Pearl Millet-Cowpea Forage Mixture Planting Arrangement Influences Mixture Yield and Nutritive Value in Semiarid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Climate, and Weather
2.2. Study Layout, Experimental Design, and Management
2.3. Measurements
2.4. Statistical Description
3. Results and Discussion
3.1. Cowpea DM Yield and Nutritive Value
3.2. Pearl Millet DM Yield and Nutritive Value
3.3. Total Forage DM Yield and Nutritive Value
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, M.; Ayub, M.; Maqbool, M.M.; Nadeem, S.M.; ul Haq, T.; Hussain, S.; Ali, A.; Lauriault, L.M. Forage yield components of irrigated maize-legume mixtures at varied seed ratios. Field Crops Res. 2014, 169, 140–144. [Google Scholar] [CrossRef]
- Machicek, J.A.; Blaser, B.C.; Darapuneni, M.; Rhoades, M.B. Harvesting regimes affect brown midrib sorghum-sudangrass and brown midrib pearl millet forage production and quality. Agronomy 2019, 9, 416. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Water depletion pattern and water use efficiency of forage sorghum, pearl millet, and corn under water limiting condition. Agric. Water Manag. 2020, 238, 106206. [Google Scholar] [CrossRef]
- NASS. 2021 New Mexico Agricultural Statistics; USDA National Agricultural Statistics Service: Las Cruces, NM, USA, 2022.
- Contreras-Govea, F.E.; Lauriault, L.M.; Marsalis, M.A.; Angadi, S.V.; Puppala, N. Performance of forage sorghum-legume mixtures in Southern High Plains, USA. Forage Grazinglands 2009, 7, 1–8. [Google Scholar] [CrossRef]
- Marsalis, M.A.; Lauriault, L.M.; Trostle, C. Millets for Forage and Grain in New Mexico and West Texas. Guide A-417; New Mexico State University Cooperative Extension Service: Las Cruces, NM, USA, 2012; Available online: https://pubs.nmsu.edu/_a/A417/index.html (accessed on 30 August 2023).
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Effect of deficit irrigation on physiology and forage yield of forage sorghum, pearl millet and corn. Crop Sci. 2020, 60, 2167–2179. [Google Scholar] [CrossRef]
- Crookston, B.; Blaser, B.; Darapuneni, M.; Rhoades, M. Pearl millet water use efficiency. Agronomy 2020, 10, 1672. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Schmitz, L.H.; Cox, S.H.; Scholljegerdes, E.J. A comparison of pearl millet and sorghum-sudangrass during the frost-prone autumn for growing beef cattle in semiarid region. Agriculture 2021, 11, 541. [Google Scholar] [CrossRef]
- Ding, Z.; Alharbi, A.; Almaroae, Y.A.; Eissa, M.A. Improving quality of metal-contaminated soils by some halophyte and non-halophyte forage plants. Sci. Total Environ. 2021, 764, 142885. [Google Scholar] [CrossRef]
- Hanna, W.W.; Torres-Cardona, S. Pennisetums and Sorghums in an Integrated Feeding System in the Tropics. In Tropical Forage Plants: Development and Use; Pitman, W.D., Sotomayor-Rios, A., Eds.; CRC Press: Boca Raton, FL USA, 2001; pp. 193–200. [Google Scholar]
- Assis, R.L.; Freitas, R.S.; Mason, S.C. Pearl millet production practices in Brazil: A review. Exp. Agric. 2018, 54, 699–718. [Google Scholar] [CrossRef]
- Fontaneli, R.S.; Sollenberger, L.E.; Staples, C.R. Yield, yield distribution, and nutritive value of intensively managed warm-season annual grasses. Agron. J. 2001, 93, 1257–1262. [Google Scholar] [CrossRef]
- Contreras-Govea, F.; Soto-Navarro, S.A.; Calderon-Mendoza, D.; Marsalis, M.A.; Lauriault, L.M. Dry matter yield and nutritive value of cowpea and lablab in the Southern High Plains of the USA. Forage Grazinglands 2011, 9, 1–6. [Google Scholar] [CrossRef]
- Kouyaté, Z.; Krasova-Wade, T.; Yattara, I.I.; Neyra, M. Effects of cropping system and cowpea variety on symbiotic potential and yields of cowpea (Vigna unguiculata L. Walp) and pearl millet (Pennisetum glaucum L.) in the Sudano-Sahelian Zone of Mali. Int. J. Agron. 2012, 2012, 761391. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Hussain, I.; Siddiqui, M.H.; Ahmad, T.; Khaliq, A.; Ahmad, Z. Competitive indices in cereal and legume mixtures in a south Asian environment. Agron. J. 2019, 111, 242–249. [Google Scholar] [CrossRef]
- Islam, N.; Zamir, M.S.I.; Din, S.M.U.; Garooq, U.; Arshad, H.; Bilal, A.; Sajjad, M.T. Evaluating the intercropping of millet with cowpea for forage yield and quality. Am. J. Plant Sci. 2018, 9, 1781–1793. [Google Scholar] [CrossRef]
- Oskey, M.; Velasquez, C.; Peña, O.M.; Andrae, J.; Bridges, W.; Ferreira, G.; Aguerre, M.J. Yield, nutritional composition, and digestibility of conventional and brown midrib (BMR) pearl millet as affected by planting date and interseeded cowpea. Animals 2023, 13, 260. [Google Scholar] [CrossRef]
- Bybee-Finley, K.A.; Mirsky, S.B.; Ryan, M.R. Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the Northeast. Weed Sci. 2017, 65, 669–680. [Google Scholar] [CrossRef]
- Clark, K.M.; Myers, R.L. Intercrop performance of pearl millet, amaranth, cowpea, soybean, and guar in response to planting pattern and nitrogen fertilization. Agron. J. 1994, 86, 1097–1102. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Angadi, S.V.; Marsalis, M.A. Soil type affected cowpea forage nutritive value. Forage Grazinglands 2011, 9, 1–2. [Google Scholar] [CrossRef]
- Angadi, S.; Umesh, M.R.; Contreras-Govea, F.; Annadurai, K.; Begna, S.B.; Marsalis, M.A.; Cole, A.; Gowda, P.H.; Hagevoort, G.R.; Lauriault, L.M. In search of annual legumes to improve forage sorghum yield and nutritive value in the Southern High Plains. Crop Forage Turfgrass Manag. 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Maman, N.; Dicko, M.; Abdou, G.; Kouyaté, Z.; Wortmann, C. Pearl millet and cowpea intercrop response to applied nutrients in West Africa. Agron. J. 2017, 109, 2333–2342. [Google Scholar] [CrossRef]
- Nelson, W.C.D.; Hoffmann, M.P.; Vadez, V.; Rötter, R.P.; Koch, M.; Whitbread, A.M. Can intercropping be an adaptation to drought? A model-based analysis for pearl millet—Cowpea. J. Agron. Crop Sci. 2022, 208, 910–927. [Google Scholar] [CrossRef]
- Sarr, P.S.; Khouma, M.; Seme, M.; Guisse, A.; Badiane, A.N.; Yamakawa, T. Effect of pearl millet-cowpea cropping systems on nitrogen recover, nitrogen use efficiency and biological fixation using the 15N tracer technique. Soil Sci. Plant Nutr. 2008, 54, 142–147. [Google Scholar] [CrossRef]
- Watanabe, Y.; Itanna, F.; Isumi, Y.; Awala, S.K.; Fujioka, Y.; Tsuchia, K.; Iijima, M. Cattle manure and intercropping effects on soil properties and growth and yield of pearl millet and cowpea in Namibia. J. Crop Improv. 2019, 33, 395–409. [Google Scholar] [CrossRef]
- Reddy, K.C.; Visser, P.; Buckner, P. Pearl millet and cowpea yields in sole and intercrop systems, and their after-effects on soil and crop productivity. Field Crops Res. 1992, 28, 315–326. [Google Scholar] [CrossRef]
- McDonagh, J.F.; Hillyer, A.E.M. Grain legumes in pearl millet systems in northern Namibia: An assessment of potential nitrogen contributions. Expl. Agric. 2003, 39, 349–362. [Google Scholar] [CrossRef]
- Kirksey, R.E.; Lauriault, L.M.; Cooksey, P.L. Weather Observations at the Agricultural Science Center at Tucumcari—1905–2002; Research Report 751; New Mexico State University Agricultural Experiment Station: Las Cruces, NM, USA, 2003; Available online: https://studylib.net/doc/8404582/weather-observations-at-the-agricultural-science-center-at (accessed on 21 February 2022).
- SAS Institute. The SAS 9.3 for Windows; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; Jansen, L., Ed.; SAS Institute: Cary, NC, USA, 1998; pp. 1243–1246. [Google Scholar]
- Lauriault, L.M.; Guldan, S.J.; Popiel-Powers, F.G.; Steiner, R.L.; Martin, C.A.; Heyduck, R.F.; Falk, C.L.; Petersen, M.K.; May, T. Relay intercropping with cover crops improved autumn forage potential of sweet maize stover. Agriculture 2018, 8, 103. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Shaver, R.D.; Combs, D.K.; Undersander, D.J.; Bauman, L.M.; Seeger, T.K. Understanding NDF Digestibility of Forages; Focus on Forage University of Wisconsin-Madison: Madison, WI, USA, 2001; Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwing9rkloWBAxXfgmoFHVhSBNoQFnoECA8QAQ&url=https%3A%2F%2Ffyi.extension.wisc.edu%2Fforage%2Funderstanding-ndf-digestibility-of-forages%2F&usg=AOvVaw0tcivca1-oNf_anDry5kGp&opi=89978449 (accessed on 30 August 2023).
- Li, H.; Li, L.; Wegenast, T.; Longin, C.F.; Xu, X.; Melchinger, A.E.; Chen, S. Effect of N supply on stalk quality in maize hybrids. Field Crops Res. 2010, 118, 208–214. [Google Scholar] [CrossRef]
- Cox, W.J.; Kalonge, S.; Cherney, D.J.R.; Reid, W.S. Growth, yield, and quality for forage maize under different nitrogen management practices. Agron. J. 1993, 385, 341–347. [Google Scholar] [CrossRef]
- Miller, M.H. Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies. Can. J. Plant Sci. 2000, 80, 47–52. [Google Scholar] [CrossRef]
Year | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, °C | |||||||||||||
2019 | 3.4 | 2.7 | 9.1 | 15.7 | 21.4 | 26.0 | 29.0 | 25.9 | 23.9 | 15.4 | 7.6 | 4.7 | 15.4 |
2022 | 3.8 | 5.7 | 8.6 | 14.3 | 17.4 | 23.9 | 27.8 | 27.6 | 25.0 | 12.3 | 3.2 | 5.7 | 14.6 |
Long-term | 3.5 | 5.6 | 9.5 | 14.2 | 19.1 | 24.3 | 26.2 | 25.2 | 21.6 | 15.2 | 8.6 | 4.0 | 14.7 |
Precipitation/irrigation, mm | |||||||||||||
2019 | 4 | 5 | 19 | 0 | 3 | 54/140 | 48/165 | 86/57 | 1 | 50 | 7 | 0 | 278/362 |
2022 | 4 | 1 | 6 | 24 | 47 | 31/133 | 51/184 | 34/159 | 43 | 35 | 25 | 15 | 316/476 |
Long-term | 10 | 12 | 19 | 28 | 47 | 47/--- | 67/--- | 68/--- | 39 | 34 | 17 | 16 | 398/--- |
Effect | Yield | CP | NDF | NDFD | |
---|---|---|---|---|---|
Year | Mg DM ha−1 | g kg−1 | g kg−1 | g kg−1 | |
2019 | 1.26 | 162 | 337 | 503 | |
2022 | 0.54 | 187 | 428 | 576 | |
Treatment (TRT) | |||||
Cowpea | 2.07 | A | 175 | 360 | 532 |
Millet–cowpea | 0.51 | B | 179 | 393 | 552 |
Millet–cowpea 1:1 | 0.67 | B | 175 | 382 | 532 |
Millet–cowpea 2:2 | 0.51 | B | 168 | 386 | 547 |
Millet–cowpea 4:4 | 0.76 | B | 177 | 392 | 535 |
LSD, 0.10 | 0.31 | 21 | 37 | 49 | |
p-values | |||||
Year | 0.0009 | 0.0142 | 0.0026 | 0.0033 | |
TRT | <0.0001 | 0.9187 | 0.4980 | 0.8860 | |
Year × TRT | 0.0821 | 0.4685 | 0.7110 | 0.7016 |
Effect | Yield | CP | NDF | NDFD | ||
---|---|---|---|---|---|---|
Year | Mg DM ha−1 | g kg−1 | g kg−1 | g kg−1 | ||
2019 | 9.24 | 85 | 693 | 568 | ||
2022 | 8.92 | 136 | 664 | 564 | ||
Treatment (TRT) | ||||||
Millet | 12.09 | 107 | 676 | AB | 577 | A |
Millet–cowpea | 8.57 | 111 | 683 | A | 574 | A |
Millet–cowpea 1:1 | 6.99 | 110 | 678 | AB | 560 | AB |
Millet–cowpea 2:2 | 9.20 | 121 | 664 | B | 574 | A |
Millet–cowpea 4:4 | 8.55 | 105 | 693 | A | 546 | B |
LSD, 0.10 | 3.30 | 11 | 16 | 20 | ||
p-values | ||||||
Year | 0.8006 | <0.0001 | 0.0146 | 0.7592 | ||
TRT | 0.1508 | 0.1834 | 0.0611 | 0.0770 | ||
Year × TRT | 0.4292 | 0.4087 | 0.5312 | 0.2144 |
Yield | Legume | LER | CP | NDF | NDFD | |||
---|---|---|---|---|---|---|---|---|
Year | Mg DM ha−1 | % | ----- | g kg−1 | g kg−1 | g kg−1 | ||
2019 | 9.96 | 11.89 | 1.08 | 92 | 659 | 563 | ||
2022 | 9.17 | 4.12 | 0.91 | 138 | 657 | 564 | ||
Treatment (TRT) | ||||||||
Millet | 12.09 | ----- | 1.00 | 107 | 673 | A | 577 | A |
Millet–cowpea | 9.08 | 7.02 | 0.93 | 115 | 662 | ABC | 571 | A |
Millet–cowpea 1:1 | 7.66 | 10.52 | 0.90 | 118 | 644 | C | 554 | AB |
Millet–cowpea 2:2 | 9.71 | 6.58 | 1.01 | 123 | 646 | BC | 571 | A |
Millet–cowpea 4:4 | 9.31 | 7.91 | 1.14 | 112 | 666 | AB | 544 | B |
LSD, 0.10 | 3.33 | 3.89 | 0.29 | 11 | 18 | 19 | ||
p-values | ||||||||
Year | 0.5345 | 0.0434 | 0.1598 | <0.0001 | 0.8774 | 0.9088 | ||
TRT | 0.2725 | 0.3415 | 0.6281 | 0.1468 | 0.0475 | 0.0513 | ||
Year × TRT | 0.4162 | 0.1991 | 0.4097 | 0.2930 | 0.6853 | 0.2383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriault, L.M.; Darapuneni, M.K.; Martinez, G.K. Pearl Millet-Cowpea Forage Mixture Planting Arrangement Influences Mixture Yield and Nutritive Value in Semiarid Regions. Crops 2023, 3, 266-275. https://doi.org/10.3390/crops3040024
Lauriault LM, Darapuneni MK, Martinez GK. Pearl Millet-Cowpea Forage Mixture Planting Arrangement Influences Mixture Yield and Nutritive Value in Semiarid Regions. Crops. 2023; 3(4):266-275. https://doi.org/10.3390/crops3040024
Chicago/Turabian StyleLauriault, Leonard M., Murali K. Darapuneni, and Gasper K. Martinez. 2023. "Pearl Millet-Cowpea Forage Mixture Planting Arrangement Influences Mixture Yield and Nutritive Value in Semiarid Regions" Crops 3, no. 4: 266-275. https://doi.org/10.3390/crops3040024
APA StyleLauriault, L. M., Darapuneni, M. K., & Martinez, G. K. (2023). Pearl Millet-Cowpea Forage Mixture Planting Arrangement Influences Mixture Yield and Nutritive Value in Semiarid Regions. Crops, 3(4), 266-275. https://doi.org/10.3390/crops3040024