extend existing and create
new traffic signal performance measures that include various modes of transportation.

The main challenge in deriving traffic signal performance from LiDAR trajectories is
that upstream vehicle detection may be limited. In this study, only a few vehicle trajectories
were detected past 400 ft. upstream from the far side (Figure 7a, callout iv). However,
at intersections with longer queues, missing vehicles stopping far upstream can lead to
inaccurate performance estimations. For example, Figure 9 shows the CV-based PPD of a
movement at a signalized intersection where the first stops of many split failing vehicles
occur upstream of the 400 ft. mark (callout i). Most of these events would have likely been
missed by the LiDAR system analyzed in this study, which would result in underestimated
delay, SF, and overestimated AOG.

If agencies intend to estimate traffic signal performance using LiDAR, the authors
recommend implementing a configuration and number of sensors that would provide
detection that can cover the largest observed queues at the intersection. The authors also
recommend not to filter dataset waypoints by means of traveling speeds, or any other
attribute, to reduce the data footprint. Counting with the entire dataset can provide a more
complete picture of the operational condition at traffic signals.

Future research should focus on performing a similar comparison at a location with
congestion challenges where split failure and downstream blockage events occur. This is
because the current analysis does not exhibit any indication that these events happen at the
studied location; therefore, an evaluation of the accuracy of SF and DSB estimations is not
possible at the studied intersection. However, based on the generated PPDs, it is expected
that the presented technique can also provide reliable SF and DSB estimations. Furthermore,
a comparison of the traffic signal performance estimations derived from state-of-the-practice
detector-based Automated Traffic Signal Performance Measures (ATSPM) [20] and LiDAR
sensors should be performed to further validate the results of the latter.

It is worth noting that the challenges associated with generating the LiDAR-based
performance metrics discussed in this study, in particular the data noise (Figure 3) and
geospatial detection limitations (Figure 7a, callout iv), are inherent to the LiDAR system
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deployed at the US-89 and 600 N intersection during the data collection period. These
challenges may or may not arise on other installed LiDAR systems.
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6. Conclusions

This study provided a technique to generate PPDs from LiDAR-derived data to allow
for the estimation of trajectory-based traffic signal performance measures. To demonstrate
the methodology, over one hour of LiDAR data collected at a signalized intersection in
Utah were used to calculate movement-level AOG, SF, DSB, and control delay LOS. The
results were compared to those obtained from a baseline technique that uses high-fidelity
CV data. The main contributions of this study are as follows:

• Two types of possible data noise that can negatively affect the creation of LiDAR-based
PPDs were identified (Figure 3) and an approach to filter such samples is provided
(Figure 4).

• The proposed technique can successfully estimate movement-level traffic signal per-
formance measures. Only 1% AOG and 1.39 s/veh weighted average control delay
differences were observed with the baseline approach (Figures 7 and 8).

Practitioners can expand the capabilities of their LiDAR deployments by estimating
traffic signal performance measures with the presented methodology. It is recommended
to not reduce LiDAR datasets to decrease the data footprint with the objective of providing
as much detail as possible on the operational conditions of the analyzed intersections.
Furthermore, it is important to note that in order to accurately estimate traffic signal
performance from LiDAR systems, sensor quantity and configuration needs to provide
vehicle detection up to the largest queues observed at the studied locations.
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