Marker Development and Pyramiding of Fhb1 and Fhb7 for Enhanced Resistance to Fusarium Head Blight in Soft Red Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wegulo, S.N.; Baenziger, P.S.; Nopsa, J.H.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium head blight of wheat and barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium ear blight (scab) in small grain cereals—A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Panthi, A.; Hallen-Adams, H.; Wegulo, S.N.; Hernandez Nopsa, J.; Baenziger, P.S. Chemotype and aggressiveness of isolates of Fusarium graminearum causing head blight of wheat in Nebraska. Can. J. Plant Pathol. 2014, 36, 447–455. [Google Scholar] [CrossRef]
- USDA, ARS. FHB Epidemic in Wheat and Barley. 2016. Available online: https://www.ars.usda.gov/midwest-area/stpaul/cereal-disease-lab/docs/fusarium-head-blight/fhb-epidemic-in-wheat-and-barley-overview/ (accessed on 20 August 2022).
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Rubio Teso, M.L.; Lara-Romero, C.; Rubiales, D.; Parra-Quijano, M.; Iriondo, J.M. Searching for Abiotic Tolerant and Biotic Stress Resistant Wild Lentils for Introgression Breeding Through Predictive Characterization. Front. Plant Sci. 2022, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Gaire, R.; Brown-Guedira, G.; Dong, Y.; Ohm, H.; Mohammadi, M. Genome-wide association studies for Fusarium head blight resistance and its trade-off with grain yield in soft red winter wheat. Plant Dis. 2021, 105, 2435–2444. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Ban, T.; Anderson, J.A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breed. 2009, 128, 1–26. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, D.; Bockus, W.; Baenziger, P.S.; Carver, B.; Bai, G. Fusarium head blight resistance in US winter wheat cultivars and elite breeding lines. Crop Sci. 2013, 53, 2006–2013. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Hou, Y.; Cai, J.; Shen, X.; Zhou, T.; Xu, H.; Ohm, H.W.; Wang, H.; Li, A.; et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. Genet. 2015, 128, 2301–2316. [Google Scholar] [CrossRef]
- Guo, X.; Shi, Q.; Liu, Y.; Su, H.; Zhang, J.; Wang, M.; Wang, C.; Wang, J.; Zhang, K.; Fu, S.; et al. Systemic development of wheat–Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J. 2023, 114, 1475–1489. [Google Scholar] [CrossRef]
- Anderson, J.A.; Stack, R.W.; Liu, S.; Waldron, B.L.; Fjeld, A.D.; Coyne, C.; Moreno-Sevilla, B.; Fetch, J.M.; Song, Q.J.; Cregan, P.B.; et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl. Genet. 2001, 102, 1164–1168. [Google Scholar] [CrossRef]
- Pumphrey, M.O.; Bernardo, R.; Anderson, J.A. Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci. 2007, 47, 200–206. [Google Scholar] [CrossRef]
- Zhou, W.C.; Kolb, F.L.; Bai, G.H.; Domier, L.L.; Boze, L.K.; Smith, N.J. Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed. 2003, 122, 40–46. [Google Scholar] [CrossRef]
- Zhang, H.; Su, Z.; Bai, G.; Zhang, X.; Ma, H.; Li, T.; Deng, Y.; Mai, C.; Yu, L.; Liu, H.; et al. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai Rivers Valley Winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron. Sin. 2018, 44, 505–511. [Google Scholar] [CrossRef]
- Salameh, A.; Buerstmayr, M.; Steiner, B.; Neumayer, A.; Lemmens, M.; Buerstmayr, H. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Mol. Breed. 2011, 28, 485–494. [Google Scholar] [CrossRef]
- Li, G.; Yuan, Y.; Zhou, J.; Cheng, R.; Chen, R.; Luo, X.; Shi, J.; Wang, H.; Xu, B.; Duan, Y.; et al. FHB resistance conferred by Fhb1 is under inhibitory regulation of two genetic loci in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2023, 136, 134. [Google Scholar] [CrossRef]
- Su, Z.; Bernardo, A.; Tian, B.; Chen, H.; Wang, S.; Ma, H.; Cai, S.; Liu, D.; Zhang, D.; Li, T.; et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 2019, 51, 1099–1105. [Google Scholar] [CrossRef]
- Li, G.; Zhou, J.; Jia, H.; Gao, Z.; Fan, M.; Luo, Y.; Zhao, P.; Xue, S.; Li, N.; Yuan, Y.; et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat. Genet. 2019, 51, 1106–1112. [Google Scholar] [CrossRef]
- Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet. 2020, 133, 1541–1568. [Google Scholar] [CrossRef] [PubMed]
- Rawat, N.; Pumphrey, M.O.; Liu, S.; Zhang, X.; Tiwari, V.K.; Ando, K.; Trick, H.N.; Bockus, W.W.; Akhunov, E.; Anderson, J.A.; et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet. 2016, 48, 1576–1580. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Li, G.; Zhang, K.; Zheng, H.; Yang, J.; Yan, K.; Shi, K.; Su, Z.; Chen, F.; Wang, D.; et al. Analysis of Fhb1 gene and resistance to Fusarium head blight in 3,177 diverse wheat accessions. J. Cereal Sci. 2022, 104, 103387. [Google Scholar] [CrossRef]
- Ali, N.; Rahman, I.U.; Badakshi, F.; Tariq, M.J.; Mujeeb-Kazi, A. Ensuring sustainable food security: Exploiting alien genetic diversity in wheat breeding for adaptation to emerging stresses. In Climate Change and Food Security with Emphasis on Wheat; Academi Press: Cambridge, MA, USA, 2020; pp. 31–42. [Google Scholar]
- Fu, S.; Lv, Z.; Qi, B.; Guo, X.; Li, J.; Liu, B.; Han, F. Molecular cytogenetic characterization of wheat–Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium head blight. J. Genet. Genom. 2012, 39, 103–110. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y.; Ni, F.; Li, X.; Wang, H.; Bao, Y. Characterization of Two Wheat-Thinopyrum ponticum Introgression Lines With Pyramiding Resistance to Powdery Mildew. Front. Plant Sci. 2022, 13, 943669. [Google Scholar] [CrossRef]
- Shen, X.; Ohm, H. Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol. Breed. 2007, 20, 131–140. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X.; Hao, Y.; Cai, J.; Ohm, H.W.; Kong, L. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor. Appl. Genet. 2011, 122, 263–270. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Ge, W.; Zhao, L.; Hou, B.; Wang, K.; Lyu, Z.; Chen, L.; Xu, S.; Kong, L. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, 368, eaba5435. [Google Scholar] [CrossRef]
- Gill, B.S.; Friebe, B.R.; White, F.F. Alien introgressions represent a rich source of genes for crop improvement. Proc. Natl. Acad. Sci. USA 2011, 108, 7657–7658. [Google Scholar] [CrossRef]
- Balut, A.L.; Clark, A.J.; Brown-Guedira, G.; Souza, E.; Van Sanford, D.A. Validation of Fhb1 and QFhs. nau-2DL in several soft red winter wheat populations. Crop Sci. 2013, 53, 934–945. [Google Scholar] [CrossRef]
- Ceoloni, C.; Forte, P.; Kuzmanović, L.; Tundo, S.; Moscetti, I.; De Vita, P.; Virili, M.; D’ovidio, R. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor. Appl. Genet. 2017, 130, 2005–2024. [Google Scholar] [CrossRef]
- Gou, L.; Hattori, J.; Fedak, G.; Balcerzak, M.; Sharpe, A.; Visendi, P.; Edwards, D.; Tinker, N.; Wei, Y.-M.; Chen, G.-Y.; et al. Development and validation of Thinopyrum elongatum–expressed molecular markers specific for the long arm of chromosome 7E. Crop Sci. 2016, 56, 354–364. [Google Scholar] [CrossRef]
- Forte, P.; Virili, M.E.; Kuzmanović, L.; Moscetti, I.; Gennaro, A.; D’Ovidio, R.; Ceoloni, C. A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: Pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. Mol. Breed. 2014, 34, 1701–1716. [Google Scholar] [CrossRef]
- Guo, X.; Wang, M.; Kang, H.; Zhou, Y.; Han, F. Distribution, polymorphism and function characteristics of the GST-encoding Fhb7 in Triticeae. Plants 2022, 11, 2074. [Google Scholar] [CrossRef]
- Sarma, D.; Knott, D.R. The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 1966, 8, 137–143. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Liu, S.; Yu, L.X.; Singh, R.P.; Jin, Y.; Sorrells, M.E.; Anderson, J.A. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor. Appl. Genet. 2010, 120, 691–697. [Google Scholar] [CrossRef]
- Kong, L.; Anderson, J.M.; Ohm, H.W. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker. Plant Breed. 2009, 128, 591–597. [Google Scholar] [CrossRef]
- Gaire, R.; Ohm, H.; Brown-Guedira, G.; Mohammadi, M. Identification of regions under selection and loci controlling agronomic traits in a soft red winter wheat population. Plant Genome 2020, 13, e20031. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Woods, S. Strategies and considerations for multi-location FHB screening nurseries. In The Global Fusarium Initiative for International Collaboration: A Strategic Planning Workshop; CIMMYT: El Batàn, Mexico, 2006; pp. 93–102. [Google Scholar]
- Fuentes, R.G.; Mickelson, H.R.; Busch, R.H.; Dill-Macky, R.; Evans, C.K.; Thompson, W.G.; Wiersma, J.V.; Xie, W.; Dong, Y.; Anderson, J.A. Resource allocation and cultivar stability in breeding for Fusarium head blight resistance in spring wheat. Crop Sci. 2005, 45, 1965–1972. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 4 December 2022).
- Bariana, H.S.; Brown, G.N.; Bansal, U.K.; Miah, H.; Standen, G.E.; Lu, M. Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aust. J. Agric. Res. 2007, 58, 576–587. [Google Scholar] [CrossRef]
- USDA-ERS. Wheat Outlook: October 2022. Available online: https://www.ers.usda.gov/webdocs/outlooks/104961/whs-22j.pdf?v=476.4 (accessed on 15 January 2023).
- Bianchini, A.; Horsley, R.; Jack, M.M.; Kobielush, B.; Ryu, D.; Tittlemier, S.; Wilson, W.W.; Abbas, H.K.; Abel, S.; Harrison, G.; et al. DON occurrence in grains: A North American perspective. Cereal Foods World 2015, 60, 32–56. [Google Scholar] [CrossRef]
- Wilson, W.; Dahl, B.; Nganje, W. Economic costs of Fusarium Head Blight, scab and deoxynivalenol. World Mycotoxin J. 2018, 11, 291–302. [Google Scholar] [CrossRef]
- Gaire, R.; Sneller, C.; Brown-Guedira, G.; Van Sanford, D.; Mohammadi, M.; Kolb, F.L.; Olson, E.; Sorrells, M.; Rutkoski, J. Genetic Trends in Fusarium Head Blight Resistance from 20 Years of Winter Wheat Breeding and Cooperative Testing in the Northern USA. Plant Dis. 2022, 106, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Rutkoski, J.E. Estimation of realized rates of genetic gain and indicators for breeding program assessment. Crop Sci. 2019, 59, 981–993. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, X. Alien introgression and breeding of synthetic wheat. In Advances in Breeding Techniques for Cereal Crops; Burleigh Dodds Science Publishing: Cambridgeshire, UK, 2019; pp. 3–54. [Google Scholar]
- Zhang, W.; Danilova, T.; Zhang, M.; Ren, S.; Zhu, X.; Zhang, Q.; Zhong, S.; Dykes, L.; Fiedler, J.; Xu, S.; et al. Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome. Theor. Appl. Genet. 2022, 135, 4409–4419. [Google Scholar] [CrossRef]
- Anderson, J.A.; Glover, K.; Mergoum, M. Successful adoption of spring wheat cultivars with moderate resistance to FHB by growers in the North Central Region. In Proceedings of the 2011 National Fusarium Head Blight Forum, USWBSI, St. Paul, MA, USA, 4–6 December 2011. [Google Scholar]
- Bai, G.; Shaner, G. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 2004, 42, 135–161. [Google Scholar] [CrossRef]
- Sears, E.R. Genetics society of canada award of excellence lecture an induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 1977, 19, 585–593. [Google Scholar] [CrossRef]
- Dvorak, J.; Knott, D.R. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can. J. Genet. Cytol. 1974, 16, 399–417. [Google Scholar] [CrossRef]
- Dvořák, J. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can. J. Genet. Cytol. 1980, 22, 237–259. [Google Scholar] [CrossRef]
- Roberts, M.A.; Reader, S.M.; Dalgliesh, C.; Miller, T.E.; Foote, T.N.; Fish, L.J.; Snape, J.W.; Moore, G. Induction and characterization of Ph1 wheat mutants. Genetics 1999, 153, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Jin, S.; Zhang, D.; Bai, G. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor. Appl. Genet. 2018, 131, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- Jarošová, J.; Beoni, E.; Kundu, J.K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crops Res. 2016, 198, 200–214. [Google Scholar] [CrossRef]
- McKirdy, S.J.; Jones, R.A.C.; Nutter, F.W., Jr. Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Dis. 2002, 86, 769–773. [Google Scholar] [CrossRef]
- Perry, K.L.; Kolb, F.L.; Sammons, B.; Lawson, C.; Cisar, G.; Ohm, H. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology 2000, 90, 1043–1048. [Google Scholar] [CrossRef]
- Walls, J., III; Rajotte, E.; Rosa, C. The past, present, and future of barley yellow dwarf management. Agriculture 2019, 9, 23. [Google Scholar] [CrossRef]
- Larkin, P.J.; Kleven, S.; Banks, P.M. Utilizing Bdv2, the Thinopyrum intermedium source of BYDV resistance, to develop wheat cultivars. Barley Yellow Dwarf Dis. Recent Adv. Future Strateg. 2002, 60–63. Available online: https://books.google.co.uk/books?hl=zh-CN&lr=&id=-CDnnbNKvCMC&oi=fnd&pg=PA60&ots=M-zigfWJOf&sig=RqeSJl5RPtr_hiL1JloaChrv9M4#v=onepage&q&f=false (accessed on 15 January 2023).
Locus | Marker Name | Primers (5’-3’) | Expected Amplicon Size | Ta (°C) | Extension Time | Reference |
---|---|---|---|---|---|---|
Fhb7 | GST | F-CACCTCCACCCCAATCATCT | 822 bp | 56 | 1 min | This study |
R-ACCTCGGCATACTTGTCCAG | ||||||
Fhb1 | TaHRC_R | F-TTGCTGGGGAGAGGAAGAAA | 892 bp | 56 | 1 min | This study |
R-TTCAGCAGAGTTCGCACGAT | ||||||
Fhb1 | TaHRC_S | F-GGTAGGATCTGAATGCTTAG | 1132 bp | 50 | 1 min 20 s | This study |
R-GATCATGATGGTGATGGTG | ||||||
BYD | Bdv3 | F-CTTAACTTCATTGTTGATCTTA | 164/206/288 bp | 52 | 30 s | [42] |
R-CGACGAATTCCCAGCTAAACTAGACT | ||||||
Sr25 | BF145935 | F-CTTCACCTCCAAGGAGTTCCAC | 198 bp | 54 | 30 s | [41] |
R-GCGTACCTGATCACCACCTTGAAGG |
Line ID | Fhb1 | Fhb7 | Bdv3 | Sr25 | Yield (tons/ha) | SEV% | DON (ppm) |
---|---|---|---|---|---|---|---|
PU10535-1 | + | + | + | + | 4.16 ± 0.57 ab | 39.15 ± 6.11 ab | 3.75 ± 1.67 bc |
PU10461-1 | + | + | + | + | 3.21 ± 0.88 ab | 34.99 ± 0.97 ab | 4.28 ± 0.84 bc |
PU10534-1 | + | + | + | + | 4.22 ± 0.31 ab | 26.06 ± 4.96 ab | 2.84 ± 1.21 c |
PU10535-2 | + | + | + | + | 5.28 ± 0.39 a | 52.98 ± 1.55 ab | 1.92 ± 0.35 c |
PU10534-2 | + | + | + | + | 3.79 ± 0.58 ab | 38.79 ± 13.38 ab | 1.04 ± 0.54 c |
PU10642-1 | + | + | + | + | 2.77 ± 0.52 ab | 51.34 ± 0 | 4.6 ± 0 bc |
PU10642-2 | + | + | + | + | 3.37 ± 0.81 ab | 43.79 ± 11.62 ab | 6.32 ± 2.19 bc |
PU10642-3 | + | + | + | + | 2.27 ± 0.19 b | 35.56 ± 0 ab | 4.05 ± 0 c |
PU10548-1 | + | + | + | − | 2.23 ± 0.50 b | 40.51 ± 0.58 ab | 3.31 ± 0.98 bc |
PU10642-4 | − | + | + | + | 3.64 ± 0.82 ab | 38.2 ± 0 ab | 4.29 ± 0 bc |
PU10534-3 | + | + | + | + | 4.12 ± 0.39 ab | 45.37 ± 18.09 ab | 3.29 ± 0.78 bc |
PU10461-2 | + | + | + | + | 2.94 ± 0.66 ab | 33.51 ± 6.45 ab | 7.16 ± 0 abc |
PU10461-3 | + | + | + | − | 3.96 ± 0.30 ab | 27.12 ± 9.4 b | 2.99 ± 1.19 c |
PU10461-4 | + | + | + | + | 5.45 ± 0.45 a | 30.58 ± 0.45 ab | 6.36 ± 2.19 abc |
PU10535-5 | + | + | + | + | 2.23 ± 0.31 b | 45.56 ± 0 ab | 4.89 ± 2.13 bc |
PU99646-7 | + | − | NA | NA | 3.89 ± 0.43 ab | 56.58 ± 3.55 a | 12.78 ± 0.55 a |
PU96134-1 | + | − | NA | NA | 5.62 ± 0.63 a | 63.89 ± 1.89 a | 10.21 ± 2.50 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyawali, B.; Scofield, S.R.; Mohammadi, M. Marker Development and Pyramiding of Fhb1 and Fhb7 for Enhanced Resistance to Fusarium Head Blight in Soft Red Winter Wheat. Crops 2023, 3, 320-332. https://doi.org/10.3390/crops3040028
Gyawali B, Scofield SR, Mohammadi M. Marker Development and Pyramiding of Fhb1 and Fhb7 for Enhanced Resistance to Fusarium Head Blight in Soft Red Winter Wheat. Crops. 2023; 3(4):320-332. https://doi.org/10.3390/crops3040028
Chicago/Turabian StyleGyawali, Binod, Steven R. Scofield, and Mohsen Mohammadi. 2023. "Marker Development and Pyramiding of Fhb1 and Fhb7 for Enhanced Resistance to Fusarium Head Blight in Soft Red Winter Wheat" Crops 3, no. 4: 320-332. https://doi.org/10.3390/crops3040028
APA StyleGyawali, B., Scofield, S. R., & Mohammadi, M. (2023). Marker Development and Pyramiding of Fhb1 and Fhb7 for Enhanced Resistance to Fusarium Head Blight in Soft Red Winter Wheat. Crops, 3(4), 320-332. https://doi.org/10.3390/crops3040028