Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Yield Response Curves
3.2. Algorithm Evaluation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zebarth, B.J.; Drury, C.F.; Tremblay, N.; Cambouris, A.N. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- Bhogal, A.; Hatch, D.; Shepherd, M.; Jarvis, S. Comparison of methodologies for field measurement of net nitrogen mineralisation in arable soils. Plant Soil 1999, 207, 15–28. [Google Scholar] [CrossRef]
- Sierra, J. Nitrogen mineralisation and its error of estimation under field conditions related to the light-fraction soil organic matter. Soil Res. 1996, 34, 755–767. [Google Scholar] [CrossRef]
- Tao, H.; Morris, T.F.; Kyveryga, P.; McGuire, J. Factors affecting nitrogen availability and variability in cornfields. Agron. J. 2018, 110, 1974–1986. [Google Scholar] [CrossRef]
- Lawrence, H.; Yule, I. Estimation of the in-field variation in fertiliser application. N. Z. J. Agric. Res. 2007, 50, 25–32. [Google Scholar] [CrossRef]
- Baxter, S.; Oliver, M.; Gaunt, J. A geostatistical analysis of the spatial variation of soil mineral nitrogen and potentially available nitrogen within an arable field. Precis. Agric. 2003, 4, 213–226. [Google Scholar] [CrossRef]
- Herrera, J.M.; Rubio, G.; Häner, L.L.; Delgado, J.A.; Lucho-Constantino, C.A.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6, 25. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Børgesen, C.D.; Pullens, J.W.; Zhao, J.; Blicher-Mathiesen, G.; Sørensen, P.; Olesen, J.E. NLES5—An empirical model for estimating nitrate leaching from the root zone of agricultural land. Eur. J. Agron. 2022, 134, 126465. [Google Scholar] [CrossRef]
- Ascott, M.J.; Gooddy, D.C.; Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Binley, A.M. Glob Patterns Nitrate Storage Vadose Zone. Nat. Commun. 2017, 8, 1416. [Google Scholar] [CrossRef]
- Rashid, M.A.; Bruun, S.; Styczen, M.E.; Ørum, J.E.; Borgen, S.K.; Thomsen, I.K.; Jensen, L.S. Scenario analysis using the Daisy model to assess and mitigate nitrate leaching from complex agro-environmental settings in Denmark. Sci. Total Environ. 2022, 816, 151518. [Google Scholar] [CrossRef]
- Zhao, J.; Pullens, J.W.; Sørensen, P.; Blicher-Mathiesen, G.; Olesen, J.E.; Børgesen, C.D. Agronomic and environmental factors influencing the marginal increase in nitrate leaching by adding extra mineral nitrogen fertilizer. Agric. Ecosyst. Environ. 2022, 327, 107808. [Google Scholar] [CrossRef]
- Styczen, M.E.; Abrahamsen, P.; Hansen, S.; Knudsen, L. Analysis of the significant drop in protein content in Danish grain crops from 1990-2015 based on N-response in fertilizer trials. Eur. J. Agron. 2020, 115, 126013. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Dresbøll, D.B.; Thorup-Kristensen, K. Winter wheat cultivars and nitrogen (N) fertilization—Effects on root growth, N uptake efficiency and N use efficiency. Eur. J. Agron. 2015, 68, 38–49. [Google Scholar] [CrossRef]
- Eriksen, J.; Askegaard, M.; Rasmussen, J.; Søegaard, K. Nitrate leaching and residual effect in dairy crop rotations with grass-clover leys as influenced by sward age, grazing, cutting and fertilizer regimes. Agric. Ecosyst. Environ. 2015, 212, 75–84. [Google Scholar] [CrossRef]
- Khaembah, E.N.; Cichota, R.; Vogeler, I. Simulation of management strategies to mitigate nitrogen losses from crop rotations in Southland, New Zealand. J. Sci. Food Agric. 2021, 101, 4241–4249. [Google Scholar] [CrossRef]
- Van Es, H.; Kay, B.D.; Melkonian, J.J.; Sogbedji, J.M. Nitrogen management for maize in humid regions: Case for a dynamic modeling approach. In Managing Crop Nitrogen for Weather, Proceedings of the Symposium “Integrating Weather Variability into Nitrogen Recommendations”, Norcross, GA, USA; Citeseer: Indianapolis, IN, USA, 12–16 November 2006. [Google Scholar]
- Lemaire, G.; Gastal, F. N uptake and distribution in plant canopies. In Diagnosis of the Nitrogen Status in Crops; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–43. [Google Scholar]
- Piikki, K.; Söderström, M.; Stadig, H. Remote sensing and on-farm experiments for determining in-season nitrogen rates in winter wheat—Options for implementation, model accuracy and remaining challenges. Field Crops Res. 2022, 289, 108742. [Google Scholar] [CrossRef]
- Schmidhalter, U.; Glas, J.; Heigl, R.; Manhart, R.; Wiesent, S.; Gutser, R.; Neudecker, E. Application and testing of a crop scanning instrument–field experiments with reduced crop width, tall maize plants and monitoring of cereal yield. In Proceedings of the Third European Conference on Precision Agriculture, Montpellier, France, 18–20 June 2001. [Google Scholar]
- Raun, W.R.; Solie, J.B.; Stone, M.L.; Martin, K.L.; Freeman, K.W.; Mullen, R.W.; Zhang, H.; Schepers, J.S.; Johnson, G.V. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2005, 36, 2759–2781. [Google Scholar] [CrossRef]
- Franzen, D.; Kitchen, N.; Holland, K.; Schepers, J.; Raun, W. Algorithms for in-season nutrient management in cereals. Agron. J. 2016, 108, 1775–1781. [Google Scholar] [CrossRef]
- Melkonian, J.; van Es, H.; DeGaetano, A.; Sogbedji, J.; Joseph, L. Application of dynamic simulation modeling for nitrogen management in maize. Manag. Crop Nutr. Weather 2007, 14–22. Available online: https://www.researchgate.net/profile/Jean-Sogbedji-2/publication/275042487_Application_of_dynamic_simulation_modelling_for_nitrogen_management_in_maize/links/555252d208ae6943a86d71d8/Application-of-dynamic-simulation-modelling-for-nitrogen-management-in-maize.pdf (accessed on 25 June 2023).
- Kersebaum, K.; Lorenz, K.; Reuter, H.; Schwarz, J.; Wegehenkel, M.; Wendroth, O. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Phys. Chem. Earth Parts A/B/C 2005, 30, 59–67. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Thompson, L.; Ferguson, R.B.; Kitchen, N.; Frazen, D.W.; Mamo, M.; Yang, H.; Schepers, J.S. Model and sensor-based recommendation approaches for in-season nitrogen management in corn. Agron. J. 2015, 107, 2020–2030. [Google Scholar] [CrossRef]
- Cichota, R.; Vogeler, I.; Werner, A.; Wigley, K.; Paton, B. Performance of a fertiliser management algorithm to balance yield and nitrogen losses in dairy systems. Agric. Syst. 2018, 162, 56–65. [Google Scholar] [CrossRef]
- Kumar, U.; Hansen, E.M.; Thomsen, I.K.; Vogeler, I. Performance of APSIM to Simulate the Dynamics of Winter Wheat Growth, Phenology, and Nitrogen Uptake from Early Growth Stages to Maturity in Northern Europe. Plants 2023, 12, 986. [Google Scholar] [CrossRef] [PubMed]
- Langaard, M.K.; Jensen, R. Multispektrale Billeder Og Kvælstofoptagelse; Fødevarer, L., Ed. 2020. Available online: https://lf.dk/ (accessed on 23 August 2023).
- Lancashire, P.D.; Bleiholder, H.; Van Den Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Vogeler, I.; Cichota, R. Development of an algorithm for relating pasture nitrogen status to yield response curves. Grass Forage Sci. 2017, 72, 734–742. [Google Scholar] [CrossRef]
- Kindred, D.; Sylvester-Bradley, R.; Milne, A.E.; Marchant, B.; Hatley, D.; Kendall, S.L.; Clarke, S.; Storer, K.; Berry, P.M. Spatial variation in nitrogen requirements of cereals, and their interpretation. Adv. Anim. Biosci. 2017, 8, 303–307. [Google Scholar] [CrossRef]
- Bachmaier, M.; Gandorfer, M. Estimating Uncertainty of Economically Optimum N Fertilizer Rates. Int. J. Agron. 2012, 2012, 580294. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Zak, D.; Kronvang, B.; Kjaergaard, C.; Carstensen, M.V.; Audet, J. An overview of nutrient transport mitigation measures for improvement of water quality in Denmark. Ecol. Eng. 2020, 155, 105863. [Google Scholar] [CrossRef]
Fertilisation Scheme | Nr BBCH23 | Nr BBCH30 | Nr BBCH32 | Nr BBCH37 |
---|---|---|---|---|
Algorithm 1 | 50 | 0–250 | - | - |
Algorithm 2 | 50 | - | 0–250 | - |
Algorithm 3 | 50 | - | - | 0–250 |
Algorithm 4 | 50 | 50 | 0–250 | - |
Algorithm 5 | 50 | 100 | - | 0–250 |
Fertilisation Scheme | Nr BBCH23 | Nr BBCH30 | Nr BBCH32 | Nr BBCH37 |
---|---|---|---|---|
Standard | 50 | 150 | ||
Algorithm 1 | 50 | Algorithm 1 | - | - |
Algorithm 2 | 50 | - | Algorithm 2 | - |
Algorithm 3 | 50 | - | - | Algorithm 3 |
Algorithm 4 | 50 | 50 | Algorithm 4 | - |
Algorithm 5 | 50 | 100 | - | Algorithm 5 |
Fertilisation Scheme | BBCH | Nr BBCH30 | Nr BBCH32 | Nr BBCH37 | Ymax | a | b | c | d |
---|---|---|---|---|---|---|---|---|---|
Algorithm 1 | 30 | 0–250 | - | - | 9400 | 3849 | 49.6 | −1.0 × 10−3 | −1.9 × 10−4 |
Algorithm 2 | 32 | - | 0–250 | - | 9400 | 3367 | 48.1 | −1.6 × 10−3 | −1.9 × 10−4 |
Algorithm 3 | 37 | - | - | 0–250 | 9397 | 3000 | 44.1 | −2.2 × 10−3 | −1.8 × 10−4 |
Algorithm 4 | 32 | 50 | 0–250 | - | 9402 | 3000 | 55.7 | −1.5 × 10−3 | −2.2 × 10−4 |
Algorithm 5 | 37 | 100 | - | 0–250 | 9330 | 3031 | 42.4 | −1.2 × 10−2 | −2.7 × 10−4 |
Fertilisation Scheme | Nmin | Nuptake BBCH30 | Nr | N Uptake | Yield | Grain N | N Leaching | Nleach/ kg DM |
---|---|---|---|---|---|---|---|---|
Standard | 25 | 47 | 200 | 165 | 8389 | 135 | 28 | 0.0033 |
Algorithm 1 | 25 | 47 | 250 | 202 | 9345 | 163 | 37 | 0.0039 |
Standard | 50 | 52 | 200 | 173 | 8645 | 141 | 32 | 0.0037 |
Algorithm 1 | 50 | 52 | 250 | 210 | 9311 | 162 | 42 | 0.0045 |
Standard | 75 | 57 | 200 | 181 | 8852 | 149 | 36 | 0.0040 |
Algorithm 1 | 75 | 57 | 249 | 216 | 9265 | 161 | 47 | 0.0051 |
Standard | 100 | 62 | 200 | 189 | 9072 | 156 | 39 | 0.0043 |
Algorithm 1 | 100 | 62 | 225 | 205 | 9241 | 161 | 46 | 0.0050 |
Standard | 140 | 70 | 200 | 202 | 9237 | 161 | 47 | 0.0051 |
Algorithm 1 | 140 | 70 | 189 | 195 | 9199 | 160 | 43 | 0.0047 |
Nmin | Fert Scheme | Nuptake (BBCH) | Nr | N Uptake | Yield | Grain N | N Leach | N Leach/kg DM | Diff N Leach/kg DM |
---|---|---|---|---|---|---|---|---|---|
25 | standard | 47 (30) | 200 | 165 | 8389 | 135 | 28 | 0.0033 | |
25 | Alg 1 | 47 (30) | 250 | 202 | 9345 | 163 | 37 | 0.0039 | 17% |
25 | Alg 2 | 49 (32) | 250 | 203 | 9177 | 166 | 40 | 0.0044 | 32% |
25 | Alg 3 | 52 (37) | 250 | 215 | 8264 | 141 | 40 | 0.0048 | 45% |
25 | Alg 4 | 66 (32) | 234 | 190 | 9214 | 159 | 34 | 0.0037 | 11% |
25 | Alg 5 | 113 (37) | 218 | 178 | 8831 | 148 | 30 | 0.0034 | 3% |
50 | standard | 52 (30) | 200 | 173 | 8645 | 141 | 32 | 0.0037 | |
50 | Alg 1 | 52 (30) | 250 | 210 | 9312 | 162 | 42 | 0.0045 | 22% |
50 | Alg 2 | 55 (32) | 250 | 209 | 9243 | 164 | 46 | 0.0050 | 36% |
50 | Alg 3 | 60 (37) | 250 | 219 | 8907 | 155 | 46 | 0.0051 | 39% |
50 | Alg 4 | 74 (32) | 207 | 179 | 8825 | 147 | 33 | 0.0037 | 1% |
50 | Alg 5 | 122 (37) | 198 | 172 | 8615 | 141 | 31 | 0.0036 | −2% |
75 | standard | 57 (30) | 200 | 181 | 8852 | 149 | 36 | 0.0040 | |
75 | Alg 1 | 57 (30) | 249 | 216 | 9265 | 161 | 47 | 0.0051 | 27% |
75 | Alg 2 | 62 (32) | 235 | 206 | 9289 | 162 | 47 | 0.0050 | 25% |
75 | Alg 3 | 68 (37) | 247 | 219 | 9255 | 161 | 51 | 0.0055 | 37% |
75 | Alg 4 | 80 (32) | 189 | 176 | 8675 | 144 | 32 | 0.0037 | −8% |
75 | Alg 5 | 128 (37) | 183 | 174 | 8615 | 142 | 30 | 0.0034 | −14% |
100 | standard | 62 (30) | 200 | 189 | 9072 | 156 | 39 | 0.0043 | |
100 | Alg 1 | 62 (30) | 225 | 205 | 9241 | 161 | 46 | 0.0050 | 15% |
100 | Alg 2 | 68 (32) | 206 | 192 | 9244 | 159 | 43 | 0.0047 | 9% |
100 | Alg 3 | 77 (37) | 212 | 202 | 9309 | 161 | 44 | 0.0048 | 11% |
100 | Alg 4 | 85 (32) | 174 | 176 | 8661 | 144 | 30 | 0.0035 | −18% |
100 | Alg 5 | 133 (37) | 170 | 174 | 8587 | 141 | 29 | 0.0034 | −21% |
140 | standard | 70 (30) | 200 | 202 | 9237 | 161 | 47 | 0.0051 | |
140 | Alg 1 | 70 (30) | 189 | 195 | 9199 | 160 | 43 | 0.0047 | −7% |
140 | Alg 2 | 80 (32) | 163 | 180 | 8758 | 147 | 35 | 0.0041 | −20% |
140 | Alg 3 | 92 (37) | 165 | 183 | 8913 | 150 | 36 | 0.0041 | −20% |
140 | Alg 4 | 93 (32) | 149 | 174 | 8574 | 141 | 31 | 0.0036 | −29% |
140 | Alg 5 | 136 (37) | 160 | 179 | 8736 | 146 | 34 | 0.0039 | −23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogeler, I.; Kumar, U.; Knudsen, L.; Hansen, E.M.; Snow, V.; Thomsen, I.K. Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling. Crops 2024, 4, 134-144. https://doi.org/10.3390/crops4020010
Vogeler I, Kumar U, Knudsen L, Hansen EM, Snow V, Thomsen IK. Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling. Crops. 2024; 4(2):134-144. https://doi.org/10.3390/crops4020010
Chicago/Turabian StyleVogeler, Iris, Uttam Kumar, Leif Knudsen, Elly M. Hansen, Val Snow, and Ingrid K. Thomsen. 2024. "Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling" Crops 4, no. 2: 134-144. https://doi.org/10.3390/crops4020010
APA StyleVogeler, I., Kumar, U., Knudsen, L., Hansen, E. M., Snow, V., & Thomsen, I. K. (2024). Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling. Crops, 4(2), 134-144. https://doi.org/10.3390/crops4020010