Identification of High-Yielding Soybean Lines with Exceptional Seed Composition Qualities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Development and Line Selection
2.2. Experimental Design
2.3. Statistical Analysis
3. Results and Discussion
3.1. Phenotypic Correlations
3.2. Yield Contrasts
3.3. Genotypes with Comparable Yield and Superior Protein
3.4. Genotypes with Comparable Seed Yield and Seed Oil and Superior Seed Protein Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burton, J. Quantitative Genetics: Results Relevant to Soybean Breeding. In Soybeans: Improvement, Production, and Uses, 2nd ed.; Wilcox, J.R., Ed.; ASA: Madison, WI, USA; CSSA: Madison, WI, USA; SSSA: Madison, WI, USA, 1987; pp. 211–247. [Google Scholar]
- Chaudhary, J.; Patil, G.B.; Sonah, H.; Deshmukh, R.K.; Vuong, T.D.; Valliyodan, B.; Nguyen, H.T. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits. Front. Plant Sci. 2015, 6, 1021. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, E.E.; Hinson, K. Association between Chemical Composition of Seed and Seed Yield of Soybeans 1. Crop Sci. 1972, 12, 829–830. [Google Scholar] [CrossRef]
- Singh, B.; Singh, A.K. Marker-Assisted Plant Breeding: Principles and Practices; Springer: New Delhi, India, 2015. [Google Scholar]
- Brummer, E.C.; Graef, G.L.; Orf, J.; Wilcox, J.R.; Shoemaker, R.C. Mapping QTL for Seed Protein and Oil Content in Eight Soybean Populations. Crop Sci. 1997, 37, 370–378. [Google Scholar] [CrossRef]
- Lande, R.; Thompson, R. Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. Genetics 1990, 124, 743–756. [Google Scholar] [CrossRef]
- Rossi, M.E.; Orf, J.H.; Liu, L.J.; Dong, Z.M.; Rajcan, I. Genetic Basis of Soybean Adaptation to North American vs. Asian Mega-Environments in Two Independent Populations from Canadian x Chinese Crosses. Theor. Appl. Genet. 2013, 126, 1809–1823. [Google Scholar] [CrossRef]
- Wang, X.Z.; Jiang, G.L.; Green, M.; Scott, R.A.; Song, Q.J.; Hyten, D.L.; Cregan, P.B. Identification and Validation of Quantitative Trait Loci for Seed Yield, Oil and Protein Contents in Two Recombinant Inbred Line Populations of Soybean. Mol. Genet. Genom. 2014, 289, 935–949. [Google Scholar] [CrossRef]
- Pathan, S.M.; Vuong, T.; Clark, K.; Lee, J.-D.; Shannon, J.G.; Roberts, C.A.; Ellersieck, M.R.; Burton, J.W.; Cregan, P.B.; Hyten, D.L.; et al. Genetic Mapping and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Contents and Seed Weight in Soybean. Crop Sci. 2013, 53, 765. [Google Scholar] [CrossRef]
- Li, D.M.; Sun, M.M.; Han, Y.P.; Teng, W.L.; Li, W.B. Identification of QTL Underlying Soluble Pigment Content in Soybean Stems Related to Resistance to Soybean White Mold (Sclerotinia sclerotiorum). Euphytica 2010, 172, 49–57. [Google Scholar] [CrossRef]
- Palomeque, L.; Liu, L.J.; Li, W.B.; Hedges, B.; Cober, E.R.; Rajcan, I. QTL in Mega-Environments: II. Agronomic Trait QTL Co-Localized with Seed Yield QTL Detected in a Population Derived from a Cross of High-Yielding Adapted x High-Yielding Exotic Soybean Lines. Theor. Appl. Genet. 2009, 119, 429–436. [Google Scholar] [CrossRef]
- Gai, J.; Wang, Y.; Wu, X.; Chen, S. A Comparative Study on Segregation Analysis and QTL Mapping of Quantitative Traits in Plants—With a Case in Soybean. Front. Agric. China 2007, 1, 1–7. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Z.; Liu, C.; Xin, D.; Qiu, H.; Shan, D.; Shan, C.; Hu, G. QTL Analysis of Major Agronomic Traits in Soybean. Agric. Sci. China 2007, 6, 399–405. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Liu, M.F.; He, J.B.; Wang, Y.F.; Xing, G.N.; Li, Y.; Yang, S.P.; Zhao, T.J.; Gai, J.Y. Marker-Assisted Breeding for Transgressive Seed Protein Content in Soybean Glycine Max (L.) Merr. Theor. Appl. Genet. 2015, 128, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, P.; Wang, D.; Shannon, G.; Zeng, A.; Orazaly, M.; Wu, C. Identification and Mapping of Stable QTL for Protein Content in Soybean Seeds. Mol. Breed. 2015, 35, 10. [Google Scholar] [CrossRef]
- Cunicelli, M.J.; Bhandari, H.S.; Chen, P.; Sams, C.E.; Mian, M.R.; Mozzoni, L.A.; Smallwood, C.J.; Pantalone, V.R. Effect of a Mutant Danbaekkong Allele on Soybean Seed Yield, Protein, and Oil Concentration. J. Am. Oil Chem. Soc. 2019, 96, 927–935. [Google Scholar] [CrossRef]
- Patil, G.; Mian, R.; Vuong, T.; Pantalone, V.; Song, Q.; Chen, P.; Shannon, G.J.; Carter, T.C.; Nguyen, H.T. Molecular Mapping and Genomics of Soybean Seed Protein: A Review and Perspective for the Future. Theor. Appl. Genet. 2017, 130, 1975–1991. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Bhaskar, P.B.; Sriram, S.; Wang, P.H. Integration of Omics Approaches to Understand Oil/Protein Content during Seed Development in Oilseed Crops. Plant Cell Rep. 2017, 36, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Sun, L.; Jiang, S.; Ren, H.; Sun, R.; Wei, Z.; Hong, H.; Luan, X.; Wang, J.; Wang, X.; et al. Soybean Genetic Resources Contributing to Sustainable Protein Production. Theor. Appl. Genet. 2022, 135, 4095–4121. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ishibashi, T.; Dombek, D.; Rupe, J. Registration of R05-1415 and R05-1772 High-Protein Soybean Germplasm Lines. J. Plant Regist. 2011, 5, 410–413. [Google Scholar] [CrossRef]
- Panthee, D.; Pantalone, V. Registration of Soybean Germplasm Lines TN03-350 and TN04-5321 with Improved Protein Concentration and Quality. Crop Sci. 2006, 46, 2328. [Google Scholar] [CrossRef]
- Mian, M.R.; McHale, L.; Li, Z.; Dorrance, A.E. Registration of ‘Highpro1′ Soybean with High Protein and High Yield Developed from a North× South Cross. J. Plant Regist. 2017, 11, 51–54. [Google Scholar] [CrossRef]
- Carter Jr, T.; Rzewnicki, P.; Burton, J.; Villagarcia, M.; Bowman, D.; Taliercio, E.; Kwanyuen, P. Registration of N6202 Soybean Germplasm with High Protein, Favorable Yield Potential, Large Seed, and Diverse Pedigree. J. Plant Regist. 2010, 4, 73–79. [Google Scholar] [CrossRef]
- Boerma, H.; Hussey, R.; Phillips, D.; Wood, E.; Rowan, G.; Finnerty, S. Registration of ‘Benning’ soybean. Crop Sci. 1997, 37, 1982. [Google Scholar] [CrossRef]
- Kim, S.; Hong, E.; Kim, Y.; Lee, S.; Park, K.; Kim, H.; Ryu, Y.; Park, R.; Kim, Y.; Seong, Y.; et al. A New High Protein and Good Seed Quality Soybean Variety “Danbaegkong”. RDA J. Agric. Sci. Upl. Ind. Crops 1996, 38, 228–232. [Google Scholar]
- Shipe, E.; Mueller, J.; Lewis, S.; Williams, P.; Stephens, R. Registration of ‘Santee’ Soybean. Crop Sci. 2003, 43, 2305–2306. [Google Scholar] [CrossRef]
- Burton, J.W.; Carter, T.; Huie, E. Registration of ‘Holladay’ Soybean. Crop Sci. 1996, 36, 467. [Google Scholar] [CrossRef]
- Boerma, H.; Hussey, R.; Phillips, D.; Wood, E.; Rowan, G.; Finnerty, S. Registration of ‘Boggs’ Soybean. Crop Sci. 2000, 40, 294–295. [Google Scholar] [CrossRef]
- Boerma, H.; Hussey, R.; Phillips, D.; Wood, E.; Finnerty, S. Registration of ‘Doles’ Soybean. Crop Sci. 1994, 34, 1411–1412. [Google Scholar] [CrossRef]
- Fehr, I. Ch. 7. In Soybeans: Improvement, Production and Uses, 2nd ed.; Wilcox, J.R., Ed.; American Society of Agronomy: Madison, WI, USA, 1987; pp. 249–293. [Google Scholar]
- Perten Instruments AB. DA 7250 Installation and Operation Manual. Perten Instrum. AB Hagersten Swed. 2016, 4, Y2. [Google Scholar]
- Chen, P.; Sneller, C.; Mozzoni, L.; Rupe, J. Registration of ‘Osage’ Soybean. J. Plant Regist. 2007, 1, 89–92. [Google Scholar] [CrossRef]
- Burton, J.; Carter, T. Registration of ‘NC-Roy’ Soybean. Crop Sci. 2005, 45, 2654. [Google Scholar] [CrossRef]
- Burton, J.; Carter Jr, T.; Fountain, M.; Bowman, D. Registration of’NC-Raleigh’ soybean. Crop Sci. 2006, 46, 2710. [Google Scholar] [CrossRef]
- Olivoto, T.; Lucio, A. Metan: An R Package for Multi-Environment Trial Analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.4. 3.01. 2019. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 4 December 2023).
- Pantalone, V.; Smallwood, C. Registration of “TN11-5102” Soybean Cultivar with High Yield and High Protein Meal. J. Plant Regist. 2018, 12, 304–308. [Google Scholar] [CrossRef]
- Smallwood, C.; Fallen, B.; Pantalone, V. Registration of ‘TN11-5140′ Soybean Cultivar. J. Plant Regist. 2018, 12, 203–207. [Google Scholar] [CrossRef]
Yield e | Protein f | Meal Protein g | Flower Color h | Pubescence i | Maturity Group j | |||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype a | Test b Name b | Value c | Rank d | Value | Rank | Value | Rank | |||
N18-1620 | Test 1 | 3763.47 (108.1%) | 1 | 42.91 (105.9%) | 16 | 50.13 (104.9%) | 16 | P | T | Early VI |
N18-1632-2 | 3685.3 (105.9%) | 3 | 46.11 (113.8%) | 7 | 53.48 (111.9%) | 6 | W | T | ||
N18-1682 | 3643.81 (104.7%) | 4 | 44.67 (110.2%) | 11 | 51.87 (108.6%) | 11 | W | T | ||
N18-1632-1 | 3610.87 (103.8%) | 6 | 46.45 (114.6%) | 5 | 53.75 (112.5%) | 4 | W | T | ||
N18-1595 | 3529.96 (101.4%) | 8 | 46.99 (116%) | 4 | 53.68 (112.3%) | 5 | P | T | ||
N18-1635 | 3459.3 (99.4%) | 9 | 43.29 (106.8%) | 15 | 50.63 (106%) | 15 | W | T | ||
N18-1751 | 3457.84 (99.4%) | 10 | 44.36 (109.5%) | 12 | 51.16 (107.1%) | 13 | P | T | ||
