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Abstract: The production of value-added products from microorganisms, such as single-cell protein
(SCP), through the valorization of agricultural byproducts enhances circular economy while offering
alternative solutions for waste treatment. In this study, SCP was obtained through the biotechno-
logical treatment and valorization of cheese whey, the main byproduct of the dairy industry, for the
development of novel edible films. To the best of the authors’ knowledge, this is the first report
examining SCP as a biopolymer for edible film production. Specifically, Kluyveromyces marxianus,
which has gained QPS and GRAS status, strain EXF-5288 cultivated in deproteinized cheese whey
(DCW) lactose (10.0 g/L) in a 3 L fed-batch bioreactor, resulting in a SCPmax of 2.63 g/L with a
protein content of up to 49.1% w/w. The addition of increased glycerol concentrations (30, 40, and
50% w/w of dry cells) as plasticizers was examined to develop SCP-based edible films. Regarding
physicochemical characterization, increased glycerol concentration significantly increased moisture
content (MC%) and solubility (S%), but there was not a significant difference in other parameters.
Regarding wettability, SCP-based films could be described as oleophilic surfaces since the degree of
oil contact angle (OCA) ranged between 46.7◦ ± 1.3 and 54.0◦ ± 0.5. The proposed holistic approach
could contribute to the development of sustainable packaging materials through waste treatment.

Keywords: fed-batch; bioprocess; cheese whey valorization; edible films; sustainable packaging;
single-cell protein

1. Introduction

Annual plastic production volumes are expected to continue rising in the following
decades, rising to approximately 590 million metric tons by 2050, which would be an
increase of more than 30% compared to 2025 [1]. The European Commission [COM(2018)
340:1–2] [2], in its proposal to limit the impact of certain plastic products on the environ-
ment, defined plastic as a material with toxic and other hazardous effects (plastic residues
are found in marine life and consequently end up in the food chain, affecting the biosphere
in general) [3]. Therefore, the development of biobased materials (biodegradable and/or
edible) has been gaining importance to replace synthetic packaging materials. Edible
films present great potential in packaging materials due to their non-toxicity, environ-
mental friendliness, and biodegradability [4], as well as the fact that no waste remains
after their use, which outweighs them over other packaging materials (degradable or non-
degradable). Furthermore, they can be designed to improve the quality and extend the shelf
life of packaged foods by controlling water transfer, gas exchange, presenting mechanical
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and rheological properties, and inhibiting oxidation [4,5]. Edible films are usually produced
from biopolymers such as proteins (i.e., whey protein and zein) [6,7] or polysaccharides (i.e.,
chitosan) [8] and are often reinforced with bioactive ingredients including polyphenols [9],
essential oils [10], natural pigments [7], bioactive compounds derived from renewable
resources [11], or even with microorganisms fortifying the antifungal activity of films [12]
and probiotics [13]. Recently, the use of single-cell protein (SCP) as a biopolymer was
studied for the development of biodegradable films [14]. SCP refers to dry cells of microor-
ganisms representing an alternative protein source for multiple applications, including
human food [15,16] and animal feed [17]. Koukoumaki et al. [18] reported a plethora of
studies indicating that yeasts are ideal candidates for SCP production. Specifically, the
nonconventional yeast species Kluyveromyces marxianus, which is classified as a “Qualified
Presumption of Safely” (QPS) and “Generally Recognized as Safe” (GRAS) microorganism
and thus is considered suitable to produce food-grade enzymes and proteins [19] arises
interest due to its ability to produce high yields of SCP through the valorization of low-cost
substrates, such as cheese whey [19,20]. Cheese whey is the main by-product of cheese
production and is considered the most important pollutant of the dairy industry due to its
high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) [21]. Major
volumes of cheese whey are produced annually, considering that 1 kg of cheese production
leads to 9 L of whey, thus demanding treatment.

In the framework of sustainability and eco-friendliness, this study presents a holistic
approach regarding the development of an alternative packaging that is potentially edible
due to the use of a GRAS yeast strain and subsequently does not constitute a pollutant after
use. Moreover, the utilization of an agricultural by-product as a substrate for the growth of
a yeast strain in order to develop SCP-based edible films contributes to this aspect. To the
best of the authors’ knowledge, this is the first time that SCP derived from bioprocess is
used as biopolymer for edible film production.

2. Materials and Methods
2.1. Raw Materials, Microorganisms, and Growth Media

Cheese whey was kindly provided by local cheese manufacturing (Hrysafis, Lemnos,
Greece) and was frozen at −20 ± 2 ◦C until further use. Deproteinized cheese whey (DCW)
was obtained by sterilization (121 ◦C, 20 min), followed by centrifugation (9000 rpm, 15 min,
and 4 ◦C) (Universal 320R Hettich, Tuttlingen, Germany) and filtration. The DCW contained
approximately ~50.0 g/L lactose and a pH value of ~6.7. The K. marxianus strain EXF-5288
was kindly provided by the Infrastructural Centre Mycosmo, MRIC UL, University of
Ljubljana, Slovenia. The yeast strain was conserved in YPDA medium (20 g/L glucose,
10 g/L yeast extract, 20 g/L peptone, and 20 g/L agar) at 4 ± 2 ◦C. Mineral salts were
added into the media (concentration in g/L): KH2PO4 7.00; Na2HPO4 2.50; MgSO4·7H2O
1.50; FeCl3·6H2O 0.15; CaCl2·2H2O 0.15; ZnSO4·7H2O 0.02; and MnSO4·H2O 0.06. As a
nitrogen source, urea was used at a concentration of 0.22% (w/w).

2.2. Fed-Batch Experiment

The fed-batch bioreactor experiment was conducted in a 4.6 L total volume bioreactor
(Minifors 2, INFORS HT, Surrey, UK) with a working volume of 3.0 L using sterilized DCW
as the sole carbon source (initial DCW lactose concentration of 10.0 g/L). An inoculum of
2% (v/v) of a 24 h preculture (YPD) of the strain was used. The fermentation temperature
was set at 20.0 ◦C, the agitation rate at 350 rpm, and the aeration rate at 2 VVM, and the pH
value was maintained at 3.5. Concentrated DCW (~270 g/L) was used as the sole feeding
solution during the fed-batch experiment.

2.3. Biomass, SCP, Ethanol Determination, and Substrate Consumption

Yeast cells were harvested by centrifugation (9000 rpm, 10 min, and 4 ◦C) using a Uni-
versal 320R-Hettich centrifuge (Tuttlingen, Germany), and the supernatant was collected
at −20 ◦C for substrate consumption and ethanol production analysis. Centrifugation
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was applied two more times under the same conditions. The biomass concentration was
determined from the dry weight (~85 ◦C until constant weight). The protein content of
dry cells was determined by the Biuret method, as described in Dourou et al.’s study [22],
where the concentration of protein content was determined with the assay of CuSO4.5H2O
and SCP was expressed as albumin equivalents at 540 nm (Shimadzu, UV-1900 i, Kyoto,
Japan). The lipid content of yeast cells was determined using Folch’s extraction method [23].
Substrate consumption and ethanol production were analyzed via high-performance liq-
uid chromatography (HPLC) (Shimadzu Corp., Kyoto, Japan) equipped with a refractive
index (RI) detector (RID-10A; Shimadzu Corp., Kyoto, Japan) and a ReproGel H column
(250 × 8 mm, 9 µm; Dr. Maisch, Ammerbuch, Germany). The column flow rate was
0.6 mL/min at T = 40 ◦C, while the mobile phase consisted of 5 mM H2SO4. The sample vol-
ume was 20 µL. Lactose and ethanol were quantified using the standard calibration curves.

2.4. Preparation of Edible Films

Edible films were prepared according to Papadaki et al. [11], with some modifications.
Briefly, 7% (w/w) of dry biomass was dispersed in deionized water, and the pH was
adjusted to 8.0 using 0.5 M NaOH. The solution was denatured under 80 ◦C for 30 min and
then rapidly cooled to prevent further denaturation. Different glycerol concentrations (30,
40, and 50% based on dry cells, 30GLY, 40GLY and 50GLY, respectively) were added into the
solution following homogenization (4000 rpm, 15 min) (HG-15D, Witeg, Germany). Then,
the solution was degassed using an ultrasonic bath (P70H, Elma Ultrasonic, Weinfelden,
Switzerland) for at least 20 min. Film casting was performed on Petri dishes (9 cm), which
were left to dry in an environmental-controlled chamber at 25 ± 1 ◦C with a relative
humidity (RH) 55 ± 2% for 24 to 48 h. Then, the films were peeled off and conditioned in a
test chamber at 25 ± 1 ◦C.

2.5. Characterization of Edible Films
2.5.1. Film Thickness

Film thickness (mm) was measured at five different points, and the average film
thickness resulted from the measurement of three independent replicates using a digital
micrometer (F.F. GROUP TOOLS, Frankfurt, Germany) with an accuracy of 0.002 mm.

2.5.2. Color Analysis

The color of the films was analyzed using a Lovibond LC100 Spectrocolorimeter.
L* (0 = black; 100 = white), a* ([+] value = red; [−] value = green), b* ([+] value = yellow;
[−] value = blue), h* (hue angle), and C* (chroma) values were recorded.

2.5.3. Film Opacity

Film strips of 1 × 4 cm were attached to the internal side of a cell, and opacity was
measured in a UV–VIS spectrometer (Shimadzu, UV-1900 i) and calculated by the following
equation [24]:

Opacity = A600/x (1)

where A600 is the absorbance at 600 nm and x is the film thickness (mm). Three triplicates
were performed.

2.5.4. Moisture Content, Solubility, and Swelling Index

The moisture content of film strips with dimensions of 2 cm × 2 cm was determined
in an oven at 105 ◦C (LDO-060S, LabTech, Namyangju, South Korea) for 24 h [25]. Dried
films were cooled in desiccators and weighed until a constant weight was obtained. The
MC (%) was calculated as the percentage difference between wet and dry weight.

Solubility (S%) and swelling index (S.I%) were determined according to Papadaki
et al. [11]. Briefly, the solubility of the film strips (2 cm × 2 cm) was measured by immersing
them in 30 mL of deionized water for 24 h at room temperature, and the insoluble solids
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of the films were collected and dried (60 ◦C) until constant weight. Then, solubility was
calculated using the following equation:

S (%) = [(S0 − S1)/S0] ∗ 100 (2)

where S0 = the initial film weight (g) and S1 = weight of dried film (g).
The S.I was determined using film strips (2 cm × 2 cm) that were immersed in

deionized water for 2 min. The excess water was removed, and the sample was weighed.
Then, the S.I was calculated as follows:

S.I (%) = [(S.I1 − S.I0)/S.I0] ∗ 100 (3)

where S.I0 = the initial film weight (g) and S.I1 = weight of dried film (g).

2.5.5. Water Vapor Permeability

Water vapor permeability (WVP) of films was gravimetrically assessed, according to
Protocol B of the American Society for Testing and Materials (ASTM) (1995) [26] and Ramos
et al. [5], with some modifications. Briefly, test cups were filled with deionized water, and
film was used to seal the cups. Then, the cups were stored in an environmental chamber
at 25 ◦C with RH = 50 ± 2% for 144 h. The water vapor transmission rate (WVTR) was
calculated from the slope of the linear regression of the weight gained over time in days (d)
(R2 ≥ 0.99). The WVP (g·mm/m2·d·kPa) was then calculated using the following equation:

WVP = WVTR ∗ x/∆p (4)

where WVTR (g/m2 d) is the slope (g/d) divided by the transfer area of the film (m2);
x (mm) is the film thickness; and ∆p (kPa) is the partial water vapor pressure across the film.

2.5.6. Mechanical Properties

Mechanical properties such as tensile strength (TS) and elongation at break (E) were
measured according to protocols of the ASTM D882 [27] and Piccirilli et al. [28], using
the Texture Analyzer (TA.XT. plus C, Stable Micro Systems, Surrey, UK) equipped with
A/MTG Mini Tensile grips. Data were evaluated using Texture Exponent Software (Ver-
sion 6.1.18.0, Stable Micro Systems, Godalming, UK). Briefly, film strips were cut into
10 × 60 mm, with an initial distance between the grips of 30 mm. The crosshead speed was
0.05 mm/s, and stress–strain curves were obtained. The values of TS (MPa) and E (%) were
calculated as follows:

TS (MPa)= F/a ∗ x ