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Abstract: Performing synchronization in public transport is one of the most challenging
tasks that transport managers perform when organizing the processes of passenger servic-
ing. Many variables characterizing existing public transport lines should be considered in
the final timetable; in addition, the complexity of the transportation system, the variability
in transport demand, and the stochasticity of the servicing process both in time and space
have a significant influence on the result of synchronization. The synchronization problem
in real-world applications does not have an exact solution, so in practice, a variety of
techniques were developed to achieve a rational solution in a reasonable time. In our paper,
we classify existing approaches to solving the problem of public transport synchronization,
describe the essence of the most promising methods, and study their popularity based on
the most recent scientific publications. As the result of our research, we show the most
promising directions for the future development of synchronization methods and their
application in public transportation.

Keywords: transport scheduling; timetable synchronization; genetic algorithms; simulated
annealing; integer programming

1. Introduction
The efficient coordination of arrival and departure times for public transport vehicles,

known as timetable synchronization, is essential for the seamless movement of passengers
within urban and regional transportation networks. This practice is crucial for the effective
functioning of cities, agglomerations, and countries, as it enables passengers to conveniently
transfer between different modes of transportation.

The concept of transfer-focused timetables has been explored since before World War II.
In 1932, the Dutch Railroad introduced a pioneering timetable that optimized connections
at a specific hub, providing passengers with direct routes to their destinations [1]. However,
the practical limitations imposed by geographical constraints and budgetary restrictions
often necessitate compromises between the frequency of departures and the resources
allocated to service provision.

The planning process for public transportation operations can be divided into four
primary stages [2]. The initial step involves designing the network of routes and stops.
Subsequently, the timetable is developed, encompassing aspects such as the timing of
the first and last trips, as well as the frequency and headways of services. The third and
fourth stages focus on vehicle and crew scheduling, respectively. Transfer planning can

Future Transp. 2025, 5, 6 https://doi.org/10.3390/futuretransp5010006

https://doi.org/10.3390/futuretransp5010006
https://doi.org/10.3390/futuretransp5010006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futuretransp
https://www.mdpi.com
https://orcid.org/0009-0005-5453-6307
https://orcid.org/0000-0001-9981-4108
https://doi.org/10.3390/futuretransp5010006
https://www.mdpi.com/article/10.3390/futuretransp5010006?type=check_update&version=2


Future Transp. 2025, 5, 6 2 of 25

be integrated between the first and second steps. The number of transit nodes and hubs
within a network depends on the size and geographical characteristics of the city.

Timetable synchronization is a computationally complex problem, classified as non-
polynomial hard (NP-hard) [3]. To address this complexity, researchers have proposed
methods to identify significant transfer hubs and prioritize subsets of lines within these
hubs for synchronization [4]. By focusing on these critical areas, it is possible to reduce the
overall complexity of the synchronization problem.

While transfers between vehicles may not always be preferred by passengers [5],
transfer-based networks can often provide more efficient and comprehensive coverage,
leading to increased satisfaction among users [6]. Case studies in Barcelona, Spain, have
demonstrated the effectiveness of a new bus network that prioritizes frequent service and
ubiquitous transfer points. This network has significantly reshaped passenger demand,
with transfer percentages increasing from 1.5% to 16% in conventional networks to 26% in
the new network. This percentage is projected to rise further to 44% with the expansion of
lines [7].

It is important to note that well-planned and efficient public transportation networks
have a positive impact on various aspects of urban life. Such networks can contribute to re-
ducing pollution [8], mitigating traffic congestion [9,10], and promoting a more sustainable
mode of transportation. Furthermore, passengers often rely on the entire transportation
system rather than using a single line, emphasizing the importance of effective synchro-
nization [11].

To ensure a satisfactory passenger experience, it is crucial to minimize waiting times
between connecting vehicles. Research conducted in Auckland, New Zealand, has revealed
that passengers are more likely to accept transfers if they result in a significant reduction
in travel time and cost [12]. However, it is essential to maintain reliability and avoid
disruptions in scheduled corridors to prevent passengers from becoming frustrated with
the public transport system.

The timetable synchronization problem, a cornerstone of efficient public transport
operations, has been investigated for nearly a century. Despite this long history and
extensive research, its inherent computational complexity and multifaceted formulations
continue to pose significant challenges. This is particularly striking given the remarkable
advancements in computing power over the past decades. While modern computers offer
unprecedented capabilities, existing heuristics for transport synchronization often fail to
fully leverage these advancements. Consequently, a constant stream of novel approaches
emerges, seeking to address the issue of improving the quality of public transport services
through synchronizing technological operations.

This study aims to conduct a comprehensive and contemporary classification of
existing approaches to timetable synchronization. By systematically analyzing the available
literature, we seek to identify the most effective strategies based on diverse objective
functions and applied methodologies.

While previous research has explored aspects of this problem, our work distinguishes itself
by focusing on the current state-of-the-art. We address the following key research questions:

• Identify the most prevalent heuristics employed in solving the synchronization prob-
lem within the context of optimizing public transport operations;

• Investigate the applicability of existing approaches across varying problem scales,
modes of transport, and geographic locations;

• Define the most promising directions for future research in the synchronization of
public transport systems.

The structure of this paper is as follows: Section 2 provides a general overview of
existing heuristic approaches to solving the synchronization problem; Section 3 delves into
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the development of transport synchronization models over the past decades for distinctive
types of optimization approaches at different locations; Section 4 discusses the findings and
insights derived from the conducted literature review in terms of the use of the considered
synchronization approaches for various types of the problem, and the last section offers
concluding remarks and outlines potential directions for future research in the field of
timetable synchronization.

2. Review of the Existing Heuristics to Schedule Synchronization on
Transport

A thorough literature search was conducted using the Scopus, Web of Science, and
Google Scholar databases, employing keywords such as timetable synchronization, sched-
ule synchronization, transfer coordination, transfer optimization, and public transport
coordination. Additionally, relevant papers were discovered by examining references cited
in existing publications. The search concluded in April 2024, encompassing a wide range
of studies published between 1988 and 2023. Notably, over half of the included papers
(approximately 60%) were published in 2013 or later, reflecting the growing interest in this
area of research.

While some earlier studies focused on specific objectives, such as minimizing pas-
senger waiting costs or maximizing transfer possibilities, recent research has increasingly
emphasized the optimization of more complex and multifaceted goals. For instance, con-
temporary studies often balance passenger waiting time with operational costs or seek to
minimize passenger waiting time, in-vehicle time, and the number of vehicles required, as
well as maximize directed journeys.

The identified papers were classified into four distinct groups based on their primary
optimization techniques:

• Genetic Algorithms: this group, which is characterized by the highest number of
publications, employs genetic algorithms to solve timetable synchronization problems.

• Integer Programming: this group utilizes various variants of integer programming to
address the synchronization challenge.

• Simulated Annealing: a smaller group of papers adopts simulated annealing as the
fundamental approach to solving the synchronization problem.

• Other methods: this category encompasses a diverse range of alternative techniques
employed in the literature.

The selection of heuristics significantly impacts the quality and computational effi-
ciency of solutions for the synchronization problem. Different heuristics may yield varying
levels of performance and require different computational times to converge. The optimal
heuristic choice is highly dependent on the specific characteristics of the transportation
system, including factors such as passenger demand, the number of lines and vehicles, the
density of the stop network, and the stochastic nature of travel times.

To account for this variability, the literature review meticulously examines the mode of
transport, the geographic location of the applied synchronization method, and the specific
objective function considered in each study. This analysis aims to provide insights into the
applicability of different heuristics for various real-world scenarios.

2.1. Genetic Algorithms

Genetic algorithms (GAs), inspired by the theory of natural selection, are a class of
evolutionary algorithms first proposed by J. Holland [13]. They have been widely applied
to solve optimization problems and as a preprocessing technique.

One of the significant advantages of GAs is their ability to effectively tackle complex
problems. By employing a population-based approach, GAs can explore the search space in
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parallel, with individuals (or chromosomes) acting as independent agents. This enhances
the algorithm’s efficiency and reduces the risk of becoming stuck in local optima.

However, GAs also have certain limitations. The careful selection of parameters is
crucial to the algorithm’s success, as inappropriate choices can hinder convergence or
lead to meaningless results [14]. The terminology used in GAs is borrowed from natural
genetics, where a solution is referred to as a chromosome. Chromosomes are composed
of genes, each of which can have a specific value known as an allele [15]. A collection of
chromosomes forms a population, and these individuals can undergo genetic operations
such as crossover (mating) and mutation. Each iteration of the GA is referred to as a
generation. A simplified visualization of the GA process is depicted in Figure 1.

Future Transp. 2025, 5, x FOR PEER REVIEW 4 of 25 
 

 

One of the significant advantages of GAs is their ability to effectively tackle complex 
problems. By employing a population-based approach, GAs can explore the search space 
in parallel, with individuals (or chromosomes) acting as independent agents. This en-
hances the algorithm’s efficiency and reduces the risk of becoming stuck in local optima. 

However, GAs also have certain limitations. The careful selection of parameters is 
crucial to the algorithm’s success, as inappropriate choices can hinder convergence or lead 
to meaningless results [14]. The terminology used in GAs is borrowed from natural genet-
ics, where a solution is referred to as a chromosome. Chromosomes are composed of 
genes, each of which can have a specific value known as an allele [15]. A collection of 
chromosomes forms a population, and these individuals can undergo genetic operations 
such as crossover (mating) and mutation. Each iteration of the GA is referred to as a gen-
eration. A simplified visualization of the GA process is depicted in Figure 1. 

 

Figure 1. Simplified visualization of the GA routine. 

The genetic algorithm operates in a cyclical manner, iteratively refining the popula-
tion of potential solutions. As illustrated in Figure 1, the process begins with the random 
generation of an initial population of individuals, each encoded as a chromosome repre-
senting a solution to the optimization problem. 

The fitness of each individual is then evaluated based on their performance in rela-
tion to the objective function. This evaluation provides a measure of the individual’s suit-
ability as a solution. 

Following fitness evaluation, the GA proceeds to the selection phase, where individ-
uals are chosen from the population to participate in the next generation. This selection is 
typically based on their fitness values, with individuals exhibiting higher fitness more 
likely to be selected. Common selection methods include: 

• Proportional roulette wheel selection: chromosomes with higher fitness values have 
a greater probability of being selected [16]; 

• Rank selection: chromosomes are ranked according to their fitness values, and the 
selection probabilities are assigned based on their rank [17]. 

The selected individuals undergo crossover, a genetic operation that involves ex-
changing genetic material between pairs of parents to create offspring. This process aims 

Figure 1. Simplified visualization of the GA routine.

The genetic algorithm operates in a cyclical manner, iteratively refining the population
of potential solutions. As illustrated in Figure 1, the process begins with the random gener-
ation of an initial population of individuals, each encoded as a chromosome representing a
solution to the optimization problem.

The fitness of each individual is then evaluated based on their performance in relation
to the objective function. This evaluation provides a measure of the individual’s suitability
as a solution.

Following fitness evaluation, the GA proceeds to the selection phase, where individ-
uals are chosen from the population to participate in the next generation. This selection
is typically based on their fitness values, with individuals exhibiting higher fitness more
likely to be selected. Common selection methods include:

• Proportional roulette wheel selection: chromosomes with higher fitness values have a
greater probability of being selected [16];

• Rank selection: chromosomes are ranked according to their fitness values, and the
selection probabilities are assigned based on their rank [17].

The selected individuals undergo crossover, a genetic operation that involves ex-
changing genetic material between pairs of parents to create offspring. This process aims
to generate new solutions by combining the desirable characteristics of the parents [18].
Three common crossover methods include (see Figure 2):
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• One-point crossover: each parent is cut at a single randomly selected point, and the
genetic material is exchanged between the two resulting segments;

• Two-point crossover: each parent is cut at two randomly selected points, and the
genetic material is exchanged between the two resulting segments;

• Random crossover: the number and locations of crossover points are determined
randomly for each pair of parents.
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Genetic algorithms incorporate a mutation process to introduce diversity into the
population and prevent premature convergence. During mutation, the genetic material
of offspring is randomly modified, allowing for variations to arise. Mutations typically
involve one or more changes in chromosomes [19]. A simple mutation involves altering a
single gene within a chromosome. Other mutation methods include swap mutation and
inverse mutation. In swap mutation, two genes are randomly selected, and their positions
are exchanged. In inverse mutation, two gene positions are chosen randomly, and the
sequence of genes between those positions is reversed [20]. Visualizations of these mutation
methods are provided in Figure 3.
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The GA continues to iterate through these steps until a termination condition is met.
Common termination criteria include:

• A predefined number of generations: the algorithm may be stopped after a specified
number of iterations;
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• No improvement in fitness: if the algorithm fails to find a better solution within a
certain number of generations, it may be terminated;

• Reaching a target fitness value: if a solution with a fitness value equal to or better than
a predetermined threshold is found, the algorithm may terminate.

The successful application of GAs often depends on the appropriate encoding of ge-
netic information and the careful selection of GA parameters. These factors can significantly
influence the algorithm’s performance and its ability to converge.

2.2. Simulated Annealing

The simulated annealing (SA) method draws inspiration from the metallurgical process
of annealing, where a heated solid object is slowly cooled to improve its crystalline structure.
In this process, a metal is initially heated to a high temperature, allowing its atoms to move
freely in a molten state. As the temperature is gradually reduced, the atomic movements
become restricted, leading to a more ordered and stable structure [21].

The SA algorithm requires the specification of several key parameters:

• Initial temperature: the starting temperature at which the algorithm begins its search;
• Temperature reduction factor: the rate at which the temperature is decreased during

the annealing process;
• Neighborhood range: the size of the search space explored at each temperature;
• Maximum iteration number: the maximum number of iterations allowed at each

temperature.

The SA algorithm operates iteratively, gradually refining its search for a near-optimal
solution. The key steps of the algorithm involve:

1. Initialization phase with two operations performed:

• Setting the initial temperature, which controls the probability of accepting suboptimal
solutions during the early stages of the search;

• An initial solution is randomly generated or selected from a predefined starting point.

2. The evaluation stage performs the calculation of the cost function, which quantifies
the quality of the current solution, is evaluated. This function is typically designed to
measure the objective of the optimization problem.

3. Neighborhood search involves the solution perturbation: a new solution is generated
by perturbing the current solution within a defined neighborhood. This neighborhood
defines the range of potential moves that can be explored at each step.

4. The acceptance step is where the cost of the new solution is compared to the cost of
the current best solution. The following acceptance criteria are applied:

• If the new solution is better than the current best, it is automatically accepted as the
new best solution.

• If the new solution is worse than the current best, it may still be accepted with a
probability determined by the Boltzmann distribution; this probability depends on the
temperature and the difference in cost between the two solutions; a higher temperature
increases the likelihood of accepting suboptimal solutions, allowing the algorithm to
explore a wider range of possibilities.

5. Temperature reduction involves a cooling schedule: the temperature is gradually
reduced according to a predefined cooling schedule; this typically involves multiply-
ing the current temperature by a temperature reduction factor; as the temperature
decreases, the probability of accepting suboptimal solutions also decreases, focusing
the search on more promising regions of the solution space.
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6. The termination phase checks the stopping criteria: the algorithm continues to iterate
through steps 2–5 until a termination condition is met; common stopping criteria
include the following termination conditions: a predefined maximal number of itera-
tions is reached, or the temperature reaches a minimum value (so-called temperature
threshold); if the algorithm fails to find a better solution within a certain number of
iterations, it may be considered to have converged.

By following the described steps, the SA algorithm effectively explores the solution
space, balancing exploration with exploitation to find near-optimal solutions.

2.3. Other Methods

In addition to genetic algorithms and simulated annealing, several other methods have
been described in the scientific literature to address timetable synchronization problems.
These include the ant colony system, particle swarm optimization, the deficit function, and
tabu search.

The ant colony system (ACS) is a heuristic optimization algorithm inspired by the
behavior of ant colonies. Ants deposit pheromones along their paths, creating a trail
that guides subsequent ants toward the most traveled routes [22–24]. The strength of the
pheromone trail indicates the desirability of a particular path, with paths that have been
frequently traversed by ants having higher pheromone levels.

Particle swarm optimization (PSO) is a population-based metaheuristic algorithm
that simulates the behavior of a flock of birds. Each particle, representing a potential
solution, moves through the search space based on its own velocity and the influence of
the best-known solutions found by itself and other particles in the swarm [25,26]. This
collective intelligence enables PSO to efficiently explore the solution space and converge to
promising regions.

The deficit function (DF) is a mathematical tool used to measure the shortfall of
vehicles at a particular terminal in a multi-terminal public transportation system. The DF
increases with each departing trip and decreases with each arriving trip, providing a real-
time assessment of the vehicle deficit. By analyzing the DF values at different terminals, it is
possible to identify imbalances in the transportation network and adjust the timetable [27].

Tabu search is a metaheuristic algorithm that extends local search by incorporating a
memory-based mechanism to avoid revisiting previously explored solutions. This prevents
the algorithm from becoming trapped in local optima. By maintaining a tabu list of recently
visited solutions, the algorithm can explore new regions of the search space and potentially
find better solutions [28,29].

The Gray Wolf Optimizer (GWO) is a nature-inspired metaheuristic algorithm that
mimics the social hierarchy and hunting behavior of gray wolves. The algorithm employs
four types of wolves—alpha, beta, delta, and omega—to represent different leadership
levels. The hunting process involves three main stages: searching for prey, encircling prey,
and attacking prey [30,31]. These steps are implemented in the GWO algorithm to guide
the search for optimal solutions.

3. Applications of Synchronization Methods in Public Transport Systems
3.1. Applications of Genetic Algorithms

Before 2013, research papers on timetable synchronization primarily focused on op-
timizing a single objective, often centered on minimizing passenger waiting time or the
total cost, which typically encompassed both operational costs and passenger waiting
time. However, more recent studies have increasingly adopted a multi-criteria approach,
considering a broader range of objectives. These objectives include minimizing passenger
time (waiting time and travel time), reducing schedule deviations, minimizing the number
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of vehicles required, and maximizing transfer possibilities. This shift towards multi-criteria
optimization reflects a growing recognition of the complex and interrelated nature of the
timetable synchronization problem.

In terms of GA parameters, the crossover rate, which determines the frequency of
genetic recombination, is commonly set between 50% and 60%. A mutation probability of
10% is also frequently selected, striking a balance between exploration and exploitation of
the search space. Regarding population size, studies generally opt for populations smaller
than 100 chromosomes. Larger populations can lead to increased computational time,
potentially outweighing the benefits of greater diversity.

A summary of selected approaches and their corresponding objective functions and
GA parameters is presented in Table 1.

Table 1. Classification of timetable synchronization by GAs.

Authors (Year) Objective Network
Type Problem Scale Problem

Setting GA Parameters *

Chakroborty, Deb,
Subrahmanyam

(1995) [32]

Minimize transfer
time and initial

waiting time
Bus Node (Test

schedule) - Cr 95%, Mu 0.5%,
Pop 350, Gen 200

Nachtigall and Voget
(1996) [33]

Minimize
passengers’

waiting time
Rail Test network - Not described

Bielli, Caramia,
Carotenuto (2002) [34]

Minimize vehicle
numbers Bus Network Parma Cr 80%, Mu 10%

Shrivastava, Dhingra,
Gundaliya (2002) [35]

Minimize total
cost Bus Selected lines Mumbai Cr 80%, Mu 1%,

Pop 420%

Shrivastava and
Dhingra (2002) [36]

Minimize total
cost Bus Selected lines Mumbai Cr 80%, Mu 1%,

Pop 420

Ngamchai and Lovell
(2003) [37]

Minimize total
cost Bus Test network - Not described

Cevallos and Zhao
(2006) [38]

Minimize
passengers’

waiting time
Bus Network Broward, USA Cr 50%, Mu 10%,

Pop 20

Cevallos and Zhao
(2006) [39]

Minimize
passengers’

waiting time
Bus Network Broward, USA Cr 50%, Mu 10%,

Pop 80, Gen 20

Shrivastava and
O’Mahony (2016) [40]

Minimize total
cost Bus Selected lines Dublin Cr 95%, Mu 10%

Shafahi and Khani
(2010) [41]

Minimize
passengers’

waiting time
Bus Network Mashhad Cr 50%, Mut 50%.

Pop 20

Yu, Yang and Yao
(2010) [42]

Minimize
passengers’

waiting time
Bus Network Dalian Not described

Niu and Zhou
(2013) [43]

Minimize
passengers’

waiting time
Rail Line Guangzhou Cr 98%, Mu 15%,

Pop 40

Wu, Liu, Sun, Li, Gao,
Wang (2014) [44]

Minimize total
cost Metro Network Pekin Cr 80%, Mu 10%,

Pop 100
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Table 1. Cont.

Authors (Year) Objective Network
Type Problem Scale Problem

Setting GA Parameters *

Aksu and Yılmaz
(2014) [45]

Minimize total
transfer waiting
time and missed

transfers

Rail Network Istanbul Cr 90%, Mu 8%,
Pop 2000

Kang, Wu, Sun, Zhu,
Gao (2015) [46]

Maximize
passenger transfer

connection
headways

Last Train Network Pekin Not described

Kang, Wu, Sun, Zhu,
Wang (2015) [47]

Minimize (total
travel time

without
passengers’

waiting time),
minimize schedule

deviation

Last Train Network Pekin Not described

Wu, Tang, Yu, Pan
(2015) [48]

Minimize
passengers’

waiting time
Bus Test network - Cr 80%, Mu 5%,

Pop 100, Elite 20%

Wu, Yang, Tang, Yu
(2016) [49]

Maximize the total
number of

passengers and
minimize the

maximal deviation
from the departure

times

Bus Network China Not described

Naumov (2018) [50]
Minimize

passengers’
waiting time

Bus Network Bochnia
Cr 50%, Mu 10%,

Pop 50, Gen 30, SR
20%

Shang, Li, Liu, Xian,
Guo (2019) [51]

Minimize total
travel time Metro Network Shenzhen Cr 80%, Mu 15%,

Pop 2000, Elite 5%

Naumov (2020) [52]
Minimize

passengers’
waiting time

Bus Node Krakow
Cr 50%, Mu 10%,
Pop 100, Gen 20,

SR 20%

Cao, Ceder, Li, Zhang
(2019) [53]

Maximize the
number of

synchronized
meetings

Rail Network Pekin Not described

Yin, Wu, Sun, Kang,
Liu (2019) [4]

Maximize the
social service
efficiency and
minimize the

revenue loss for
the operator

Last Train Network Pekin Not described

Chen, Mao, Bai, Ho,
Li (2019) [54]

Maximize
transfers Last Train Network Shenzhen Pop 300, Gen 200
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Table 1. Cont.

Authors (Year) Objective Network
Type Problem Scale Problem

Setting GA Parameters *

Wang, Li, Cao (2020)
[55]

Minimize
passenger waiting
time at the original
station, passenger

actual transfer
waiting time at the

transfer station,
and passenger
penalty value

Rail Selected lines Shenyang Cr 80%, Mu 15%,
Pop 30

Cao, Tang, Gao
(2020) [56]

Minimize
passengers’

waiting time
Rail Node Pekin Cr 70%, Mu 0.5%

Guo, Wu, Sun, Yang,
Jin, Wang (2020) [57]

Minimize
passengers’

waiting time
Last Train Network Pekin Not described

Ataeian, Solimanpur,
Amiripour, Shankar

(2021) [58]

Maximize the
number of

simultaneous
arrivals and min

fleet size

Bus Network Teheran Not described

Naeini, Shafahi,
Taherkhani (2022) [59]

Minimize
(passengers’

waiting time at
origin, passengers’

transfer waiting
time, transfer
passengers’

in-vehicle time,
non-transfer
passengers’

in-vehicle time)
and maximize the

number of
passengers who

reach destinations

Rail Node Teheran Cr 60%, Mu 35%,
Pop 90

Wang, Zhou, Yan
(2022) [60]

Maximize total
transfers and

minimize total
travel time

Bus (Au-
tonomous) Selected lines Singapore Cr 80%, Mu 10%,

Pop 100

* Cr—crossover rate; Mu—mutation rate; Pop—number of populations; Gen—number of generations; SR—
survivors rate.

Chakroborty, Deb, and Subrahmanyam [32] employed GAs to minimize the combined
transfer time and initial waiting time for passengers. Nachtigall and Voged [30] compared
the performance of GAs initialized with random solutions and those initialized using
a greedy algorithm, finding that the latter approach yielded better results in terms of
minimizing passenger waiting time.

Bielli, Caramia, and Carotenuto [34] utilized GAs to optimize the bus network in
Parma, Italy, achieving a significant improvement of approximately 90% in the multi-
criteria fitness function. Shrivastava et al. [35,36] focused on synchronizing bus networks
with train networks, incorporating a penalty for transfer times exceeding 10 min. Ngamchai
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and Lovell [37] addressed the problem of minimizing the combined cost of fleet operations,
passenger in-vehicle time, and passenger waiting time.

Shafahi and Khani [41] successfully synchronized the bus network in Mashad, Iran,
demonstrating the superior performance of GAs compared to the Branch and Bound (B&B)
algorithm. Yu, Yang, and Yao [42] optimized the public transportation network in Dalian,
China, comprising three bus companies and one rail company while maintaining the
existing fleet of buses and trains. Wu et al. [44] addressed the synchronization of the
Beijing metro network, focusing on minimizing total passenger waiting times and ensuring
equitable waiting times at all stations. Aksu and Yilmaz [45] formulated an objective
function to minimize both passenger waiting times and missed transfers.

Kang et al. [46] focused on the problem of last train synchronization in Beijing, China,
aiming to minimize passenger transfer connection headways (PTCHs). PTCHs is defined
as the difference between the departure time of the last connecting train and the arrival
time of passengers on the last feeder train. Their research demonstrated that minimizing
PTCHs can lead to more successful transfers compared to solely minimizing passenger
waiting time while maintaining the same transfer waiting time. In a subsequent study [47],
the researchers shifted their focus to minimizing passenger travel time (excluding transfer
waiting time) while also minimizing deviations from the actual schedule in the Beijing
metro network. By comparing SA, tabu search, B&B, and GAs, they found that GAs
outperformed the other algorithms in terms of finding the highest value of the objective
function, achieving the same or similar results in significantly less time (6 s compared to 5
to 100 s for the others).

Niu et al. [61] addressed the challenge of minimizing passenger waiting time while
incorporating an in-train crowding factor to mitigate passenger discomfort and maximize
operator profits. By including this factor in the objective function, the researchers aimed to
balance the competing priorities of passenger satisfaction and operational efficiency.

Cao et al. [53] addressed the problem of maximizing synchronized meetings at metro
stations in Beijing, developing a synchronized and coordinated scheduling optimization
genetic algorithm (SCSO-GA) that outperformed the CPLEX model in terms of both speed
and solution quality.

Yin and his colleagues [4] highlighted the trade-off between extending operating
hours and associated costs. Public transportation systems often rely on subsidies from
governments or local authorities and must carefully balance operational expenses with the
level of service provided. They formulated an objective function that aimed to maintain this
balance while reducing missed transfers, decreasing average waiting times, and increasing
the number of transferred passengers in the last train schedule.

Chen et al. [54] employed GAs to maximize the number of accessible origin-destination
pairs using last trains, demonstrating the algorithm’s effectiveness in optimizing network
connectivity. Wang, Li, and Cao [55] compared GAs and the Gray Wolf Optimizer (GWO)
for timetable synchronization, considering an objective function that included minimizing
passenger waiting time at origin stations, actual transfer waiting time, and a penalty for
missed connections. GAs outperformed GWO in terms of solution quality but required
three times more computational time.

Ataeian et al. [58] utilized GAs to optimize the bus rapid transit network in Tehran,
Iran, focusing on maximizing simultaneous arrivals and minimizing the number of vehicles
required. Naeini, Shafahi, and Taherkhani [59] proposed a synchronization strategy for the
Tehran subway network that incorporated skip-stop operations to reduce travel times and
operating costs. Their objective function considered passenger waiting time at bus stops,
in-vehicle travel time, and operating costs.
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Wang, Zhou, and Yan [60] applied GAs to synchronize timetables for autonomous
buses in Singapore, integrating passenger assignment into the optimization process. This
study demonstrated the potential of GAs for optimizing autonomous vehicles within the
public transportation system.

These case studies collectively illustrate the diverse applications of GAs in timetable
synchronization, showcasing their ability to address various challenges and improve the
efficiency and effectiveness of public transportation networks.

3.2. Applications of Simulated Annealing

While genetic algorithms (GAs) have been widely applied to timetable synchronization
problems, simulated annealing (SA) has also emerged as a promising approach. Although
the number of studies using SA for this purpose is relatively limited compared to GAs, the
results obtained demonstrate its potential to effectively address synchronization challenges
in both bus and metro networks.

A summary of selected studies that have employed SA for timetable synchronization
is provided in Table 2.

Table 2. Classification of timetable synchronization by simulated annealing.

Authors (Year) Objective Network Type Problem Scale Problem
Setting

Zhao and Zeng (2008) [62] Minimize total cost Bus Test network -

Poorjafari, Yue, Holyoak (2014) [63] Minimize total transfer
waiting time Selected nodes Test network -

Guo, Sun, Wu, Jin, Zhou, Gao (2017) [64] Maximize the number
of synchronizations Metro Network Beijing

Zhao and Zeng [62] introduced a hybrid model combining simulated annealing (SA),
the greedy algorithm, and tabu search to optimize the design of a transit network and
timetable while maintaining a fixed number of vehicles. Their approach resulted in an
increase in zero-transfer trips, a decrease in one-transfer trips, and the elimination of
two-transfer trips, all without requiring additional buses or vehicles.

Poorjafari, Yue, and Holyoak [63] applied SA to minimize total passenger waiting time
in a smaller-scale public transportation network, demonstrating the effectiveness of the
algorithm even in less complex scenarios.

Guo et al. [64] focused on optimizing timetables during peak-to-off-peak transitions in
a metro network. They employed a hybrid approach combining SA and PSO to maximize
transfer possibilities. Their model outperformed the branch-and-bound algorithm and GA
in terms of both solution quality and computational efficiency, achieving the exact value of
the objective function while requiring less time.

3.3. Application of Integer Programming and Its Variations

Integer programming (IP) models have been widely employed to address timetable
synchronization problems in both bus and rail networks. These models have been applied
to various scales, ranging from single nodes to selected nodes within a network to the
entire network as a whole.

In recent years, there has been a notable increase in the use of IP methods for timetable
synchronization. This trend reflects the growing recognition of IP’s ability to effectively
handle the complex constraints and combinatorial nature of synchronization problems.

A summary of selected studies that have utilized IP models for synchronization of
timetables at public transport is provided in Table 3.
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Table 3. Classification of timetable synchronization by integer programming.

Authors (Year) Objective Model
Type *

Network
Type

Problem
Scale

Problem
Setting

Ceder, Golany, Tal
(2001) [65]

Maximize the number
of simultaneous

arrivals
MIP Bus Test network -

Eranki (2004) [66]
Maximize the number

of simultaneous
arrivals

MIP Bus Test network -

Vansteenwegen and van
Oudheusden (2007) [67]

Minimize passengers’
waiting cost LP Rail Network Belgium

Liebchen (2008) [68] Minimize passengers’
waiting time IP Urban Rail Network Berlin

Wong, Yuen, Fung,
Leung (2008) [69]

Minimize passengers’
waiting time MIP Rail Network Hongkong

Bruno, Improta,
Sgalambro (2009) [70]

Minimize operational
costs and passengers’

waiting time
MIP Bus Node Italy

Nesheli and Ceder
(2014) [71]

Minimize total transfer
waiting time and
missed transfers

MIP Bus Selected lines Auckland

Dou, Meng, Guo
(2015) [72]

Minimize transfers
connections MILP Bus to Rail

(Last Train) Selected lines Singapore

Ibarra-Rojas,
López-Irarragorri,

Rios-Solis (2015) [73]

Maximize the number
of synchronizations MILP Bus Network Monterrey,

Mexico

Guo, Wu, Sun, Liu, Gao
(2016) [74] Minimize transfer cost MILP First Train Network Beijing

Wu, Liu, Jin (2016) [75] Minimize total cost MINLP Rail Test network -

Gschwender, Jara-Díaz,
Bravo (2016) [76]

Minimize passengers’
cost and vehicle cost MILP Bus Rapid

Transit Test network -

Dou and Guo (2017) [77] Minimize the number
of transfer failures MILP Last Train Network Singapore

Liu, Ceder, Chowdhury
(2017) [78]

Maximize the number
of simultaneous

arrivals and min fleet
size

MIP+DF Bus Selected lines Auckland

Kang, Zhu, Sun, Wu,
Gao, Hu (2019) [79] Maximize transfers MILP Last Train Network Vienna

Shang, Huang, Wu
(2019) [80]

Balance of passenger
satisfaction and bus

transit efficiency
NLIP Bus Corridor Beijing

Wang, Wei, Zhang, Shi,
Shang (2019) [81]

Minimize total transfer
waiting time and
missed transfers

MILP Last Train Network Beijing

Takamatsu and Taguchi
(2020) [82]

Minimize passengers’
cost MIP Bus to Rail Corridor Tohoku

District, Japan
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Table 3. Cont.

Authors (Year) Objective Model
Type *

Network
Type

Problem
Scale

Problem
Setting

Ke, Nie, Liebchen, Yuan,
Wu (2020) [83]

Maximize possible
transfers MIP Rail to Air Line

Shijiazhuang
Zhengding

International
Airport

Lee, Jiang, Ceder,
Dauwels, Su, Nielsen

(2022) [84]

Minimize passengers’
waiting time and

in-vehicle time
MILP Bus Selected lines Copenhagen

* LP—linear programming; MIP—mixed integer programming; MILP—mixed integer linear programming;
NLIP—nonlinear integer programming; MINLP—mixed integer nonlinear programming.

Ceder, Golany, and Tal [65] introduced a synchronization approach focused on maxi-
mizing the number of simultaneous arrivals at transfer points. They defined simultaneous
arrivals as the arrival of two buses within a specified time gap that does not exceed the
required waiting time. By optimizing for simultaneous arrivals, this approach aims to
improve transfer efficiency and reduce passenger inconvenience.

Eranki [66] extended the model proposed by Ceder et al. to incorporate passenger
waiting time. By considering the value of time (VOT), the model aimed to reduce overall
passenger waiting costs. The VOT is a commonly used factor to express the relative im-
portance of waiting time compared to in-vehicle travel time. A typical value for VOT is
2.5, indicating that one minute of waiting is equivalent to 2.5 min of in-vehicle travel [85].
To account for the increased disutility of longer waiting times, the model could be mod-
ified to assign a higher VOT for transfers exceeding 15 min or for passengers waiting in
dwelling trains.

Bruno, Importa, and Sgalambro [70] developed a model for transfer nodes in Italy that
balanced operational costs with passenger waiting time. This approach recognized the
importance of optimizing both efficiency and passenger satisfaction in public transporta-
tion systems.

Nesheli and Ceder (2014) employed an MIP model to optimize timetable synchro-
nization in Auckland, New Zealand, focusing on reducing total passenger travel time and
maximizing direct transfers between selected bus lines [71]. Their model incorporated
two tactics: holding, which involves delaying bus departures to improve connections, and
skip-stop/segment, which allows buses to bypass certain stops to maintain schedules.
By implementing these strategies, they achieved a significant increase in direct transfers
(100–150%) and a reduction in total passenger travel time (2.14–4.1%) compared to a base-
line scenario.

Wu, Liu, and Jin (2016) proposed a two-step approach to timetable synchroniza-
tion [75]. In the planning phase, they introduced safety control margins to incorporate
flexibility into the schedules. Subsequently, they implemented real-time control mecha-
nisms to adjust timetables in response to disruptions. Their model aimed to minimize total
costs, including vehicle operating costs, passenger waiting costs, and costs associated with
missed or delayed connections.

Guo et al. (2016) applied a MIP model to coordinate train timetables in the Beijing
urban railway network [74]. Their results demonstrated the superiority of MIP over genetic
algorithms, simulated annealing, and PSO in terms of computational efficiency while
achieving the same objective function value.

Kang et al. (2016) addressed the problem of last-train optimization by introducing
bus bridging, a strategy that involves creating temporary bus services and routes to restore
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connectivity in disrupted transit rail networks [79]. Their model successfully increased the
number of transfer passengers by 20%.

Shang, Huang, and Wu (2019) optimized bus timetables in a corridor between the
Guomao Bridge and suburban zones in Beijing, China [80]. Their approach focused on bal-
ancing passenger satisfaction with transit efficiency. Passenger satisfaction was measured
using a combination of waiting time and in-vehicle comfort indicators, while efficiency
was assessed based on the load factor and bus capacity. This study highlights the im-
portance of considering both passenger experience and operational performance when
optimizing timetables.

Takamatsu and Taguchi [82] focused on optimizing timetables in regions with limited
public transport services. Their model aimed to increase transfer possibilities within
the Tohoku District in Japan while minimizing disruptions to existing rail transfers. By
introducing additional transfers in opposite directions, they sought to improve network
connectivity and accessibility.

Ke and his co-authors [83] developed a synchronization model for high-speed trains
and flights, prioritizing the maximization of synchronized connections and coverage while
minimizing missed transfer penalties. They redefined synchronization as the occurrence of
a train and flight within a specified separation time window at a transfer node. Applying
this model to Shijiazhuang Zhengding International Airport, they achieved a notable
increase of 24% in the number of synchronized connections and a 3% increase in the
coverage of synchronized flights.

These studies demonstrate the adaptability of synchronization techniques to address
specific challenges and optimize public transportation networks in diverse contexts. By
tailoring solutions to the unique characteristics of different regions and modes of transporta-
tion, it is possible to enhance connectivity, improve passenger experience, and maximize
the efficiency of public transport systems.

3.4. Other Approaches to Synchronize Public Transport

Beyond the methods discussed previously, researchers have explored a variety of other
approaches to timetable synchronization (see Table 4).

Klemt and Stemme [86] developed a heuristic algorithm to optimize the U-Bahn
network in West Berlin, successfully synchronizing 1000 transfer relations within a minute.
Daduna and Voß [87] focused on minimizing waiting time at transfer stops, formulating
a mathematical model based on quadratic semi-assignment, and employing simulated
annealing and various versions of tabu search to improve solutions.

Teodorović and Lučić [88] combined the ant colony system with fuzzy logic, re-
sulting in the fuzzy ant system (FAS), to minimize total waiting time at transfer nodes.
In their numerical experiments, FAS consistently outperformed the standard ant colony
system, achieving objective function values approximately 2% better. Schröder and Solchen-
bach [89] utilized quadratic semi-assignment to enhance transfer quality in Kaiserslautern,
Germany. They classified transfers based on the time gap between arriving and departing
vehicles, optimizing a selected set of nodes by eliminating tight transfers.

Chowdhury and Chien [90] addressed the problem of minimizing total costs associated
with bus-to-rail transfers in a single node in New Jersey. Their model considered both
operator costs (fleet size and trip cost) and passenger costs (waiting time and in-vehicle
time). By applying Powell’s method, they demonstrated the potential for extending this
approach to larger networks while increasing transfers and reducing costs.

Hadas and Ceder [91] employed dynamic programming to optimize timetable syn-
chronization in Auckland, New Zealand, focusing on minimizing both transfer times and
average waiting times. They introduced several real-time tactics to achieve their objectives,
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including holding vehicles at terminals or stops, adjusting vehicle speeds, implementing
skip-stop operations, and performing short-turns or short-cuts. Short-turning can be par-
ticularly useful in addressing no-show or lateness situations. Short-cuts allow buses to
operate as express trips between specific stops if all passengers have destinations along
the route. Through these tactics, Hadas and Ceder achieved a significant reduction in
average waiting time (around 10%) and a substantial increase in direct transfers (hundreds
of percent).

Parbo, Nielsen, and Prato [92] applied tabu search to optimize a large-scale pub-
lic transportation network in Denmark, encompassing 1794 lines, 8373 variants, over
22,000 stops, 1077 zones, and 3.5 million origin-destination cells. By focusing on adjusting
bus schedules, they were able to reduce passenger waiting time by more than 5%.

Shen and Wang [93] utilized PSO to synchronize feeder buses with metro lines in
Wuhan, China. They enhanced the classic PSO algorithm by incorporating a backup library
to store the best 10% of particles. This strategy allowed the algorithm to recover from
stagnation and continue exploring the solution space effectively.

Liu and Ceder [94], Shang and Liu [95], and Shang et al. [96] proposed a deficit
function approach to balance operator costs and passenger waiting time for selected lines
in Auckland, New Zealand, and Beijing, China. The deficit function helped to reduce fleet
size and passenger waiting times.

Gkiotsalitis and Maslekar [97] introduced a sequential hill-climbing method to min-
imize passenger waiting time while maintaining scheduled headways. Their approach
demonstrated its effectiveness for large-scale problems, providing a promising solution for
optimizing timetables in complex transportation networks.

These case studies further highlight the diversity of techniques available for timetable
synchronization and their applicability to various network configurations and objectives.

Table 4. Classification of timetable synchronization by other methods.

Authors (Year) Objective Synchronization
Method

Network
Type

Problem
Scale

Problem
Setting

Klemt and Stemme
(1988) [86]

Min passengers’
waiting time Heuristic Metro Network Berlin

Daduna and Voß
(1995) [87]

Min passengers’
waiting time

Quadratic
Semi-Assignment
Problem and Tabu

Search

Bus Test network -

Jansen, Pedersen,
Nielsen (2002) [98]

Min passengers’
waiting time Tabu Search Not

Described Network Copenhagen

Teodorović, Lučić
(2005) [88]

Min passengers’
waiting time Fuzzy Ant System Not

Described Test network -

Schröder and
Solchenbach
(2006) [89]

Improve quality
transfers

Quadratic
Semi-Assignment

Problem
Bus to Rail Selected

nodes Kaiserslautern

Wang and Shen
(2007) [99] Min vehicle numbers Ant Colony System Electric Bus Test network -

Liu, Shen, Wang,
Yang (2007) [100]

Min passengers’
waiting time Tabu Search Bus Selected

nodes Not described

Guihaire and Hao
(2008) [101]

Min vehicle numbers
and max transfer

possibilities
Local Search Bus Not described France
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Table 4. Cont.

Authors (Year) Objective Synchronization
Method

Network
Type

Problem
Scale

Problem
Setting

Hadas and Ceder
(2010) [91]

Min transfer time and
average waiting time

Dynamic
Programming Bus Selected lines Not described

Chowdhury and
Chien (2011) [90]

Min operational cost
and user cost Powell’s method Bus to Rail Selected lines New Jersey

Coast Line

Parbo, Nielsen,
Prato (2014) [92]

Min passengers’
waiting cost Tabu Search Bus Network Denmark

Shen and Wang
(2015) [93]

Maximize the number
of simultaneous

arrivals
PSO Bus to

Metro Node Wuhan

Liu and Ceder
(2017) [94]

Min vehicle numbers
and passengers’

waiting time
Deficit Function Bus Selected

nodes Auckland

Fonseca, van der
Hurk, Roberti,

Larsen (2018) [102]

Min passengers’ cost
and vehicle cost Metaheuristic Bus Selected lines Copenhagen

Gkiotsalitis and
Maslekar (2018) [97]

Min transfer waiting
time and excess

waiting time

Sequential hill
climbing Bus Selected lines Stockholm

Shang and Liu
(2019) [95]

Min passengers’ cost
and vehicle cost Deficit Function Bus Selected lines Beijing

Shang, Liu, Huang,
Guo (2019) [96]

Min vehicle numbers
and passengers’

waiting time
Deficit Function Bus Selected lines Beijing

Abdolmaleki,
Masoud, Yin (2020)

[103]

Min total transfer
waiting time Local Search Bus Network Mashhad

4. Discussion
As the provided literature review shows, researchers have employed a diverse range

of techniques to address timetable synchronization problems. These methods include
genetic algorithms, integer programming, simulated annealing, the deficit function, local
search, tabu search, particle swarm optimization, sequential hill climbing, Powell’s method,
the ant colony system, the fuzzy ant system, and quadratic semi-assignment problems.
Furthermore, researchers have often modified existing methods or combined multiple
techniques to tailor solutions to specific challenges and optimize synchronization outcomes.

The effectiveness of heuristic methods for timetable synchronization is inherently
context-dependent. Their performance is significantly influenced by the specific character-
istics of the input data, including passenger demand patterns, the topology of the transport
network, and other operational factors.

Directly comparing the performance of different heuristics necessitates their imple-
mentation and subsequent evaluation through simulation experiments. This involves
generating realistic scenarios, executing the heuristics, and analyzing the resulting timeta-
bles based on predefined performance metrics.

However, this study diverges from a direct performance comparison. Instead, it
focuses on a comparative analysis of the existing research literature. This analysis examines
the following key aspects:
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• Frequency of method usage: identifying the most commonly employed heuristics
in the literature provides insights into prevailing research trends and the relative
popularity of different approaches;

• Objective functions number: analyzing the range of objective functions considered in
different studies reveals the priorities and trade-offs inherent in timetable synchro-
nization problems and the ability of the method to solve the optimization problem for
different stakeholders;

• Mode of transport focus: examining the specific modes of transport (e.g., bus, rail,
or mixed) addressed in different studies helps to understand the applicability and
limitations of various approaches across different transportation contexts;

• Scale of application: Investigating the scale of the transportation systems considered
(e.g., small urban areas versus large metropolitan networks) provides insights into the
scalability and generalizability of different methodologies.

As illustrated in Figure 4, GAs emerged as the most frequently used method for
timetable synchronization, accounting for 42% of the analyzed papers. Integer program-
ming followed as the second most popular method, used in 29% of the studies. The deficit
function, simulated annealing, and tabu search were employed in a smaller proportion of
research, with 9% each. The remaining 17% of studies explored other methods.
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Figure 5 and Table 5 provide insights into the focus of the research. Most papers (37
out of 70, or 53%) concentrated on synchronizing bus timetables. Rail timetables were the
subject of 10 papers (14%), while 13% of studies focused on synchronizing first and last
train timetables. Five works addressed the synchronization of timetables between bus and
rail networks at specific nodes, and one paper focused on synchronizing transfers between
high-speed rail and airplanes.

Table 5. Number of papers by method and objective numbers.

Method
Number of Elements in Objective Function

1 2 3 4 5

GA 20 6 2 - 1
IP 14 6 - - -

Others 7 5 - - -
Deficit Function - 3 - - -

Tabu Search 3 - - - -



Future Transp. 2025, 5, 6 19 of 25

Future Transp. 2025, 5, x FOR PEER REVIEW 18 of 25 
 

 

 

 

Figure 5. Percentage share by the network type in the analyzed works. 

Table 5. Number of papers by method and objective numbers. 

Method 
Number of Elements in Objective Function 

1 2 3 4 5 
GA 20 6 2 - 1 
IP 14 6 - - - 

Others 7 5 - - - 
Deficit Function - 3 - - - 

Tabu Search 3 - - - - 

Regarding the number of criteria considered in the objective functions, 20 out of 47 
papers (43%) adopted a single criterion, primarily using genetic algorithms. Six papers 
each employed GAs and integer programming with two criteria, while GAs were the sole 
choice for objective functions with more than two criteria. Two papers considered three 
criteria, and one paper included five criteria in its objective function. 

Tables 6 and 7 summarize the most used methods for synchronizing various types of 
networks and timetables. Genetic algorithms were the dominant choice for synchronizing 
bus, rail, and last or first train timetables, appearing in 29 out of 60 papers. For network-
wide, selected line, and node-level synchronization, GAs were also the preferred method, 
used in 28 out of 61 papers. When focusing on bus networks, GAs were employed in 15 
out of 29 papers. 

Table 6. The number of works by network type and solution method. 

Mode of Transport GA IP 
Deficit Func-

tion 
Tabu 

Search SA Others 

Bus 15 8 3 2 1 7 
Rail 7 3 - - - - 

Last Train or First train 5 4 - - - - 
Metro or Urban Rail 2 1 - - 1 1 
Bus to Rail or Metro - 2 - - - 3 

Rail to Air - 1 - - - - 
BRT - 1 - - - - 

Not described - - - 1 1 1 

53%

14%

13%

7%

7%
4% 2%

Bus

Rail

Last train or First Train

Bus to Rail or Metro

Metro or Urban Rail

Not described

Rail to Air

Figure 5. Percentage share by the network type in the analyzed works.

Regarding the number of criteria considered in the objective functions, 20 out of
47 papers (43%) adopted a single criterion, primarily using genetic algorithms. Six papers
each employed GAs and integer programming with two criteria, while GAs were the sole
choice for objective functions with more than two criteria. Two papers considered three
criteria, and one paper included five criteria in its objective function.

Tables 6 and 7 summarize the most used methods for synchronizing various types of
networks and timetables. Genetic algorithms were the dominant choice for synchronizing
bus, rail, and last or first train timetables, appearing in 29 out of 60 papers. For network-
wide, selected line, and node-level synchronization, GAs were also the preferred method,
used in 28 out of 61 papers. When focusing on bus networks, GAs were employed in 15
out of 29 papers.

Table 6. The number of works by network type and solution method.

Mode of Transport GA IP Deficit
Function

Tabu
Search SA Others

Bus 15 8 3 2 1 7
Rail 7 3 - - - -

Last Train or First train 5 4 - - - -
Metro or Urban Rail 2 1 - - 1 1
Bus to Rail or Metro - 2 - - - 3

Rail to Air - 1 - - - -
BRT - 1 - - - -

Not described - - - 1 1 1

Table 7. The number of works by problem scale and solution method.

Problem Scale GA IP Deficit
Function

Tabu
Search SA Others

Network 19 12 - 2 3 5
Selected lines 5 4 2 - - 4

Node 4 1 - - - 1
Selected nodes - - 1 1 - 1

Line 1 1 - - - -
Corridor - 1 - - - -

Not described - - - - - 1
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As shown in Table 7, for network-wide synchronization, GAs were the primary choice
in 19 out of 29 papers. Five papers focused on selected lines, and four papers addressed
synchronization at specific nodes. In one study, synchronization was limited to a single line.

The comprehensive literature review conducted on public transport timetable synchro-
nization methods reveals that genetic algorithms have emerged as the most widely used
approach. GAs have been successfully applied to synchronize timetables at various levels,
including nodes, selected lines, and entire networks. Furthermore, GAs have demonstrated
their applicability to both bus and rail networks, as well as connections between different
modes of transportation.

In terms of performance, GAs have consistently outperformed other methods, such
as integer programming, branch-and-bound, and particle swarm optimization, in terms
of objective function value. Even when not achieving the absolute optimal solution, GAs
have generally required less computational time to find solutions that are close to optimal.

While not all authors provided precise details regarding GA parameter settings, the
most commonly reported values include a crossover rate between 50% and 60% and a
mutation probability of 10%. The size of the selected population typically falls below
100 chromosomes.

Based on the findings of this review, the following recommendations can be made for
future research and practice in timetable synchronization:

• Given their demonstrated effectiveness, GAs should remain a primary focus of research
and development in timetable synchronization;

• Conduct systematic studies to optimize GA parameter settings, such as crossover rate
and mutation probability, for different types of networks and objectives;

• Explore the integration of GAs into real-time control systems to enable dynamic
adjustments to timetables in response to disruptions or changing conditions;

• Develop and apply multi-objective optimization techniques to address the conflicting
goals of passenger satisfaction, operational efficiency, and network resilience;

• Conducted comprehensive case studies and benchmarking exercises to evaluate the
performance of different synchronization methods in various contexts and identify
best practices.

5. Conclusions
The literature review reveals a clear shift in the focus of timetable synchronization

research since 2013. Earlier studies primarily concentrated on optimizing single aspects,
such as passenger waiting time or total travel time. However, the increasing number of
papers published after 2014 demonstrates a growing emphasis on multi-criteria objective
functions. Researchers have recognized the need to balance multiple objectives, including
minimizing the number of vehicles required, maximizing passenger comfort through
occupancy control, and optimizing transfer possibilities.

The synchronization of the first and last trains in rail networks has emerged as a
prominent research topic. Additionally, studies have focused on transfers between high-
speed trains and airplanes, the synchronization of autonomous feeder buses in transit hubs,
and the restoration of connectivity in transit rail networks through bus bridging.

The literature review suggests that genetic algorithms are a versatile and effective
method for timetable synchronization. GAs have demonstrated their ability to find high-
quality solutions across various network types and objective functions. While not always
achieving the absolute optimal solution, genetic algorithms often require less computational
time compared to other methods.

Despite the valuable insights gained from these studies, it is important to note that
many research results have not yet been implemented in real-world public transportation
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systems. While research often provides valuable insights on better solutions regarding pub-
lic transport timetables, translating these into real-world improvements can be challenging.
Possible reasons why this gap exists are the following:

• Many research projects prioritize demonstrating the potential of a proposed algorithm
or methodology. This often involves simplified synchronization models and con-
trolled environments that may not fully reflect the complexities of real-world public
transportation systems.

• Rigorous testing of new timetables in actual operating environments is crucial to
identify unforeseen challenges and refine the proposed solutions. However, such
testing can be costly and time-consuming, often hindering the transition from research
to implementation.

• Even if a research-based solution proves effective in a controlled setting, integrating it
into an existing transportation system can be complex. This may involve modifications
to significant infrastructure, software, and operational procedures.

• Public transportation systems are often large, complex organizations with established
routines and procedures. Introducing new technologies or operational changes can
face resistance from stakeholders, including drivers, dispatchers, and passengers.

• Implementing new approaches to synchronize public transport can require significant
financial investment. Securing funding for such initiatives can be challenging for many
municipalities under budget constraints.

• Effective implementation of new schedules often requires close collaboration between
researchers, transportation companies, municipal authorities, and other stakeholders.
However, such collaboration can be hindered by differing priorities.

Future research should focus on bridging the gap between theoretical advancements
and practical applications. Additionally, further exploration of multi-criteria objective
functions and the development of real-time control strategies are essential to address the
evolving challenges and demands of modern public transportation networks.

Based on the findings of this comprehensive literature review, several promising
avenues for future research in timetable synchronization can be identified:

• Develop and implement sophisticated real-time rescheduling algorithms capable of
dynamically adjusting timetables in response to a wide range of disruptions, such as
delays, cancelations, or unexpected changes in demand;

• Integrate timetable synchronization systems with intelligent traffic management sys-
tems to coordinate public transport operations with other modes of transportation,
such as private vehicles and shared mobility services;

• Develop models for designing and optimizing integrated public transportation net-
works that consider the interactions between different modes of transportation, such
as buses, trains, and subways;

• Incorporate accessibility and equity considerations into network planning to ensure
that public transportation systems are inclusive and meet the needs of diverse passen-
ger populations;

• Utilize big data analytics to analyze large-scale transportation data, including passen-
ger usage patterns, traffic conditions, and operational performance.

Author Contributions: Conceptualization, D.K. and Y.M.; methodology, D.K. and Y.M.; validation,
V.N.; investigation, D.K. and Y.M.; resources, Y.M.; data curation, Y.M.; writing—original draft
preparation, D.K.; writing—review and editing, Y.M. and V.N.; visualization, D.K.; supervision, V.N.;
funding acquisition, V.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Future Transp. 2025, 5, 6 22 of 25

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Münchschwander, P.; Jänsch, E.; Rump, R. Schienenschnellverkehr: Hochgeschwindigkeitsverkehr International; R. v. Decker’s Verlag:

Heidelberg, Germany, 1990.
2. Ceder, A. Public Transport Planning and Operation—Theory, Modelling and Practice; Elsevier: Oxford, UK, 2007.
3. Ibarra-Rojas, O.J.; Rios-Solis, Y.A. Synchronization of bus timetabling. Transp. Res. Part B Methodol. 2012, 46, 599–614. [CrossRef]
4. Yin, H.; Wu, J.; Sun, H.; Kang, L.; Liu, R. Optimizing last trains timetable in the urban rail network: Social welfare and

synchronization. Transp. B Transp. Dyn. 2019, 7, 473–497. [CrossRef]
5. Susilo, Y.O.; Cats, O. Exploring key determinants of travel satisfaction for multi-modal trips by different traveler groups. Transp.

Res. Part A Policy Pract. 2014, 67, 366–380. [CrossRef]
6. Allen, J.; Muñoz, J.C.; Rosell, J. Effect of a major network reform on bus transit satisfaction. Transp. Res. Part A Policy Pract.

2019, 124, 310–333. [CrossRef]
7. Badia, H.; Argote-Cabanero, J.; Daganzo, C.F. How network structure can boost and shape the demand for bus transit. Transp.

Res. Part A Policy Pract. 2017, 103, 83–94. [CrossRef]
8. González, L.; Perdiguero, J.; Sanz, À. Impact of public transport strikes on traffic and pollution in the city of Barcelona. Transp.

Res. Part D Transp. Environ. 2021, 98, 102952. [CrossRef]
9. Adler, M.W.; van Ommeren, J.N. Does public transit reduce car travel externalities? Quasi-natural experiments’ evidence from

transit strikes. J. Urban Econ. 2016, 92, 106–119. [CrossRef]
10. Anderson, M.L. Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion. Am. Econ. Rev.

2014, 104, 2763–2796. [CrossRef]
11. Clever, R. Intermodal integrated timed transfer: A European perspective. Transp. Res. Rec. 1997, 1571, 107–115. [CrossRef]
12. Chowdhury, S.; Ceder, A.; Schwalger, B. The effects of travel time and cost savings on commuters’ decision to travel on public

transport routes involving transfers. J. Transp. Geogr. 2015, 43, 151–159. [CrossRef]
13. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
14. Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: Amsterdam, The Netherlands, 2014. [CrossRef]
15. Ansari, N.; Hou, E. Genetic Algorithms. In Computational Intelligence for Optimization; Springer: Boston, MA, USA, 1997. [CrossRef]
16. Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Its Appl. 2012, 391, 2193–2196.

[CrossRef]
17. Shukla, A.; Pandey, H.M.; Mehrotra, D. Comparative review of selection techniques in genetic algorithm. In Proceedings of the

International Conference on Futuristic Trends on Computational Analysis and Knowledge Management, Greater Noida, India,
25–27 February 2015; pp. 515–519. [CrossRef]

18. Lin, W.-Y.; Lee, W.-Y.; Hong, T.-P. Adapting Crossover and Mutation Rates in Genetic Algorithms. J. Inf. Sci. Eng. 2003, 19, 889–903.
[CrossRef]

19. Aibinu, A.M.; Bello Salau, H.; Rahman, N.A.; Nwohu, M.N.; Akachukwu, C.M. A novel Clustering based Genetic Algorithm for
route optimization. Eng. Sci. Technol. 2016, 19, 2022–2034. [CrossRef]

20. Asadujjaman, M.; Rahman, H.F.; Chakrabortty, R.K.; Ryan, M.J. Multi-operator immune genetic algorithm for project scheduling
with discounted cash flows. Expert Syst. Appl. 2022, 195, 116589. [CrossRef]

21. Tambe, P. Selective maintenance optimization of a multi-component system based on simulated annealing algorithm. Procedia
Comput. Sci. 2022, 200, 1412–1421. [CrossRef]

22. Dorigo, M.; Gambradella, L. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans.
Evol. Comput. 1997, 1, 53–66. [CrossRef]

23. Baltierra, S.; Valdebenito, J.; Mora, M. A proposal of edge detection in images with multiplicative noise using the Ant Colony
System algorithm. Eng. Appl. Artif. Intell. 2022, 110, 104715. [CrossRef]

24. Dong, L.; Gan, X. An energy-saving path planning method using adaptive ant colony system for marine surface vehicles. Soft
Comput. 2024, 28, 6637–6656. [CrossRef]

25. Kennedy, J.; Eberhart, R. Particle swarm optimization. Proc. ICNN’95—Int. Conf. Neural Netw. 1995, 4, 1942–1948. [CrossRef]
26. Yang, S.; Wang, H.; Xu, Y.; Guo, Y.; Pan, L.; Zhang, J.; Guo, X.; Meng, D.; Wang, J. A coupled simulated annealing and particle

swarm optimization reliability-based design optimization strategy under hybrid uncertainties. Mathematics 2023, 11, 4790.
[CrossRef]

27. Liu, T.; Ceder, A. Deficit function related to public transport: 50 year retrospective, new developments, and prospects. Transp. Res.
Part B Methodol. 2017, 100, 1–19. [CrossRef]

https://doi.org/10.1016/j.trb.2012.01.006
https://doi.org/10.1080/21680566.2018.1440361
https://doi.org/10.1016/j.tra.2014.08.002
https://doi.org/10.1016/j.tra.2019.04.002
https://doi.org/10.1016/j.tra.2017.05.030
https://doi.org/10.1016/j.trd.2021.102952
https://doi.org/10.1016/j.jue.2016.01.001
https://doi.org/10.1257/aer.104.9.2763
https://doi.org/10.3141/1571-14
https://doi.org/10.1016/j.jtrangeo.2015.01.009
https://doi.org/10.1016/B978-0-12-416743-8.00006-3
https://doi.org/10.1007/978-1-4615-6331-0_6
https://doi.org/10.1016/j.physa.2011.12.004
https://doi.org/10.1109/ABLAZE.2015.7154916
https://doi.org/10.6688/JISE.2003.19.5.9
https://doi.org/10.1016/j.jestch.2016.08.003
https://doi.org/10.1016/j.eswa.2022.116589
https://doi.org/10.1016/j.procs.2022.01.342
https://doi.org/10.1109/4235.585892
https://doi.org/10.1016/j.engappai.2022.104715
https://doi.org/10.1007/s00500-023-09513-x
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.3390/math11234790
https://doi.org/10.1016/j.trb.2017.01.015


Future Transp. 2025, 5, 6 23 of 25

28. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.
[CrossRef]

29. Glover, F. Tabu Search: A Tutorial. Interfaces 1990, 20, 74–94. [CrossRef]
30. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
31. Qiu, Y.; Yang, X.; Chen, S. An improved gray wolf optimization algorithm solving to functional optimization and engineering

design problems. Sci. Rep. 2024, 14, 14190. [CrossRef]
32. Chakroborty, P.; Deb, K.; Subrahmanyam, P. Optimal scheduling of urban transit systems using genetic algorithms. J. Transp. Eng.

1995, 121, 544–553. [CrossRef]
33. Nachtigall, D.; Voget, S. A genetic algorithm approach to periodic railway synchronization. Comput. Oper. Res. 1996, 23, 453–463.

[CrossRef]
34. Bielli, M.; Caramia, M.; Carotenuto, P. Genetic algorithms in bus network optimization. Transp. Res. Part C Emerg. Technol.

2002, 10, 19–34. [CrossRef]
35. Shrivastava, P.; Dhingra, S.L.; Gundaliya, P.J. Application of genetic algorithm for scheduling and schedule coordination problems.

J. Adv. Transp. 2002, 36, 23–41. [CrossRef]
36. Shrivastava, P.; Dhingra, S.L. Development of coordinated schedules using Genetic Algorithms. J. Transp. Eng. 2002, 128, 89–96.

[CrossRef]
37. Ngamchai, S.; Lovell, D.J. Optimal time transfer in bus transit route network design using a genetic algorithm. J. Transp. Eng.

2003, 129, 510–521. [CrossRef]
38. Cevallos, F.; Zhao, F. A Genetic Algorithm for bus schedule synchronization. In Proceedings of the 9th International Conference,

Chicago, IL, USA, 13–16 August 2006. [CrossRef]
39. Cevallos, F.; Zhao, F. Minimizing transfer times in public transit network with Genetic Algorithm. Transp. Res. Rec.

2006, 1971, 74–79. [CrossRef]
40. Shrivastava, P.; O’Mahony, M. A model for development of optimized feeder routes and coordinated schedules—A genetic

algorithms approach. Transp. Policy 2006, 13, 413–425. [CrossRef]
41. Shafahi, Y.; Khani, A. A practical model for transfer optimization in a transit network: Model formulations and solutions. Transp.

Res. Part A Policy Pract. 2010, 44, 377–389. [CrossRef]
42. Yu, B.; Yang, Z.; Yao, J. Genetic Algorithm for bus frequency optimization. J. Transp. Eng. 2010, 136, 576–583. [CrossRef]
43. Niu, H.; Zhou, X. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transp. Res. Part

C Emerg. Technol. 2013, 36, 212–230. [CrossRef]
44. Wu, J.; Liu, M.; Sun, H.; Li, T.; Gao, Z.; Wang, D. Equity-based timetable synchronization optimization in urban subway network.

Transp. Res. Part C Emerg. Technol. 2015, 51, 1–18. [CrossRef]
45. Tuzun, A.D.; Yılmaz, S. Transit coordination with heterogeneous headways. Transp. Plan. Technol. 2014, 37, 450–465. [CrossRef]
46. Kang, L.; Wu, J.; Sun, H.; Zhu, X.; Gao, Z. A case study on the coordination of last trains for the Beijing subway network. Transp.

Res. Part B Methodol. 2015, 72, 112–127. [CrossRef]
47. Kang, L.; Wu, J.; Sun, H.; Zhu, X.; Wang, B. A practical model for last train rescheduling with train delay in urban railway transit

networks. Omega 2015, 50, 29–42. [CrossRef]
48. Wu, Y.; Tang, J.; Yu, Y.; Pan, Z. A stochastic optimization model for transit network timetable design to mitigate the randomness

of traveling time by adding slack time. Transp. Res. Part C Emerg. Technol. 2015, 52, 15–31. [CrossRef]
49. Wu, Y.; Yang, H.; Tang, J.; Yu, Y. Multi-objective re-synchronizing of bus timetable: Model, complexity and solution. Transp. Res.

Part C Emerg. Technol. 2016, 67, 149–168. [CrossRef]
50. Naumov, V. Synchronisation of timetables for public bus lines using genetic algorithms and computer simulations. Lect. Notes

Netw. Syst. 2018, 36, 44–53. [CrossRef]
51. Shang, P.; Li, R.; Liu, Z.; Xian, K.; Guo, J. Timetable synchronization and optimization considering time-dependent passenger

demand in an urban subway network. Transp. Res. Rec. 2018, 2672, 243–254. [CrossRef]
52. Naumov, V. Genetic-based algorithm of the public transport lines synchronization in a transfer node. Transp. Res. Procedia

2020, 47, 315–322. [CrossRef]
53. Cao, Z.; Ceder, A.; Li, D.; Zhang, S. Optimal synchronization and coordination of actual passenger-rail timetables. J. Intell. Transp.

Syst. 2019, 23, 231–249. [CrossRef]
54. Chen, Y.; Mao, B.; Bai, Y.; Ho, T.; Li, Z. Timetable synchronization of last trains for urban rail networks with maximum accessibility.

Transp. Res. Part C Emerg. Technol. 2019, 99, 110–129. [CrossRef]
55. Wang, Y.; Li, D.; Cao, Z. Integrated timetable synchronization optimization with capacity constraint under time-dependent

demand for a rail transit network. Comput. Ind. Eng. 2020, 142, 106374. [CrossRef]
56. Cao, N.; Tang, T.; Gao, C. Multiperiod Transfer Synchronization for Cross-Platform Transfer in an Urban Rail Transit System.

