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Abstract: This paper addresses the critical issue of road safety in the indispensable role of
transportation for societal well-being and economic growth. Despite global initiatives like
Vision Zero, traffic accidents persist, largely influenced by driver behavior. Advanced driver
monitoring systems (ADMSs) utilizing computer vision have emerged to mitigate this
issue, but existing systems are often costly and inaccessible, particularly for bus companies.
This study introduces a lightweight, deep-learning-based ADMS tailored for real-time
driver behavior monitoring, addressing practical barriers to enhance safety measures. A
meticulously curated dataset, encompassing diverse demographics and lighting conditions,
captures 4966 images depicting five key driver behaviors: eye closure, yawning, smoking,
mobile phone usage, and seatbelt compliance. Three object detection models—Faster
R-CNN, RetinaNet, and YOLOv5—were evaluated using critical performance metrics.
YOLOv5 demonstrated exceptional efficiency, achieving an FPS of 125, a compact model
size of 42 MB, and an mAP@IoU 50% of 93.6%. Its performance highlights a favorable
trade-off between speed, model size, and prediction accuracy, making it ideal for real-
time applications. Faster R-CNN achieved an FPS of 8.56, a model size of 835 MB, and
an mAP@IoU 50% of 89.93%, while RetinaNet recorded an FPS of 16.24, a model size of
442 MB, and an mAP@IoU 50% of 87.63%. The practical deployment of the ADMS on a mini
CPU demonstrated cost-effectiveness and high performance, enhancing accessibility in
real-world settings. By elucidating the strengths and limitations of different object detection
models, this research contributes to advancing road safety through affordable, efficient,
and reliable technology solutions.

Keywords: advanced driver monitoring systems; driver behavior detection; deep learning;
object detection models; real-time monitoring; transportation safety

1. Introduction
Transportation plays a pivotal role in enhancing individual and societal well-being,

fostering economic growth, and elevating overall quality of life [1]. Nonetheless, it is not
without its grave implications, particularly the distressing prevalence of traffic accidents that
carry the potential for severe harm or loss of life. In response to these pressing concerns,
governments and policymakers have embarked on initiatives aimed at enhancing road safety.

One noteworthy initiative is “Vision Zero”, which originated within the Swedish
parliament and has garnered international recognition [2]. This paradigm strives to create
a world where no traffic-related fatalities or serious injuries are deemed acceptable. Vision
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Zero has transcended borders and found adoption in diverse nations, including developing
nations like Pakistan, as well as developed nations like the UAE [3]. Its implementation
seeks to instill comprehensive road safety practices and curtail the occurrence of fatal
accidents on a global scale. The presented work is inherently aligned with the objectives of
Vision Zero, which seeks to eliminate traffic-related fatalities and severe injuries.

While driving is a routine activity, it carries inherent risks for both drivers and others
on the road. These risks stem from factors like road layout, conditions, surroundings, and
driver behavior [4]. Notably, driver behavior remains an unpredictable aspect influenced by
the interplay of the driver, environment, and vehicle. Research has indicated that accidents
tend to decrease when co-passengers alert drivers to unseen dangers, such as instances of
inattentiveness that may lead to accidents, with rates ranging from 30% to 43% [5].

The rapid evolution of computer vision technologies has led to the development of
automatic driver monitoring systems, adept at detecting instances of driver distraction.
These sophisticated monitoring systems can seamlessly integrate with automated control
mechanisms, effectively notifying drivers about their distracted behaviors [6].

Leading high-tech car manufacturers have started integrating advanced driver moni-
toring systems into their vehicles. In 2018, Volvo introduced an innovative Driver Alert
Control (DAC) system, utilizing a camera to detect the road’s side markings [7]. This cam-
era then compares the detected road section with the driver’s steering wheel movements,
effectively monitoring their interaction with the road.

Similarly, Mercedes-Benz has implemented an advanced Attention Assist system [8].
This system relies on a specialized steering wheel sensor, meticulously recording the
driver’s steering wheel movements and speed. Through sophisticated analysis of data
from steering wheel sensors, the Attention Assist algorithm gains insights into the driver’s
personal driving habits, detecting potential signs of drowsiness and promptly notifying
drivers, thereby preventing momentary lapses in attentiveness.

In the event of any deviation or change in the driver’s established driving style, the
system promptly issues alerts [8]. By seamlessly integrating technology and behavior
analysis, Mercedes-Benz’s Attention Assist contributes significantly to road safety by
detecting potential signs of drowsiness and promptly notifying drivers, thereby preventing
momentary lapses in attentiveness.

Both Volvo and Mercedes-Benz have demonstrated remarkable strides in enhancing
road safety through the development of advanced driver monitoring systems. These
systems leverage cutting-edge technology to continuously assess driver behavior, promptly
alerting drivers to potential risks and ensuring a heightened level of vigilance on the road.

However, a major issue with most of the systems developed by the automotive indus-
try is their high cost [9]. Due to their dependence on expensive sensors, these smart tracking
systems are only available in high-end vehicles, making them inaccessible to the general
public. This is perhaps why, in recent years, multiple academic studies have attempted to
develop accurate yet cheap drowsiness detection systems for real-world use.

Previous work [10,11] in the field of driver attentive state detection has predominantly
focused on utilizing a single feature to assess driver behavior and attention level. While
these studies have provided valuable insights, there are limitations to relying solely on a
single feature. Using only one feature restricts the analysis to a narrow aspect of driver
behavior, providing an incomplete understanding of the driver’s attentive state. Single-
feature-based models tend to perform well in controlled environments or specific scenarios,
but their effectiveness may diminish when applied to diverse real-world situations.

The paper presents a deep-learning-based lightweight advanced driver monitoring
system tailored to address the practical challenges of real-time driver behavior monitoring.
This system is designed to detect various aspects of driver behavior on the road, facilitating
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enhanced safety measures and assisting autonomous driving functionalities. The main
contributions of this work include:

• A lightweight deep learning model is developed for a commercial advanced driver
monitoring system, collecting real-time observable driver information to assess their
ability in dynamic driving tasks.

• The research utilizes a meticulously curated dataset, representing diverse demograph-
ics, to enhance model accuracy across different population groups. Varied lighting
conditions are considered during data collection, strengthening the model’s robustness
and adaptability in diverse driving environments.

• Three state-of-the-art object detection models (Faster R-CNN, RetinaNet, and YOLOv5)
are employed to detect various drivers’ behavioral features. The YOLO model’s
superior performance, particularly its inference time for frame extraction and de-
tection, as well as its model size, makes it an ideal choice for the driver behavior
monitoring system.

• The model is implemented on a mini CPU to create a cost-effective, commercially viable,
high-performance, and low-power standalone driver behavior monitoring system.

2. Literature Review
The literature review begins by providing an overview of the techniques utilized in

driver behavior detection systems, starting with the use of inertial and biological sensors. It
then delves into advancements in computer vision techniques, with a particular emphasis
on the integration of deep learning models. Within this context, the literature highlights
three specific deep learning models, which are used in the current study. These models are
described in terms of their accuracies and distinctive features, showcasing their potential
for improving the performance of driver behavior detection systems.

2.1. Inertial and Biological Sensors

A system [12] was designed to identify a driver’s inattention due to secondary task
distraction. Three states were identified: handling a CD, reaching for an object on the back
seat, and checking the speedometer and mirrors. Data for the system were collected using
head-mounted inertial sensors, including an accelerometer, gyroscope, and magnetometer,
and drivers were asked to drive on a specific path. To classify the captured data, three
machine learning classifiers were trained: support vector machine (SVM) with linear
and radial basis function (RBF) kernels, k-nearest neighbor (k-NN), and random forest
(RF). With the exception of SVM linear, all the employed techniques yielded an accuracy,
precision, and recall exceeding 96%. However, the controlled setup of the study makes it
impractical to apply findings to real-world driving conditions.

EEG and EOG recordings [13] were utilized to estimate the level of vigilance inside the
vehicle. Long short-term memory (LSTM) combined with capsule feature extraction was
employed to learn representative features. The system’s performance was evaluated using
two metrics: root mean square error (RMSE) and Pearson correlation coefficient (PCC).
The calculated values for RMSE and PCC were 0.0295 and 0.9887, respectively. Despite
the model’s high accuracy in detecting the driver’s state, practical applications do not
commonly employ physiological measures such as EEG and EOG due to their intrusive
nature. Additionally, the implementation of a detection system that requires hardware
for direct contact with the driver’s body may cause discomfort during prolonged periods
of use.

Another approach [14] was implemented to develop a real-time driver distraction
detection system by collecting eye and head movement measurements. Data from the eye
and head movement tracker were used to evaluate the performance of Laplacian support
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vector machines (LapSVM) and a semi-supervised extreme learning machine (SS-ELM)
model. SS-ELM achieved the greatest accuracy of 97.2% and G-mean of 0.959. However, it
is important to note that the accuracy of driver distraction detection decreases when there
are changes in eye movement behavior, such as when a different driver is involved. This
indicates that the system’s performance may be influenced by individual variations in eye
movement patterns.

Accelerometer and gyroscope sensors [15], embedded in modern smartphones, were
utilized to detect distracted driving behavior. This behavior includes activities such as mak-
ing phone calls, sending text messages, and reading while driving. A random-forests-based
algorithm was employed to classify distracted driving activities in real time. The system
was extensively evaluated across multiple metrics, environments, and testing strategies,
yielding favorable results. Despite the outstanding classification results (85% precision
and 84% recall measures for both sensors combined), the entire study was conducted in a
controlled environment. This limited scope neglects various possible scenarios, rendering it
non-feasible for real-world conditions. Additionally, smartphone-based detection methods
may encounter limitations when drivers forget to carry their smartphones, when the smart-
phones are switched off, or when the cause of distraction is unrelated to smartphone usage.

When drivers utilize electronic devices or become distracted by the surrounding
scenery, they divert their attention away from the road. Research work based on gaze
monitoring sensors has been conducted to predict drowsiness, fatigue, and distraction. An
SMI ETGTM eye tracker [11] was employed to obtain drivers’ gaze behavior parameters
in a driving simulation platform. The drivers were assigned certain secondary tasks to
assess differences in visual characteristics during task performance. In another study,
gaze information [10] was analyzed using a front camera to extract features such as facial
landmarks, head pose, and iris centers. LSTM was utilized for driver behavior monitoring
and prediction. However, while gaze monitoring provides sufficient information about
driver visual behavior, it is insufficient to accurately determine driver distracted states. In
addition to monitoring visual behavior, analyzing a driver’s posture can provide valuable
insights for detecting distracted states. The Kanade–Lucas–Tomasi (KLT) point tracker [16]
was used to track body parts, including the hand, lips, and forehead, while driving. The
proposed feature sets were combined with the kernel SVM technique to detect and classify
different types of distractions during driving. Different prototypes have been developed,
but none have been commercialized for the automotive industry due to the variance
of different types of sensors, which makes them unpredictable and unsuitable for real-
world conditions.

2.2. Deep Learning Models

Using footage from video cameras provides a more flexible and effective approach
to monitoring driver behavior. By incorporating computer vision (CV) methods, video
camera footage can offer real-time and highly accurate information about the driver. Ob-
ject detection models such as Faster R-CNN, CNN, YOLO, SSD, or RetinaNet can be
trained to identify specific objects of interest, including pedestrians, mobile devices, seat
belts, cigarettes, vehicles, or weapons, in real-time video footage. Additionally, posture
detection and face identification models can be trained to detect signs of driver fatigue
and inattentiveness.

2.3. Faster RCNN

Deep ConvNets [17] are widely used for object detection and image classification
due to their higher accuracy compared to previous models such as VGGNets, ResNets,
Inception networks, and DenseNet. One notable architecture is R-CNN, which utilizes a
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deep ConvNet to recognize object proposals (potential regions of interest). Although it
achieves high accuracy, it suffers from time and space inefficiencies. The system takes a
long time and requires a large amount of storage space as it extracts features from each
image and saves them to a hard disk. The detection process alone takes 47 s for a single
image. Fast R-CNN [18] significantly improves the detection speed to 0.3 s per image
by incorporating an ROI-pooling layer. However, the region proposal step, which is not
part of the network architecture, becomes a bottleneck in the system. Consequently, the
overall solution becomes suboptimal, and the network relies on external methods for
region proposal.

The drawback of Fast R-CNN is addressed by Faster R-CNN [19], which introduces the
region proposal network (RPN). The RPN is implemented as a fully convolutional network
that predicts object boundaries and objectness scores. It achieves translation invariance
using anchors with different scales and ratios. By integrating the deep VGG-16 model, the
entire system can efficiently perform the proposal and detection process in just 0.2 s [20].
One study [21] proposes an ensemble learning approach based on deep learning techniques
to detect distracted drivers. It detects 10 distracted states, including talking on the cell
phone, texting, tapping on the cell phone screen, smoking, drinking, eating, taking hands
off the steering wheel, mending facial hairs, talking to passengers, and taking eyes off
the road. By fine-tuning the Faster R-CNN model and extracting pose points from the
driver’s posture, the approach achieves high accuracy (97.7% validation accuracy). The
model focuses on objects directly associated with distraction and calculates interactive
associations using the intersection over union metric. It achieves an accuracy of 92.2%,
surpassing RCNN and Fast R-CNN. To ensure its practicality, the study should evaluate
the model’s real-time performance, considering computational efficiency and response
time. Another study mentions an improved Faster R-CNN model [22] designed specifically
for small object detection. The approach introduces novel techniques for bounding box
regression and RoI pooling to address positioning deviation issues. To ensure robustness,
the study curated the TT100K dataset (Tsinghua-Tencent 100K) which includes a diverse
range of traffic signs, accounting for variations in luminance and weather conditions.
The model incorporates multi-scale convolution feature fusion and an improved NMS
(non-maximum suppression) algorithm for accurate recognition. Results demonstrate high
performance on traffic signs, achieving a recall rate of 90% and an accuracy rate of 87%. This
indicates the effectiveness of Faster R-CNN for small object detection. However, further
research is necessary to evaluate its performance on different objects and domains, taking
into account computational efficiency and potential limitations.

2.4. YOLO

Object detection is a challenging problem in computer vision, and deep learning has
significantly improved the performance of object detectors in tasks such as classification,
localization, and segmentation. Two-stage detectors, such as Faster R-CNN, utilize complex
architectures for selective region proposals, while single-stage detectors like YOLO [23]
employ simpler architectures to process all spatial regions in one shot. While two-stage
detectors generally achieve higher detection accuracy, single-stage detectors, particularly
YOLO-based models, offer faster inference times [24]. The trade-off between accuracy and
speed has made YOLO popular in various applications. For example, although YOLO may
have a detection accuracy of 63.4 compared to Fast R-CNN’s detection accuracy of 70, it
can perform inference around 300 times faster.

One study [25] presents solutions for object detection and tracking in an autonomous
driving scenario. The study compares the performance of state-of-the-art object detectors,
namely YOLOv5, Scaled-YOLOv4, and YOLOR, trained on the BDD100K dataset, which
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includes out-cabin objects such as cars, pedestrians, lanes, and traffic lights. The algorithm is
deployed on the NVIDIA Jetson AGX Xavier Edge Device. Real-time inference capabilities
are evaluated using DeepStream technology, and different object trackers (NvDCF and
DeepSORT) are compared using the KITTI tracking dataset. The proposed solution achieves
a detection interval of one with a frame rate of 33.3 FPS and a detection interval of one with a
frame rate of 17 FPS using the YOLOR-CSP architecture with a DeepSORT tracker. Another
study [26] investigates the application of YOLO-based deep learning models for in-cabin
monitoring and occupant detection in driving scenarios. The study utilizes a fisheye-lens
camera and RGB-format images as inputs and evaluates various YOLO models, including
YOLOv3-tiny, YOLOv3-tiny-3I, YOLO-fastest, YOLO-fastest-xl, and YOLO-fastest-three
scales. The results demonstrate that the YOLO-fastest-three scales model achieves the
highest F1-score (95.89%) and mAP (97.16%), while the YOLO-fastest-xl model exhibits
the lowest false negative rate (2.63%). The proposed design executes at up to 30 FPS on a
GPU-based embedded device.

2.5. RetinaNet

RetinaNet, a pivotal model in object detection, has captured substantial attention in
the computer vision community. Lin et al. [27] introduced RetinaNet in 2018, proposing
a fusion of feature pyramid networks (FPN) and a novel loss function called focal loss.
Focal loss addresses class imbalance, assigning higher weights to hard-to-find objects,
particularly small objects, enhancing RetinaNet’s accuracy. The combination of FPN and
focal loss enables RetinaNet to achieve state-of-the-art performance in both one-stage and
two-stage object detection models. It stands out for its proficiency in handling objects of
various scale.

In another [28] study, the authors address the challenge of accurately obtaining the
number of wheat ears, a crucial indicator for wheat production and yield estimation. The
study focuses on comparing the performance of faster regions with convolutional neural
networks (Faster R-CNN) and RetinaNet in predicting the number of wheat ears at different
growth stages and under diverse conditions. The results, utilizing the Global WHEAT
dataset for recognition, reveal that the RetinaNet method and the Faster R-CNN method
achieve average accuracies of 0.82 and 0.72, respectively, with RetinaNet demonstrating
higher recognition accuracy. Moreover, when utilizing collected image data for recognition,
the R2 values after transfer learning for RetinaNet and Faster R-CNN are 0.9722 and 0.8702,
respectively, indicating superior recognition accuracy for the RetinaNet method across
different datasets.

Another study [29] focuses on the development and evaluation of an object detection
system for detecting storm-drains and manholes in the streets of Campo Grande city,
Brazil. Terrestrial images were acquired, and a dataset containing 297 images was created,
manually annotated, and divided into training, validation, and testing sets. The RetinaNet
object detection method was adopted for its ability to handle class imbalance, with ResNet-
50 and ResNet-101 as backbones. The training and validation loss curves indicate successful
convergence without overfitting. RetinaNet outperformed Faster R-CNN in terms of
average precision (AP), with better results for both manhole and storm-drain classes.

This paper aims to develop a robust model for an advanced driver monitoring system
(ADMS) using state-of-the-art models, namely YOLOv5, Faster RCNN, and ResNet, which
will be trained and tested on customized datasets. These models will then be compared
based on inference time, accuracy, and model size. The findings from this research will
contribute to the development of an ADMS capable of effectively detecting and addressing
driver behavior and associated potential risks in real time.
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3. Materials and Methods
In this section, we delve into the detailed approach employed in our study, which

commences with the creation of a diversified dataset encompassing essential features
crucial in driver behavior and distraction monitoring, including eye closure, yawning,
seat belt detection, smoking, and mobile phone usage. Following this, the preprocessing
and annotation of the collected data are conducted using LabelImg. Subsequently, three
state-of-the-art machine learning algorithms—Faster R-CNN [19], RetinaNet [27], and
YOLOv5 [23]—are employed to comprehensively evaluate object detection models. Our
investigation meticulously examines critical performance metrics, including frames per
second (FPS), model size, and learning rate, to offer valuable insights into the trade-offs
associated with each model. Figure 1 illustrates the process flow diagram adopted for the
development of the ADMS.

Figure 1. Visual representation outlining the development process of the ADMS (faces in the images
have been blurred to protect the privacy of individuals in accordance with ethical publishing standards).

3.1. Dataset Description

Driver behavior plays a critical role in road safety, with dangerous behaviors often
leading to fatal accidents. Figure 2 provides insights into roadside interactions of drivers,
focusing on five key behavioral features.

The dataset used for this research was collected via a dashboard camera installed in
a car, capturing the in-cabin behaviors of drivers. Careful consideration was given to en-
compass diverse aspects such as religious diversity, ethnicity, and skin color. This inclusive
approach aimed to ensure a comprehensive representation of various demographic groups,
thereby enhancing the model’s accuracy and applicability across different populations. Ad-
ditionally, varied lighting conditions were considered during data collection. The objective
was to ensure that the dataset captured variations in lighting scenarios commonly encoun-
tered during driving. This consideration aimed to enhance the robustness and adaptability
to diverse driving environments. Figure 3 illustrates a diversified dataset, encompassing
each feature while representing varied lighting conditions and demographic populations.
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Figure 2. Illustration depicting roadside interactions and highlighting five crucial behavioral features
for driver monitoring (faces in the images have been blurred to protect the privacy of individuals in
accordance with ethical publishing standards).

Figure 3. Visuals of a diversified dataset showcasing each feature, reflecting varied lighting conditions
and demographic populations (faces in the images have been blurred to protect the privacy of
individuals in accordance with ethical publishing standards).

The dataset encompasses 1050 images for capturing instances of eye closure,
550 images for yawning, 760 images for seat belt detection, 570 images portraying in-
stances of smoking, and 1900 images for mobile phone usage detection. The distribution of
classes in the dataset is illustrated in Figure 4. The participants in this study were research
assistants from the SmartCity Lab at the National Center for Artificial Intelligence (NCAI),
NED University of Engineering and Technology, Karachi. All participants provided in-
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formed consent prior to their involvement in the data collection process. For seat belt
detection, a unique challenge was encountered as seat belts often became camouflaged
with the clothing worn by drivers. To address this issue, a distinctive sticker logo was
designed and affixed to the seatbelt, facilitating improved visibility for the model during
training and inference. Given that the system is designed for commercialization, the entire
system, including the designed sticker for seatbelt enhancement, will be installed. This
diverse and comprehensive collection of images for each behavior category serves as a
robust foundation for training and enhancing the accuracy and efficacy of the ADMS in
detecting and interpreting crucial driver behaviors. Additionally, the dataset comprises a
total of 3544 training images, 532 testing images, and 890 validation images.

Figure 4. Bar graph illustrating the distribution of classes in the dataset, showcasing instances of eye
closure, yawning, seat belt detection, smoking, and mobile phone usage.

3.2. Experimental Setup and Training

The experimental setup incorporates a robust computational infrastructure featuring
the NVIDIARTX A4000 GPU with 16GB memory and 32GB RAM. This selection is strategic,
aiming to optimize the training and inference efficiency of Faster R-CNN, RetinaNet, and
YOLOv5, particularly in the context of intricate tasks such as real-time driver monitoring.

The training configurations for the specified models are as follows. The Faster R-
CNN model with X-101 32x8d FPN 3x was trained with a learning rate of 0.0001 for three
epochs. Similarly, the RetinaNet_R_101_FPN_3x model used a learning rate of 0.0001 and
was trained for three epochs. On the other hand, the YOLOv5 Medium model employed
a learning rate of 0.0001 and underwent a more extensive training process, spanning
19 epochs. The architecture of each model is described in the subsequent sections.

3.2.1. Faster R-CNN

The Faster R-CNN model [19] with the X-101 32x8d FPN backbone, is a sophisticated
architecture for precise object detection in images. At its core, the model utilizes an extended
variant of the ResNet architecture, known as X-101, which features a deep structure with
32 layers and an 8× width expansion at each layer. This backbone network acts as a
feature extractor, capturing intricate details from input images. The integration of a feature
pyramid network (FPN) enhances the model’s ability to detect objects at multiple scales,
facilitating the recognition of objects of varying sizes within an image.
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Complementing the backbone is the region proposal network (RPN), which efficiently
generates region proposals—potential bounding boxes containing objects [19]. Operating
on the feature maps provided by the FPN, the RPN identifies candidate regions for further
analysis. Subsequently, the regions of interest (ROIs) are selected based on these proposals.
The ROI pooling layer ensures consistent feature alignment within these regions, facilitating
subsequent layers in performing accurate classification and bounding box regression.

The final stages of the architecture involve refining the proposed regions through
bounding box regression and determining the object classes via object classification.
Figure 5 illustrates the architecture of the Faster R-CNN model and showcases the in-
tricate network design and components involved in its operation. This comprehensive
approach enables the model to not only identify the presence of objects but also precisely
localize them within the image.

Figure 5. Architecture diagram of the Faster R-CNN model depicting the intricate design and its
components (faces in the images have been blurred to protect the privacy of individuals in accordance
with ethical publishing standards).

The Faster R-CNN with X-101 32x8d FPN 3x model was chosen for its superior object
detection precision, with the depth of the X-101 32x8d FPN backbone and adaptability
to various scales through FPN. Its proven track record [ref] in accurately localizing and
classifying objects, pre-trained weights, and strong community support make it the optimal
choice for achieving high-level accuracy in the advanced driver monitoring system.

3.2.2. RetinaNet

RetinaNet_R_101_FPN_3x [27] represents a configuration of the RetinaNet object
detection model. RetinaNet is known for its effectiveness in addressing class imbalance
during object detection tasks, thanks to the introduction of focal loss. In this specific
configuration, the model employs ResNet-101 (R_101) as its backbone architecture, using
the depth and representational power of ResNet networks. A feature pyramid network
(FPN) is integrated to create a feature pyramid, enhancing the model’s ability to detect
objects at various scales. Finally, the model is trained for three epochs, allowing it to learn
from the dataset over an extended training period. This configuration is tailored to achieve
accurate and robust object detection by combining advanced architectural elements and
extended training duration. Figure 6 provides an insightful depiction of the RetinaNet
model’s architecture, revealing the intricate design and key components essential for object
detection tasks.

The RetinaNet_R_101_FPN_3x model was selected for its object detection prowess,
specifically its use of the ResNet-101 backbone and feature pyramid network (FPN) for
multi-scale feature extraction [27]. This configuration ensures accurate detection across
diverse scales, crucial for driver monitoring.
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Figure 6. Architecture diagram illustrating the structure and components of the RetinaNet model.

3.2.3. YOLOv5m

The YOLOv5m (medium) [23] architecture is characterized by its utilization of the
CSPDarknet53 backbone, an enhanced version of Darknet, for effective feature extrac-
tion. Complemented by a feature pyramid network (FPN) and a PANet neck architecture,
YOLOv5m excels in multi-scale feature extraction and path aggregation, enhancing its
ability to detect objects of varying sizes. Figure 7 gives an in-depth view of the YOLOv5
model’s architecture, presenting its streamlined design and key elements crucial for efficient
object detection. The YOLO head is responsible for generating predictions, dividing the
input image into a grid, and predicting bounding boxes and class probabilities. YOLOv5m
employs anchor boxes and a combination of binary cross entropy (BCE) loss with focal
loss during training to address class imbalance and emphasize challenging objects. As a
medium-sized variant, YOLOv5m strikes a balance between model size and computational
efficiency, making it versatile for applications where real-time or near-real-time inference is
essential, such as video analysis, surveillance, and robotics. The architecture’s adaptability,
anchored in a robust backbone and advanced feature extraction mechanisms, underscores
its effectiveness across diverse object detection tasks.

Figure 7. Architecture diagram showcasing the streamlined design of the YOLOv5 model (faces
in the images have been blurred to protect the privacy of individuals in accordance with ethical
publishing standards).

YOLOv5m is geared towards achieving real-time or near-real-time inference speeds [23],
making it well suited for applications such as video analysis, surveillance, and robotics, where
low latency is essential.

4. Results
In this section, we present a comprehensive evaluation of three state-of-the-art object

detection models, namely Faster R-CNN, RetinaNet, and YOLOv5, for driver monitoring
systems. Our investigation focuses on critical performance metrics, including frames per
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second (FPS), model size, and learning rate, to provide valuable insights into the trade-offs
associated with each model.

4.1. Faster R-CNN

On the test dataset, the Faster RCNN model demonstrated its capability to detect and
classify objects with varying sizes and complexities. The model performed exceptionally
well in localizing specific behaviors, such as seatbelt usage. The Faster R-CNN model
operates at a frames per second (FPS) rate of 8.56. With a model size of 835 MB, it is a
relatively large model. The learning rate during training is set at 0.0001, signifying the
step size used to adjust model weights during the optimization process. Table 1 presents
average precision values against each feature, highlighting the model’s performance across
different behavioral categories. The table reveals that the model achieved high precision
for seatbelt detection, with an average precision value of 70.675. However, performance
varied across other features, with eye closed detection achieving an average precision of
51.815, smoking detection at 30.612, mobile phone usage detection at 37.502, and yawning
detection at 54.628.

Table 1. Average precision values achieved by the Faster R-CNN model for different behavioral features.

Category AP

warnings nan
seatbelt 70.675

eye closed 51.815
smoking 30.612
mobile 37.502
yawn 54.628

4.2. RetinaNet

The per-category bounding box average precision (AP) evaluation reveals noteworthy
findings in the model’s performance. The model demonstrates higher precision in de-
tecting seatbelt usage (AP: 78.849), emphasizing its effectiveness in accurately identifying
instances of this critical safety behavior. However, there is room for improvement in de-
tecting eye closure (AP: 43.786), smoking-related instances (AP: 38.012), and mobile phone
usage (AP: 37.655), where precision is moderate. On a positive note, the model excels in
detecting yawning behaviors, with a high AP of 60.848. The model’s performance could be
further optimized for eye closure, smoking, and mobile phone usage detection, providing
targeted areas for refinement. Table 2 showcases the average precision achieved by the Reti-
naNet model across different behavioral categories, further enriching our understanding of
its performance.

Table 2. Illustrates the average precision attained by the RetinaNet model across various behavioral
categories, offering insights into its performance.

Category AP

warnings nan
seatbelt 78.849

eye closed 43.786
smoking 38.012
mobile 37.655
yawn 60.848
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4.3. YOLOv5m

The YOLOv5 Medium model showcases exceptional performance in object detection
on the test dataset, with an overall precision of 0.876 and a recall of 0.925. Operating at a
frames per second rate of 125, the model demonstrates efficiency in real-time processing.
Notably, it excels in detecting specific driver behaviors such as yawning, eye closure, smok-
ing, mobile phone usage, and seatbelt usage, achieving high precision and recall scores
across these categories. Table 3 showcases the YOLOv5 Medium model’s object detection
results for various features, highlighting precision, recall, and mAP@IoU 0.5 scores along-
side the number of images and instances. The compact model size of 42 MB enhances
its deployability, making it a well-suited choice for applications like driver monitoring
systems, where accurate and real-time object detection is paramount. Figure 8 depicts the
dynamic progression of precision at a 50% IoU, which stands at 0.876 after each epoch for
all behavior classes.

Figure 8. The changing precision over epochs at a 50% IoU threshold, with a stable value of 0.876 for
all behavior classes.

Figure 9 illustrates the evolving trend of mAP@ at 50% IoU, achieving a consistent
value of 0.936 after each epoch across all behavior classes.

Figure 9. mAP variation at a 50% IoU, remaining steady at 0.936 for all behavior classes after each epoch.

Figure 10 illustrates the changing trend of recall, depicting how it evolves over each
epoch at a 50% IoU. Despite this evolution, the recall consistently reaches a value of 0.9256
after each epoch across all behavior classes, highlighting the model’s stability in accurately
capturing instances of various behaviors.

These details highlight the trade-offs between model size, processing speed (FPS), and
learning rate. YOLOv5m stands out with a substantially higher FPS and smaller model size,
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suggesting it might be more suitable for real-time applications where speed and efficiency
are critical. However, the final choice depends on the specific requirements and constraints
of the driver monitoring system. Figure 11 demonstrates the results of applying YOLOv5
for real-time driver behavior detection using a diverse dataset.

Figure 10. Recall variation over epochs at 50% IoU threshold.

Table 3. YOLOv5m object detection results for different clases, including the number of images and
instances, as well as precision, recall, and mAP@IoU 0.5 scores.

Class Images Instances Precision Recall mAP@IoU0.5

all 582 573 0.876 0.925 0.936
yawn 582 90 0.97 0.978 0.978

eye closed 582 214 0.857 0.958 0.933
smoking 582 97 0.956 0.918 0.935
mobile 582 74 0.754 0.77 0.843

seat belt 582 98 0.815 1 0.983

Figure 11. Detected driver behavior during driving (faces in the images have been blurred to protect
the privacy of individuals in accordance with ethical publishing standards).
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In the evaluation of three distinct object detection models for driver monitoring
systems, Faster R-CNN, RetinaNet, and YOLOv5, critical performance metrics were scru-
tinized. Faster R-CNN exhibited a moderate frames per second (FPS) rate of 8.56, ac-
companied by a larger model size of 835 MB, utilizing a common learning rate of 0.0001.
Conversely, RetinaNet displayed a higher FPS of 16.24 and a comparatively smaller model
size of 442 MB, with a shared learning rate. Notably, the YOLOv5 model stands out with
exceptional efficiency, boasting an impressive FPS of 125 and a remarkably compact model
size of 42 MB, aligning with the same learning rate as its counterparts. These findings
underline the trade-offs between processing speed, model size, and learning rate, em-
phasizing YOLOv5’s notable suitability for real-time applications in the context of driver
monitoring systems. Table 4 presents a comparative analysis of the performance of all three
state-of-the-art models.

Table 4. Comparison of Faster R-CNN, RetinaNet, and YOLOv5 models for driver monitoring
systems. Evaluation based on FPS, model size, and mAP @50%IoU

Model Inference Speed
(FPS) Model Size mAP@ IoU 50%

Faster R-CNN 8.56 835 MB 89.934
RetinaNet 16.24 442 MB 87.613
YOLOv5m 125 42 MB 93.6

Deploymenton the Standalone Embedded Device

In order to make the detection system robust, the trained YOLOv5m model was further
tested on a standalone embedded device, a mini CPU. Mini CPU devices are embedded AI
computing platforms that provide high-performance, low-power computing support for
deep learning models. The trained YOLOv5m model was tested and deployed on a mini
CPU (the latest module in the series), which has a 4GB 5124 Volta GPU with Tensorboards.
The model was running at 27 FPS (frames per second), which can be used for real-time
applications. Figure 12 shows the working mechanism of a real-time advanced driver
monitoring system.

Figure 12. Functioning of advance driver monitoring system (faces in the images have been blurred
to protect the privacy of individuals in accordance with ethical publishing standards).
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5. Disscussion
A notable future advancement involves the development of a user-friendly web

application. This application will serve as a visual interface to help stakeholders, including
fleet managers and safety regulators, comprehend and analyze driver behavior traits.
Utilizing graphs and real-time video footage, the web application will offer an intuitive
platform for monitoring and assessing driver actions.The application includes a critical
feature for delivering real-time alerts and notifications to warn drivers of detected risky
behaviors. This proactive capability emphasizes the system’s role in enhancing road
safety by facilitating immediate corrective actions. Furthermore, the application will not
only support real-time surveillance but also provide historical data trends, enabling more
informed decision making and effective intervention strategies.

The dataset, though diverse, may not fully capture the complete spectrum of real-
world demographics and behaviors, potentially limiting the model’s generalizability in
edge cases. While the dataset size enabled robust training, larger datasets could further
enhance performance. Future work will focus on expanding the dataset and refining
collection methods to improve representation, reduce bias, and ensure broader applicability
in diverse driving scenarios.

6. Conclusions
This research highlights the trade-offs between processing speed, model size, and

learning rate in the context of object detection models for driver monitoring. YOLOv5m
emerges as a compelling choice for real-time applications due to its outstanding efficiency
and accuracy. The decision on the model to use ultimately depends on the specific require-
ments and constraints of the driver monitoring system, and our findings provide valuable
insights for informed decision making.
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