N18-1674 | 3432.93 (98.6%) | 11 | 44.69 (110.3%) | 10 | 52.04 (108.9%) | 10 | W | T | ||
N18-1731 | 3377.4 (97%) | 12 | 45.71 (112.8%) | 8 | 52.72 (110.3%) | 8 | W | T | ||
N18-1641 | 3366.77 (96.7%) | 13 | 42.89 (105.8%) | 17 | 49.99 (104.6%) | 17 | P | T | ||
N18-1572 | 3179.97 (91.4%) | 14 | 44.93 (110.9%) | 9 | 52.3 (109.5%) | 9 | P | T | ||
N09-09 | 3161.61 (90.8%) | 15 | 46.21 (114%) | 6 | 52.82 (110.5%) | 7 | P | G | ||
N18-1855 | 3155.4 (90.7%) | 16 | 47.14 (116.3%) | 2 | 54.47 (114%) | 2 | P | T | ||
N18-1763 | 3152.16 (90.6%) | 17 | 47.06 (116.1%) | 3 | 53.89 (112.8%) | 3 | P | T | ||
LMN09-119 | 3098.26 (89%) | 18 | 50.62 (124.9%) | 1 | 57.07 (119.4%) | 1 | P | T | ||
N18-1586 | Test 2 | 3530.02 (108.7%) | 5 | 45.6 (107.6%) | 10 | 52.7 (106.8%) | 9 | P | T | |
N18-1627 | 3519.42 (108.3%) | 6 | 45.59 (107.6%) | 11 | 52.65 (106.7%) | 10 | P | T | ||
N18-1761 | 3456.31 (106.4%) | 9 | 49.03 (115.7%) | 2 | 55.98 (113.5%) | 2 | P | T | ||
N09-09 | 3349.65 (103.1%) | 11 | 45.72 (107.9%) | 9 | 52.48 (106.4%) | 11 | P | G | ||
N18-1659 | 3260.67 (100.4%) | 13 | 47.67 (112.5%) | 6 | 54.66 (110.8%) | 6 | P | T | ||
N18-1575 | 3091.25 (95.2%) | 15 | 48.21 (113.8%) | 4 | 55.63 (112.7%) | 3 | W | T | ||
N18-1769 | 2984.8 (91.9%) | 17 | 48.17 (113.7%) | 5 | 55.15 (111.8%) | 5 | W | T | ||
N18-1783 | 2775.59 (85.4%) | 19 | 46.33 (109.3%) | 8 | 53.61 (108.7%) | 8 | P | T |
Yield e | Protein f | Oil g | Meal Protein h | Flower Color i | Pubescence j | Maturity Group k | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype a | Test b | Value c | Rank d | Value | Rank | Value | Rank | Value | Rank | |||
N18-1620 | Test 1 | 3763.47 (108.1%) | 1 | 42.91 (105.9%) | 16 | 21.92 (96.3%) | 5 | 50.13 (104.9%) | 16 | P | T | Early VI |
N18-1635 | 3459.3 (99.4%) | 9 | 43.29 (106.8%) | 15 | 22.03 (96.8%) | 3 | 50.63 (106%) | 15 | W | T | ||
N18-1586 | Test 2 | 3530.02 (108.7%) | 5 | 45.6 (107.6%) | 10 | 20.9 (96.7%) | 10 | 52.7 (106.8%) | 9 | W | T | |
N18-1627 | 3519.42 (108.3%) | 6 | 45.59 (107.6%) | 11 | 20.86 (96.5%) | 11 | 52.65 (106.7%) | 10 | P | T |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillenwater, J.; Mian, R.; Cunicelli, M.; McNeece, B.; Taliercio, E. Identification of High-Yielding Soybean Lines with Exceptional Seed Composition Qualities. Crops 2023, 3, 333-342. https://doi.org/10.3390/crops3040029
Gillenwater J, Mian R, Cunicelli M, McNeece B, Taliercio E. Identification of High-Yielding Soybean Lines with Exceptional Seed Composition Qualities. Crops. 2023; 3(4):333-342. https://doi.org/10.3390/crops3040029
Chicago/Turabian StyleGillenwater, Jay, Rouf Mian, Mia Cunicelli, Brant McNeece, and Earl Taliercio. 2023. "Identification of High-Yielding Soybean Lines with Exceptional Seed Composition Qualities" Crops 3, no. 4: 333-342. https://doi.org/10.3390/crops3040029
APA StyleGillenwater, J., Mian, R., Cunicelli, M., McNeece, B., & Taliercio, E. (2023). Identification of High-Yielding Soybean Lines with Exceptional Seed Composition Qualities. Crops, 3(4), 333-342. https://doi.org/10.3390/crops3040029