Symmetry 2020, 12, 1665. [CrossRef]

https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1287/inte.20.4.74
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1038/s41598-024-64526-2
https://doi.org/10.1061/(ASCE)0733-947X(1995)121:6(544)
https://doi.org/10.1016/0305-0548(95)00032-1
https://doi.org/10.1016/S0968-090X(00)00048-6
https://doi.org/10.1002/atr.5670360103
https://doi.org/10.1061/(ASCE)0733-947X(2002)128:1(89)
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(510)
https://doi.org/10.1061/40799(213)118
https://doi.org/10.1177/0361198106197100109
https://doi.org/10.1016/j.tranpol.2006.03.002
https://doi.org/10.1016/j.tra.2010.03.007
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000119
https://doi.org/10.1016/j.trc.2013.08.016
https://doi.org/10.1016/j.trc.2014.11.001
https://doi.org/10.1080/03081060.2014.912419
https://doi.org/10.1016/j.trb.2014.09.003
https://doi.org/10.1016/j.omega.2014.07.005
https://doi.org/10.1016/j.trc.2014.12.012
https://doi.org/10.1016/j.trc.2016.02.007
https://doi.org/10.1007/978-3-319-74454-4_4
https://doi.org/10.1177/0361198118772958
https://doi.org/10.1016/j.trpro.2020.03.104
https://doi.org/10.1080/15472450.2018.1488132
https://doi.org/10.1016/j.trc.2019.01.003
https://doi.org/10.1016/j.cie.2020.106374
https://doi.org/10.3390/sym12101665


Future Transp. 2025, 5, 6 24 of 25

57. Guo, X.; Wu, J.; Sun, H.; Yang, X.; Jin, J.; Wang, D. Scheduling synchronization in urban rail transit networks: Trade-offs between
transfer passenger and last train operation. Transp. Res. Part A Policy Pract. 2020, 138, 463–490. [CrossRef]

58. Ataeian, S.; Solimanpur, M.; Amiripour, S.; Shankar, R. Synchronized timetables for bus rapid transit networks in small and large
cities. Sci. Iran. 2021, 28, 477–491. [CrossRef]

59. Naeini, H.M.; Shafahi, Y.; Taherkhani, M.S. Optimizing and synchronizing timetable in an urban subway network with stop-skip
strategy. J. Rail Transp. Plan. Manag. 2022, 22, 100301. [CrossRef]

60. Wang, Y.; Zhou, Y.; Yan, X. Autonomous bus timetable synchronization for maximizing smooth transfers with passenger
assignment. Expert Syst. Appl. 2022, 193, 478–492. [CrossRef]

61. Niu, H.; Tian, X.; Zhou, X. Demand-driven train schedule synchronization for high-speed rail lines. IEEE Trans. Intell. Transp.
Syst. 2015, 16, 2642–2652. [CrossRef]

62. Zhao, F.; Zeng, X. Optimization of transit route network, vehicle headways and timetables for large-scale transit networks. Eur. J.
Oper. Res. 2008, 186, 841–855. [CrossRef]

63. Poorjafari, V.; Yue, W.L.; Holyoak, N. Application of simulated annealing in transit schedule synchronization. Int. J. Model. Optim.
2014, 4, 476–481. [CrossRef]

64. Guo, X.; Sun, H.; Wu, J.; Jin, J.; Zhou, J.; Gao, Z. Multiperiod-based timetable optimization for metro transit networks. Transp. Res.
Part B Methodol. 2017, 96, 46–67. [CrossRef]

65. Ceder, A.; Golany, B.; Tal, O. Creating bus timetables with maximal synchronization. Transp. Res. Part A Policy Pract.
2001, 35, 913–928. [CrossRef]

66. Eranki, A. A Model to Create Bus Timetables to Attain Maximum Synchronization Considering Waiting Times at Transfer Stops.
Master’s Thesis, University of South Florida, Tampa, FL, USA, 2004.

67. Vansteenwegen, P.; van Oudheusden, D. Decreasing the passenger waiting time for an intercity rail network. Transp. Res. Part B
Methodol. 2007, 41, 478–492. [CrossRef]

68. Liebchen, C. The first optimized railway timetable in practice. Transp. Sci. 2008, 42, 420–435. [CrossRef]
69. Wong, R.; Yuen, T.; Fung, K.; Leung, J. Optimizing timetable synchronization for rail mass transit. Transp. Sci. 2008, 42, 57–69.

[CrossRef]
70. Bruno, G.; Improta, G.; Sgalambro, A. Models for the schedule optimization problem at a public transit terminal. OR Spectr.

2009, 31, 465–481. [CrossRef]
71. Nesheli, M.; Ceder, A. Optimal combinations of selected tactics for public-transport transfer synchronization. Transp. Res. Part C

Emerg. Technol. 2014, 48, 491–504. [CrossRef]
72. Dou, X.; Meng, Q.; Guo, X. Bus schedule coordination for the last train service in an intermodal bus-and-train transport network.

Transp. Res. Part C Emerg. Technol. 2015, 60, 360–376. [CrossRef]
73. Ibarra-Rojas, O.J.; López-Irarragorri, F.; Rios-Solis, Y.A. Multiperiod bus timetabling. Transp. Sci. 2015, 50, 805–822. [CrossRef]
74. Guo, X.; Wu, J.; Sun, H.; Liu, R.; Gao, Z. Timetable coordination of first trains in urban railway network: A case study of Beijing.

Appl. Math. Model. 2016, 40, 8048–8066. [CrossRef]
75. Wu, W.; Liu, R.; Jin, W. Designing robust schedule coordination scheme for transit networks with safety control margins. Transp.

Res. Part B Methodol. 2016, 93, 495–519. [CrossRef]
76. Gschwender, A.; Jara-Díaz, S.; Bravo, C. Feeder-trunk or direct lines? Economies of density, transfer costs and transit structure in

an urban context. Transp. Res. Part A Policy Pract. 2016, 88, 209–222. [CrossRef]
77. Dou, X.; Guo, X. Schedule coordination method for last train transfer problem. Transp. Res. Rec. 2017, 2648, 86–95. [CrossRef]
78. Liu, T.; Ceder, A.; Chowdhury, S. Integrated public transport timetable synchronization with vehicle scheduling. Transp. A Transp.

Sci. 2017, 13, 932–954. [CrossRef]
79. Kang, L.; Zhu, X.; Sun, H.; Wu, J.; Gao, Z.; Hu, B. Last train timetabling optimization and bus bridging service management in

urban railway transit networks. Omega 2019, 84, 31–44. [CrossRef]
80. Shang, H.-Y.; Huang, H.-J.; Wu, W.-X. Bus timetabling considering passenger satisfaction: An empirical study in Beijing. Comput.

Ind. Eng. 2019, 135, 1155–1166. [CrossRef]
81. Wang, Y.; Wei, Y.; Zhang, Q.; Shi, H.; Shang, P. Scheduling overnight trains for improving both last and first train services in an

urban subway network. Adv. Mech. Eng. 2019, 11, 1687814019848920. [CrossRef]
82. Takamatsu, M.; Taguchi, A. Bus timetable design to ensure smooth transfers in areas with low-frequency public transportation

services. Transp. Sci. 2020, 54, 1238–1250. [CrossRef]
83. Ke, Y.; Park, D.; Nie, L.; Liebchen, C.; Yuan, W.; Wu, X. Improving synchronization in an air and high-speed rail integration

service via adjusting a rail timetable: A Real-world case study in China. J. Adv. Transp. 2020, 2020, 5081315. [CrossRef]
84. Lee, K.; Jiang, Y.; Ceder, A.; Dauwels, J.; Su, R.; Nielsen, O. Path-oriented synchronized transit scheduling using time-dependent

data. Transp. Res. Part C Emerg. Technol. 2022, 136, 103505. [CrossRef]
85. Wardman, M. Public transport values of time. Transp. Policy 2004, 11, 363–377. [CrossRef]

https://doi.org/10.1016/j.tra.2020.06.008
https://doi.org/10.24200/sci.2019.51501.2220
https://doi.org/10.1016/j.jrtpm.2022.100301
https://doi.org/10.1016/j.eswa.2021.116430
https://doi.org/10.1109/TITS.2015.2415513
https://doi.org/10.1016/j.ejor.2007.02.005
https://doi.org/10.7763/IJMO.2014.V4.420
https://doi.org/10.1016/j.trb.2016.11.005
https://doi.org/10.1016/S0965-8564(00)00032-X
https://doi.org/10.1016/j.trb.2006.06.006
https://doi.org/10.1287/trsc.1080.0240
https://doi.org/10.1287/trsc.1070.0200
https://doi.org/10.1007/s00291-008-0161-4
https://doi.org/10.1016/j.trc.2014.09.013
https://doi.org/10.1016/j.trc.2015.09.006
https://doi.org/10.1287/trsc.2014.0578
https://doi.org/10.1016/j.apm.2016.04.004
https://doi.org/10.1016/j.trb.2016.07.009
https://doi.org/10.1016/j.tra.2016.03.001
https://doi.org/10.3141/2648-10
https://doi.org/10.1080/23249935.2017.1353555
https://doi.org/10.1016/j.omega.2018.04.003
https://doi.org/10.1016/j.cie.2019.01.057
https://doi.org/10.1177/1687814019848920
https://doi.org/10.1287/trsc.2019.0918
https://doi.org/10.1155/2020/5081315
https://doi.org/10.1016/j.trc.2021.103505
https://doi.org/10.1016/j.tranpol.2004.05.001


Future Transp. 2025, 5, 6 25 of 25

86. Klemt, W.D.; Stemme, W. Schedule synchronization for public transit networks. Lect. Note Econ. Math. Syst. 1989, 11, 17–24.
[CrossRef]

87. Daduna, J.R.; Voß, S. Practical experiences in schedule synchronization. In Computer-Aided Transit Scheduling: Proceedings of the
Sixth International Workshop on Computer-Aided Scheduling of Public Transport; Springer: Berlin/Heidelberg, Germany, 1995; Volume
430. [CrossRef]
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