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Abstract: Pedestrian safety is a growing global concern, particularly in urban areas, where 
rapid urbanization and increased mobile device usage have led to an increase in distracted 
walking. This study investigates the impact of technological distractions, specifically mo-
bile usage (MU), on pedestrian behavior and safety at signalized urban intersections. Data 
were collected from 11 signalized intersections in New Delhi, India, using video record-
ings. Key inputs to the modeling process include pedestrian demographics (age, gender, 
group size) and behavioral variables (crossing speed, waiting time, compliance behav-
iors). The outputs of the models focus on predicting mobile usage behavior and its asso-
ciation with compliance behaviors such as crosswalk and signal adherence. The results 
show that 6.9% of the pedestrians used mobile phones while crossing the road. Advanced 
machine learning models, including Convolutional Neural Networks (CNN), Long Short-
Term Memory networks (LSTM), and Recurrent Neural Networks (RNN), have been ap-
plied to analyze and predict MU behavior. Key findings reveal that younger pedestrians 
and females are more likely to exhibit distracted behavior, with pedestrians crossing alone 
being the most prone to mobile usage. MU was significantly associated with increased 
levels of crosswalk violation. Among the machine learning models, the CNN demon-
strated the highest prediction accuracy (94.93%). The findings of this study have a practi-
cal application in urban planning, traffic management, and policy formulation. Recom-
mendations include infrastructure improvements, public awareness campaigns, and tech-
nology-based interventions to mitigate pedestrian distractions and to enhance road 
safety. These findings contribute to the development of data-driven strategies to improve 
pedestrian safety in rapidly urbanizing regions. 

Keywords: pedestrian safety; distraction; mobile usage; machine learning; violation  
behavior 
 

1. Introduction 
Road user safety and well-being are prominent global issues. Approximately 1.19 

million people die each year, and more than 20 million are left with nonfatal injuries as a 
result of road accidents. The number of fatalities and injuries is significantly higher in 
low- and middle-income countries (LMICs) [1]. In 2022, 6364 road accident deaths were 
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reported in Vietnam [2]. Developing countries face unique challenges owing to rapid ur-
banization, high population densities, and less stringent traffic regulations. India ranks 
first in terms of road accident fatalities, followed by China [3]. Compared with rural areas, 
urban cities are emerging as critical hotspots for road accidents. For instance, Delhi leads 
in terms of accidental deaths, followed by Bengaluru [4]. 

Among road users, pedestrians are particularly vulnerable to road accidents. This 
can be established by the fact that the number of pedestrian deaths has increased by 53% 
since 2009 [5]. The exposure of pedestrians to moving traffic, combined with the lack of 
protective barriers, makes them more susceptible to serious injuries in the event of a col-
lision. Worldwide, pedestrians account for 23% of the total fatalities due to road accidents 
[1]. India is no exception to this global trend, as pedestrians comprise 19.5% of the total 
accidental deaths [4]. 

In recent years, there has been an exponential increase in mobile phone usage, 
particularly among smartphone users around the world. Although mobile phones are the 
most preferred and convenient choice for people to communicate, they result in 
inadvertent traffic safety issues owing to the distraction caused by their use. More than 
five billion people currently own a mobile phone, which is 70% of the total world popula-
tion [6]. The use of mobile devices and other technological gadgets has led to an increase 
in distracted walking, posing significant risks to pedestrian safety globally [7,8]. This be-
havior not only endangers the individuals using the devices but also poses significant 
hazards to drivers and other road users. The National Highway Traffic Safety Administra-
tion (NHTSA) estimated that distracted driving claimed around 3308 people by 2022 in 
the United States [9]. Recent statistics have revealed that pedestrian distractions caused 
by technology are contributing to a growing number of accidents and fatalities. Investiga-
tions on crash data statistics in the USA reported that 74% of pedestrian victims listened 
to music at the time of crashes [10]. The majority of these fatalities are linked to distrac-
tions caused by mobile device use with activities such as talking, listening to music, tex-
ting, or browsing. 

Figure 1 visually presents the consequences of mobile phone usage and the benefits 
of awareness at traffic intersections through illustrations. Figure 1a: A pedestrian is 
distracted by a smartphone while crossing the road, illustrating a common safety hazard 
leading to accidents. Figure 1b: An accident involving a pedestrian hit by a car due to 
distracted walking, emphasizing the dangers of mobile phone use while crossing. Figure 
1c: A traffic intersection with an “Avoid Mobile Phone” sign, highlighting the importance 
of adhering to safety protocols to prevent accidents. Figure 1d shows a harmonious traffic 
intersection with attentive pedestrians, cyclists, and drivers, demonstrating the positive 
outcomes of avoiding mobile phone use on roads and promoting road safety awareness. 
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Figure 1. Illustrations depicting the risks of mobile usage and benefits of awareness at traffic inter-
sections: (a) a distracted pedestrian using a mobile phone while crossing, (b) the consequence of 
distraction—a road accident, (c) the role of “avoid mobile phone” signs in promoting safety, and (d) 
the harmony and order achieved by avoiding mobile phone distractions. 

To provide a strong theoretical foundation for the study, an understanding of estab-
lished behavioral frameworks to contextualize pedestrian safety and distraction behaviors 
is required. The Theory of Planned Behavior (TPB), has been widely utilized in traffic 
safety research to understand the factors influencing individuals’ decision-making pro-
cesses. It highlights that attitudes, subjective norms, and perceived behavioral control are 
critical determinants of behavior. For pedestrians, this theory can explain how personal 
attitudes toward mobile phone usage, societal norms regarding its acceptability, and per-
ceived control over safe crossing influence compliance and distraction behaviors. The TPB 
has been successfully applied in studies to demonstrated its utility in predicting safety-
related behaviors in traffic contexts [11]. 

The Health Belief Model (HBM) provides a framework for understanding health-re-
lated behaviors by emphasizing the role of perceived susceptibility, severity, benefits, and 
barriers. In the context of pedestrian distraction, this model can elucidate how individuals 
perceive the risks associated with distracted walking and the potential benefits of adher-
ing to safe crossing practices. For instance, interventions like awareness campaigns or en-
vironmental cues can serve as triggers for behavioral change by enhancing perceptions of 
risk and the benefits of safe behavior. Social dynamics significantly affect pedestrian be-
haviors, as peer presence and group size influence risk-taking tendencies. Studies have 
highlighted the impact of social contexts on adolescent pedestrian safety, demonstrating 
that group settings can either mitigate or exacerbate risky behaviors [12,13]. This perspec-
tive is particularly relevant in urban settings, where pedestrian interactions are frequent 
and varied. 

Researchers have attempted to study the effect of pedestrian demographics, such as 
age and gender, on distracted behavior. Age has a significant impact on how people react 
to distractions. Older pedestrians are more cautious when it comes to road crossings 
[6,14]. Research shows that approximately 40% of younger pedestrians are seen and have 
admitted to using a phone while crossing the street, and it was discovered that they are 
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60% more likely to cross the street unsafely than people in older age groups [6,15]. An-
other study showed that 14% of adults in America admit to bumping into something due 
to mobile distraction [16]. It was observed that those below the age of 20 were 2.7 times 
more likely to use mobile devices and behave unsafely when crossing intersections [8]. 
This is supported by another study, which reported that young adults are more likely to 
use mobile phones while crossing the road [17]. 

Gender differences significantly influence pedestrian behavior at intersections, with 
men and women exhibiting distinct patterns of distraction. Men are more likely to engage 
in risky behaviors such as crossing streets in non-designated areas or against traffic sig-
nals, often while distracted [6,18]. One study found that men were 70% more likely to put 
themselves in these dangerous situations [19]. In another paper, the researcher claimed 
that women tend to be more distracted than men, which contradicts the previous state-
ment [20]. Females are more likely to use mobile devices while crossing the road [17]. One 
study showed that females using mobile phones are less likely to look at traffic before and 
during crossing, and are also less likely to wait for traffic to stop [7]. Females were found 
to be less likely to look at traffic signs or signals at both un-signalized and signalized in-
tersections [16]. Women were found to multitask more, resulting in increased levels of 
distractions, and women were more likely to engage in conversations while crossing com-
pared to men [21]. 

Several studies have examined how mobile phone use affects pedestrian road cross-
ing behavior. It has been observed that smartphone-distracted pedestrians are less likely 
to wait for a crossing light [16]. Distracted pedestrians are less likely to exhibit safe cross-
ing behavior [22]. Mobile phone use while crossing is associated with reduced situational 
awareness and increased unsafe crossings, which may increase the risk of accidents [23]. 
Pedestrians committing crosswalk violations are more likely to talk on their phones while 
walking [24]. Technological distraction also affects other types of unsafe behaviors, such 
as not looking left or right before crossing [25]. Basch et al. (2015) performed one of the 
largest studies to understand technologically distracted walking behavior and found that 
42% of the total signal-violating pedestrians were distracted [26]. Pedestrians were more 
likely to use mobile phones at signalized intersections, as they felt safer than at unsignal-
ized intersections, where they are forced to pay attention [8]. Mobile phone activities sig-
nificantly distract pedestrians, leading to unsafe crossing behaviors and contributing sig-
nificantly to traffic accidents. Among distracted behaviors, texting has the highest odds of 
showing unsafe behavior [25]. Smartphone activities, particularly texting, have been iden-
tified as critical in reducing pedestrian safety, as they lead to risky behaviors [18]. Text 
distraction is associated with the highest level, whereas music distraction has the lowest 
level of impairment in the crossing performance of pedestrians [27]. Various studies have 
been conducted to gauge the effects, causes, and possible solutions to this problem. Some 
studies have attempted to explore the implications of these psychological factors on pe-
destrian safety, suggesting that interventions addressing mobile addiction and boredom 
could mitigate distracted walking risks and potentially enhance awareness of pedestrian 
safety [28]. 

Machine learning (ML) methods have been extensively employed in pedestrian 
safety research to model and predict risky behaviors, evaluate compliance with traffic 
rules, and understand the factors influencing pedestrian safety. These methods offer high 
predictive accuracy and the ability to analyze complex, high-dimensional datasets. Sev-
eral studies have demonstrated the effectiveness of ML techniques in pedestrian safety 
applications [29–31]. In one study, Support Vector Machine (SVM) and Random Forest 
(RF) were used to predict pedestrians’ red-light crossing behavior [32]. Deep learning ap-
proaches have further enhanced the predictive performance of pedestrian safety studies. 
For example, Long Short Term Memory (LSTM) and Recurrent Neural Network (RNN) 
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have been used to classify pedestrian behavior and detect violations at signalized inter-
sections [33]. 

Despite their effectiveness, these ML methods often operate as “black-box” models, 
providing little insight into how input variables contribute to the predictions. In safety-
related research, this lack of transparency limits the ability to identify causal relationships, 
which are critical for designing targeted interventions and preventive measures. Explain-
able artificial intelligence (XAI) addresses this limitation by providing interpretability and 
transparency in ML models. XAI techniques, such as Shapley Additive Explanations 
(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), help quantify the 
contribution of individual features to model predictions, enabling researchers to under-
stand the underlying factors driving the results. Recent studies have demonstrated the 
utility and effectiveness of XAI in transportation safety research [34,35]. Thus, integrating 
XAI into pedestrian safety research can bridge the gap between predictive accuracy and 
interpretability, offering deeper insights into how demographic, behavioral, and situa-
tional factors influence distracted behaviors. 

Pedestrian distraction due to technology is a significant safety concern, contributing 
to numerous traffic accidents and fatalities worldwide. The integration of mobile devices 
into daily life has increased the likelihood of pedestrians engaging in risky behaviors such 
as ignoring traffic signals and stepping into the road without proper attention. Addressing 
this issue requires targeted interventions, including public awareness campaigns, im-
proved infrastructure, and personalized safety protocols. Building on the discussion re-
garding the adverse effects of mobile device usage on pedestrian safety, this study aimed 
to investigate the impact of technological distractions on pedestrian behavior and safety. 
It further explored the influence of demographic and behavioral factors that contribute to 
distracted walking. Additionally, this study examined the application of advanced ma-
chine learning algorithms to model the behavior of technologically distracted pedestrians. 
This study seeks to enhance road safety and protect vulnerable road users by identifying 
and mitigating the factors that lead to pedestrian distraction. Ultimately, this study aimed 
to deepen the understanding of pedestrian compliance behavior and develop effective 
models to improve road safety measures, particularly in rapidly urbanizing areas. 

2. Methodology 
The major steps involved in this research include selecting a suitable study site, data 

collection, data extraction and compilation, and the analysis phase, which involves exam-
ining pedestrian behavior using various statistical hypothesis testing and modelling tech-
niques. The steps are explained and discussed in the following sections. The flow of the 
research methodology is shown in Figure 2. 
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Figure 2. Flow of research methodology. 

2.1. Study Site 

To obtain a basic idea of possible research sites, a reconnaissance assessment of a 
number of crossings in New Delhi, India, was first conducted. Several locations were elim-
inated based on different physical, transportation, and pedestrian criteria. Following a 
thorough analysis of these filtered locations, 11 signalized intersections with a sizable 
number of vehicles and pedestrians were chosen for the study. The selected crossings 
showed a variety of built environments, signal phases, physical attributes, and pedestrian 
amenities. These crossings are also located in locations with a variety of land uses and are 
spatially well separated. The details of the study sites are presented in Table 1. 

Table 1. Details of the study locations. 

Intersection No. Intersection Type Land Use 
Vehicle 

Volume (veh/h) 
Signal 

Violation (%) 
Crosswalk 

Violation (%) 
Mobile 

Usage (%) 
1 T Residential 7582 7.75 56.46 4.97 
2 4-Legged Mixed 1472 17.33 72.44 6.67 
3 T Commercial 3142 28.44 56.16 7.4 
4 4-Legged Commercial 3250 2.68 59.3 6.29 
5 4-Legged Commercial 1510 7.24 62.15 4.63 
6 4-Legged Commercial 1602 14.28 32.33 4.14 
7 4-Legged Commercial 1329 17.3 28.74 10.12 
8 T Commercial 3180 21.27 65.28 2.45 
9 T Residential 4332 46.28 73.83 7.58 

10 4-Legged Commercial 1964 26.8 71.53 9.8 
11 T Commercial 2071 11.93 70.34 4.89 
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2.2. Data 

Road inventory surveys and video recordings were conducted to gather detailed in-
formation on intersections and pedestrian activities. Data were collected on weekdays un-
der normal weather conditions to ensure sufficient traffic and pedestrian volume. A com-
prehensive format was prepared to record various physical and built environment fea-
tures, including road geometry, signal phases, pedestrian facilities, and the surrounding 
land use. To capture pedestrian demographics and behaviors, two or more cameras were 
installed at each study site based on site conditions. These cameras were strategically 
placed to cover the entire intersection, including the sidewalks, medians, and crosswalks. 
Video recordings were performed during peak hours (9–10 AM and 5–6 PM) without dis-
rupting the normal traffic flow. Pedestrians were unaware of the cameras, ensuring that 
their natural behaviors were recorded. The cameras were adjusted to ensure a clear field 
of view, covering the ends of the carriageway and a few meters on both sides. The record-
ings were played in ultra-slow motion (2–3 frames per second) using the AVS video editor 
9.8 software, and the data were manually extracted by trained volunteers. Each crossing 
instance was manually analyzed, with demographic (e.g., age, gender, group size) and 
behavioral attributes (e.g., crossing speed, waiting time, compliance behaviors) recorded. 
Mobile usage (MU) was classified based on observed interactions, such as texting, calling, 
or browsing, during the crossing period. The final dataset comprised 5642 individual pe-
destrian observations, representing diverse behaviors and contexts. The extracted data 
were coded and entered into preset Excel formats. 

Gender is categorized as “Male” and “Female”. Since the exact age of a pedestrian 
cannot be determined from video footage, age is estimated by grouping individuals into 
three categories: “Young”, “Middle-aged”, and “Old”. The age group was estimated 
based upon factors such as physical characteristics, including facial features, overall ap-
pearance, hair color, walking style, and clothing type [31]. Group size is classified based 
on the number of pedestrians crossing together: “Single”, “Pair”, or “More than two”. 
Technological distraction is identified as “Yes” if a person is clearly observed using a mo-
bile phone, talking on the phone, or wearing headphones; otherwise, it is labeled as “No”. 
The arrival time is recorded when a pedestrian reaches the sidewalk or median, and the 
departure time is noted when they step onto the carriageway. After crossing the road, the 
end time is recorded when the pedestrian reaches the opposite sidewalk or median. The 
waiting time is calculated as the difference between the departure time and the arrival 
time, while the crossing time is determined as the difference between the end time and 
the departure time. Crossing speed is defined as the width of the carriageway divided by 
the crossing time. Pedestrian crosswalk compliance behavior is defined as “Yes” if the 
individual crosses the road within the crosswalk or within 0.5 m on either side of it. This 
0.5 m margin is included to account for pedestrians in large groups, some of whom may 
be slightly outside the marked crosswalk. Crossing at any other location is considered 
non-compliant, labeled as “No”. If a pedestrian crosses the road during the vehicle green 
phase or red phase for pedestrians, it is noted as a signal violation. The variable descrip-
tions and coding are presented in Table 2. Typical mobile usage while crossing a road is 
shown in Figure 3. 

Table 2. Variable description and coding details. 

Pedestrian 
Characteristics  

Category Description (Coding) Value 

Mobile Usage (MU) 
No Using mobile, talking over phone, and using headphones: Yes 

(1), No (0)  
93.10% 

Yes 6.90% 
Gender (G) Male 76.92% 
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Female Male (0),  
Female (1) 

23.08% 

Age Group (AG) 
Young Since exact age of pedestrian cannot be found from video, it is 

estimated by grouping them into Young (0), Middle (1), and Old 
(2) age groups 

45.56% 
Middle 46.60% 

Old 7.84% 

Group Size (GS) 
Single 

Pedestrian group size while crossing:  
Single (0), Pair (1), More than 2 (2) 

65.42% 
Pair 20.34% 
>2 14.24% 

Waiting Time (WT) 
Mean waiting 

time 
Difference between pedestrian’s arrival time at sidewalks or 

medians and their departure time (s) 5.543 s 

Crossing Time (TC) 
Mean 

crossing time Time required by the pedestrian to cross the carriageway (s) 10.067 s 

Crossing Speed (v) 
Mean 

crossing 
speed 

Width of carriageway divided by crossing time of pedestrian 
(m/s) 

1.284 m/s 

Crosswalk Compliance 
(CC) 

No 
If pedestrian uses designated crosswalks: Yes (1), No (0)  

59.40% 
Yes 40.60% 

Signal Compliance (SC) 
No If pedestrian cross road during pedestrian’s green phase: Yes (1), 

No (0)  
20.12% 

Yes 79.90% 

 
Figure 3. Typical mobile usage at study site. 

2.3. Analysis and Modeling 

Descriptive statistical analysis was initially performed to obtain a general idea about 
pedestrian demographics and behaviors. Further detailed analyses and modelling of pe-
destrian mobile usage were performed. Mobile usage is modeled against several predictor 
variables, such as gender (G), age group (AG), group size (GS), waiting time (WT), cross-
ing time (TC), crossing speed (v), crosswalk compliance (CC), and signal compliance (SC). 
The dependent variable is a categorical dichotomous (yes/no) variable, and classification 
algorithms are best suited to model it. This study models technologically distracted pe-
destrian behavior using CNN, RNN, and LSTM due to the sequential and high-dimen-
sional nature of the data. The choice of these models was motivated by the nature of the 
problem and the data structure, specifically owing to the sequential and high-dimensional 
data in the dataset that include temporal and behavioral sequences, such as crossing 
speeds, waiting times, and compliance behaviors. These are inherently sequential and re-
quire capturing patterns over time, and simpler models such as logistic regression or de-
cision trees may not be adequately handled. RNN and LSTM are specifically designed for 
sequential data, enabling them to model time-dependent behaviors effectively. CNN was 
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chosen for its ability to extract hierarchical and spatial features from input data. Although 
CNNs are traditionally used in image analysis, their utility in extracting complex patterns 
from structured tabular data has been established in recent studies. In this study, convo-
lutional layers facilitated the detection of nuanced relationships between pedestrian be-
haviors and mobile usage. Preliminary experiments with simpler models, such as logistic 
regression and decision trees, revealed a significantly lower accuracy and predictive per-
formance. These models struggled to capture the intricate nonlinear relationships within 
the data. For instance, logistic regression assumes a linear relationship between the inde-
pendent and dependent variables, which is unsuitable for this multifaceted problem. De-
cision trees, while interpretable, tend to overfit small datasets and fail to generalize well 
for complex, high-dimensional data [36]. These deep learning models also provide better 
generalizability and robustness, which are critical for real-world applications. This study 
aimed not only to predict distracted pedestrian behavior but also to analyze and under-
stand the intricate associations between demographic, behavioral, and compliance factors. 
Advanced models such as CNN, LSTM, and RNN are capable of achieving both high pre-
dictive accuracy and deeper insights into data. In total, 80% was used for training, and 
20% for testing. The details of these models are presented below. 

2.3.1. Convolutional Neural Network (CNN) 

CNN is a strong deep learning model for tasks such as binary digit prediction in im-
age classification applications. The model uses convolutional layers to extract hierarchical 
features from the input data, followed by classification using dense layers. Binary digit 
prediction aims to classify an image into one of two categories: 0 or 1. The initial compo-
nent of the basic CNN architecture is an input layer, usually in the shape of a 2D matrix 
that displays the pixel values of the image. Convolutional layers utilize the input along 
with a set of filters (also known as kernels) to generate feature maps, which reveal detected 
patterns, such as textures or edges. Mathematically, this is expressed as 

( * )ij ijY X W h= +  (1)

where h is the bias, X is the input, W is the filter, and * is the convolution procedure. The 
output Y represents the feature map generated by applying convolution, followed by the 
use of nonlinear activation functions such as a Rectified Linear Unit (ReLU) after convo-
lutional layers: 

( ) max(0, )f x x=  (2)

By adding nonlinearity, the network can detect complex connections in data. Pooling 
layers typically utilize Max Pooling to decrease the spatial dimensions of the feature maps 
and down-sample them, retaining vital characteristics while reducing computational 
costs. In mathematical terms, this is expressed as 

max( , )ijR m n=  (3)

where Rij denotes the pooling area. The feature mappings that emerge were transformed 
into a 1D vector and passed through fully connected (dense) layers. To achieve classifica-
tion, the layers initially calculate the weighted sums and then activate them with func-
tions. Typically, the last dense layer for binary classification contains a single unit that 
utilizes a sigmoid activation function. 

1( )
1 zz
e

σ −=
+

 (4)
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The value produced by the sigmoid function falls within the range of 0 to 1 and rep-
resents the likelihood of being part of a specific category. During training, the goal was to 
minimize the binary cross-entropy loss function as follows: 

( log( ) (1 ) log(1 ))L y p y p= − + − −  (5)

where y represents the actual label and p is the predicted probability. The weights are 
adjusted to minimize loss and enhance the classification accuracy by optimizing the model 
with stochastic gradient descent or its variations. 

2.3.2. Recurrent Neural Network (RNN) 

An RNN is a type of neural network designed for handling sequential data, making 
it well suited for tasks such as predicting binary digits. Unlike traditional feedforward 
networks, RNNs have loops that allow them to retain information from the previous time 
points. Because of this memory, RNNs are perfect for tasks that require the order of data 
to be important, such as predicting binary digits in a sequence. In an RNN, each time step 
in the input sequence is sequentially processed. At each time step t, the network calculates 
a hidden state ht by merging the information from the previous hidden state ht−1 and the 
current input xi. This can be mathematically expressed as follows: 

1tanh( )t h i h t hh W x U h b+= + +  (6)

where tanh serves as the activation function that brings nonlinearity, bh represents the bias 
vector, and Wh and Uh represent the weight matrices. The procedure for binary digit cate-
gorization includes sending hidden states through a dense layer with a sigmoid activation 
function. This layer generates a result that shows the probability that the input sequence 
belongs to either of the two categories. In the final time step T, the ultimate prediction is 
given by 

( )T y T yy W h bσ= +  (7)

The weight matrix is represented as Wy, the bias term is denoted by, and the sigmoid 
function σ(z) produces a probability ranging from zero to one. 

2.3.3. Long Short-Term Memory (LSTM) 

A type of RNN known as the LSTM network was developed to address issues such 
as the vanishing gradient problem faced by conventional RNNs. LSTMs are ideal for tasks 
that involve sequences, such as predicting binary digits, because of their ability to effec-
tively grasp long-term relationships. The information flow inside the network is con-
trolled by three gates: the input, forget, and output gates, which are present in an LSTM 
unit. The input gate regulates the amount of new data that will be used to update the cell 
state, whereas the forget gate manages how much of the previous cell state Ct−1 is retained. 
The mathematical expression for the forget gate can be formulated as 

1( .[ , ] )t f t t ff W h x bσ −= +  (8)

Wf and bf represent the weights and bias, respectively, ht−1 is the prior hidden state, and xt 
corresponds to the present input. The input gate was responsible for modifying the cell 
state. 

1( .[ , ] )t i t t ii W h x bσ −= +  (9)

1tanh( .[ , ] )t c t t cC W h x b−= +  (10)

The updated new cell state is expressed as 
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1* *t t t t tC f C i C−= +   (11)

Ultimately, the output gate creates an updated hidden state, which is utilized for forecast-
ing the binary class with a sigmoid activation function: 

* tanh( )t t th o C=  (12)

1( .[ , ] )t o t t oo W h x bσ −= +  (13)

The binary forecast is computed at the final period T through the following calculation: 

( )T y T yy W h bσ= +  (14)

Training the model involves using binary cross-entropy loss and optimizing it with Back-
propagation Through Time (BPTT). LSTMs are proficient in categorizing sequential bi-
nary information by efficiently understanding the relationships between different time 
points. The hyperparameters of the classification models are listed in Table 3. 

Table 3. Hyperparameters of classification models. 

Models Epoch Batch 
CNN 15 50 
LSTM 10 35 
RNN 25 40 

3. Result and Discussion 
The statistical and histogram distributions of the overall dataset are presented in Ta-

ble 4 and Figure 4, respectively. Pedestrian mobile usage (MU) at each study location is 
listed in Table 1. This shows that the MU varies significantly across different locations, 
and, overall, 6.9% of pedestrians are found to be using mobile phones while crossing the 
road. 

Table 4. Statistical distribution of overall dataset (count = 5642). 

Parameters 
Input Parameters Output Parameter 

v (m/s) CC SC G AG GS TC (s) WT (s) MU 
Max 4.08 1.00 1.00 1.00 2.00 2.00 51.10 111.66 1.00 
Min 0.24 0.00 0.00 0.00 0.00 0.00 2.79 0.00 0.00 

Mean 1.28 0.40 0.80 0.23 0.62 0.49 10.07 5.54 0.07 
Median 1.24 0.00 1.00 0.00 1.00 0.00 9.30 0.00 0.00 

Std 0.40 0.49 0.40 0.42 0.63 0.73 4.03 10.64 0.25 
Variance 0.16 0.24 0.16 0.18 0.39 0.54 16.28 113.18 0.06 
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Figure 4. Histogram distribution of input and output variables. 

To obtain a comprehensive understanding of the effect of pedestrian demographics 
on the MU, a detailed analysis was performed, as shown in Figure 5. These findings indi-
cate that MU is slightly higher among females than among males, consistent with previous 
studies suggesting that females are more prone to distraction than males [17]. Regarding 
age groups, young pedestrians were found to be the most distracted, whereas elderly pe-
destrians were the least distracted when crossing roads. Similar patterns have been re-
ported in other studies [15,22]. This behavior among younger pedestrians can be at-
tributed to their higher risk-taking tendencies, enhanced cognitive and sensory abilities, 
and frequent smartphone use for social media interactions. The analysis also revealed that 
the percentage of MU was significantly higher among pedestrians crossing alone than 
among those crossing in pairs or groups. Previous studies corroborated these findings 
[24,31]. Pedestrians in pairs or groups are more likely to engage in conversations, reducing 
their mobile usage while crossing. In contrast, individuals crossing alone often interact 
with their smartphones to remain engaged and combat feelings of boredom. 

The impact of MU on pedestrian compliance behavior while crossing roads is illus-
trated in Figure 6. The findings revealed that approximately 58% of the distracted pedes-
trians failed to use designated crosswalks. Conversely, more than 75% of mobile users 
comply with traffic signals. This indicates that distracted pedestrians often overlook cross-
walks and opt to cross at more convenient locations while waiting for a pedestrian green 
signal. Similar patterns have been observed in other studies, supporting these findings 
[24,37]. As shown in Figure 7, pedestrians using mobile phones had significantly longer 
waiting times. 
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Figure 5. Mobile usage with respect to pedestrian demographics. 

 

Figure 6. Mobile usage with respect to compliance behavior. 

 

Figure 7. Mobile usage with respect to crossing behavior. 

Finally, the MU behavior of pedestrians while crossing the road was modeled against 
the predictor variables, as defined in Section 2.3. Prediction using a classification model 
involves analyzing the accuracy, loss, confusion matrix, and F1 score. Table 5 illustrates 
the accuracy and loss outcomes of the classification models. The CNN model exhibited 
the highest accuracy (0.9493) and lowest loss (0.2233), whereas the RNN model exhibited 
the lowest accuracy (0.9364) and highest loss (0.2241). Figure 8 illustrates the confusion 
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matrix graphs that compare the effectiveness of different models—CNN, LSTM, and 
RNN—with CNN being the most successful model. The dataset is highlighted in yellow 
for the maximum value and in purple for the minimum value. The dataset number is lo-
cated in the upper-right corner of the figures, labeled from yellow to purple. The training 
and testing predicted labels were on the X-axis, whereas the training and testing true la-
bels were on the Y-axis. The datasets positioned at (0,0) and (1,1) in the confusion matrix 
correctly predicted traffic in both the training and testing stages. In Figure 8a,b, the CNN 
model makes accurate predictions, as indicated by the sum of the diagonal elements from 
the top-left corner to the bottom-right corner. More precisely, out of the 4455 datasets in 
the training dataset, the model accurately predicted 4216 datasets (sum = 4137 + 79), show-
ing poor predictions for 239 datasets. Similarly, out of 1187 datasets in the testing set, the 
CNN model makes accurate predictions for 1140 datasets (1113 + 27), but inaccurately 
predicts only 47 datasets. The CNN model demonstrated excellent performance with high 
accuracy in making predictions during both training and testing phases. In addition, Fig-
ure 8c,d show how well the LSTM model performed by making 4186 correct predictions 
in the training set out of 4455 and accurately predicting 1128 out of 1187 datasets in the 
testing set. Similarly, Figure 8e,f display the performance of the RNN model, with 4159 
correct predictions out of 4455 in the training set and 1124 out of 1187 in the testing set. 

Table 5. Accuracy and loss of classification models. 

Models Accuracy Loss 
CNN 0.9493 0.2233 
LSTM 0.9419 0.2237 
RNN 0.9364 0.2241 

 

  
(a) (b) 

  
(c) (d) 
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Figure 8. Confusion matrix of classification models: (a,b) CNN, (c,d) LSTM, and (e,f) RNN. 

The F1 scores of the classification models are listed in Table 6. The F1 score of the 
CNN model is highest in both the training and testing phase, with 0.68 and 0.75, followed 
by the LSTM model, with 0.61 and 0.65 in the training and testing phase, respectively. The 
CNN model’s computational time of 10 s was the shortest among all models, followed by 
RNN and LSTM, with 12 and 37 s, respectively, as shown in Table 7. Ultimately, CNN 
was observed to be the top performer of all these models. 

Table 6. F1 score of classification models. 

Models Training Testing 
CNN 0.68 0.75 
LSTM 0.61 0.65 
RNN 0.54 0.61 

Table 7. Classification model computational time. 

Models Computational Time (Seconds) 
CNN 10 
LSTM 37 
RNN 12 

The relative importance of each predictor variable to predict MU was assessed by 
performing sensitivity analysis. Figure 9 shows the sensitivity analysis of the input pa-
rameters with the output parameters. This shows that MU is highly sensitive to v (m/s), 
TC (s), and SC, with values of 0.252, 0.232, and 0.222, respectively. This indicates that the 
signal compliance and crossing speed are significantly related to the MU. AG, G, and CC, 
with values of 0.129, 0.145, and 0.178, respectively, were moderately sensitive to MU. This 
indicates that pedestrian demographics, such as gender and age group, considerably af-
fect the mobile usage of pedestrians. Lastly, MU sensitivity is poor, with WT (s) and GS 
represented by sensitive values of 0.081 and 0.1, respectively. 
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Figure 9. Sensitivity analysis. 

4. Model Validation Using Cross-Validation 
To validate the robustness and generalizability of all models utilized in this study, 

CNN, LSTM, RNN, and others, a 5-fold cross-validation was performed. In this approach, 
the dataset was divided into five subsets. For each fold, four subsets were used for training 
and one subset was reserved for testing, ensuring that every data point was included in 
both the training and testing phases throughout the validation process. This methodology 
allowed for a comprehensive evaluation of model performance across different partitions 
of the dataset. The mean accuracy, standard deviation, and additional metrics, such as F1 
score and loss, were calculated across all folds to assess the consistency and reliability of 
each model. The results of the 5-fold cross-validation conducted for various models are 
summarized in Table 8, highlighting key performance metrics, such as mean accuracy, 
standard deviation, mean F1 score, mean loss, and computational time. These metrics pro-
vide a comprehensive evaluation of the capabilities of the models to effectively predict 
and generalize. Additionally, Figure 10 effectively highlights the strengths and weak-
nesses of each model, providing a clear basis for decision-making, depending on whether 
accuracy or efficiency is prioritized. 

CNN achieved the highest mean accuracy of 94.93%, with a low standard deviation 
of ±0.57%, demonstrating consistent performance. It also attained a mean F1 score of 0.75 
and a mean loss of 0.2233, indicating effective error minimization. Despite its high accu-
racy, the computational time of the CNN was efficient at 10 s. The LSTM network had a 
mean accuracy of 94.19%, with a standard deviation of ±0.62%, demonstrating its stability. 
The mean F1 score was 0.65, which was slightly lower than that of the CNN, and a mean 
loss of 0.2237. However, the computational time for LSTM was notably higher at 37 s, 
reflecting the complexity of processing the sequential data. RNN achieved a mean accu-
racy of 93.64%, with a standard deviation of ±0.68%, showing slightly higher variability. 
The mean F1 score is 0.61, which is the lowest among the three models, and the mean loss 
is 0.2241. The computational time of 12 s was slightly higher than that of CNN, but signif-
icantly lower than that of LSTM, making it a feasible alternative with reasonable accuracy. 
In conclusion, CNN emerged as the most accurate and efficient model overall, combining 
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superior performance with reduced computational time. The LSTM network demon-
strated its efficacy in processing sequential data, albeit at the expense of increased com-
putational demand. The RNN provided a satisfactory balance, but exhibited a lower ac-
curacy and F1 score, indicating the potential for further optimization. 

 

Figure 10. Comparison of accuracy and computational time across models. 

Table 8. Results of 5-fold cross-validation for all models. 

Model Mean Accuracy (%) Standard Deviation (%) Mean F1 Score Mean Loss Computational Time (s) 
CNN 94.93 ±0.57 0.75 0.2233 10 
LSTM 94.19 ±0.62 0.65 0.2237 37 
RNN 93.64 ±0.68 0.61 0.2241 12 

5. Conclusions 
This study addresses the critical issue of pedestrian safety in the context of rising 

technological distractions, particularly mobile phone usage, which pose significant risks 
to road users globally. This study explores the extent and impact of mobile usage (MU) 
among pedestrians and examines how demographic factors, such as age, gender, and 
group size, influence distracted behaviors. Detailed observational data were collected 
from urban signalized intersections in New Delhi, India, capturing pedestrian behaviors 
under real-world conditions. 

Advanced machine-learning techniques, including Convolutional Neural Networks 
(CNN), Long Short-Term Memory networks (LSTM), and Recurrent Neural Networks 
(RNN), have been employed to model and predict distracted pedestrian behavior. The 
analysis highlights the relationship between mobile device usage and key behaviors, such 
as compliance with crosswalks and traffic signals, as well as demographic and situational 
factors influencing distraction levels. This comprehensive approach not only identifies the 
behavioral patterns of distracted pedestrians, but also demonstrates the effectiveness of 
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machine learning in predicting and understanding these behaviors. The major findings of 
this study are as follows: 

• MU was observed in 6.9% of the observed pedestrians, with significant variations 
across the different intersections. 

• Females and younger pedestrians exhibited higher levels of distraction, and pedes-
trians crossing alone were more likely to use mobile devices than those in groups. 

• Distracted pedestrians showed lower compliance with crosswalk usage (58%), but 
higher compliance with traffic signals (75%). 

• All models have far superior performance compared to the conventional ANN. The 
CNN model demonstrated the best performance among the tested machine-learning 
algorithms, achieving the highest accuracy (94.93%) in predicting distracted behav-
ior. 

• Sensitivity analysis revealed that signal compliance and crossing speed were the 
most significant predictors of MU, followed by demographic factors, such as gender 
and age. 

Based upon the above findings, the following recommendations are proposed: 

• Because the majority of distracted pedestrians exhibit crosswalk violations, the in-
stallation of tactile surfaces and clearly marked crosswalks at crossing locations 
would certainly guide the distracted pedestrians. Audible warnings and flashing 
lights should be installed to alert distracted pedestrians at intersections. 

• As young pedestrians are found to be most distracted, awareness of the dangers of 
distracted walking using social media, schools, and public platforms should be pro-
vided. 

• To reduce the share of distracted crossings, strict enforcement, similar to that for driv-
ers, should be implemented for pedestrians. 

• To minimize distraction, technology can be used to provide real-time tactile feedback 
and temporarily block notifications while approaching an intersection. 

This study underscores the urgent need for targeted interventions to mitigate the 
risks associated with distracted walking, particularly in rapidly urbanizing regions with 
high pedestrian activity and traffic density. By focusing on both behavioral patterns and 
technological solutions, this study aims to contribute to safer urban environments for vul-
nerable road users. This study contributes to the existing body of knowledge by compre-
hensively analyzing pedestrian behavior influenced by technological distractions in urban 
settings. It introduces applying advanced machine learning models to predict technolog-
ically distracted pedestrian behaviors. Furthermore, it offers insights into the demo-
graphic and behavioral factors contributing to pedestrian safety risks, thereby guiding 
targeted interventions. 

The current study focuses on a limited number of intersections in New Delhi, which 
may restrict the generalizability of the findings to other regions. Further, the study fo-
cused only on individual pedestrian attributes. Future research should consider integrat-
ing environmental factors, such as crosswalk width, road traffic volume, and lane width, 
to provide a holistic understanding of pedestrian behavior. Including these variables 
could improve model performance and offer richer insights into the interplay between 
individual and environmental factors influencing mobile usage behavior. Moreover, in 
future research, a comparative analysis of ensemble models with deep learning architec-
tures with XAI models would help identify the most suitable models based on accuracy, 
computational efficiency, and generalizability for similar contexts. The transferability of 
the models to other geographical locations has also not been explored. In the future, this 
study can be expanded to include a broader geographical scope and diverse urban settings 
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to enhance the generalizability of the results. Simulation-based studies can be used to un-
derstand real-time behavioral observations and refine predictions. Finally, the long-term 
effectiveness of interventions such as educational campaigns and technology-based solu-
tions in mitigating pedestrian distractions should also be studied. 
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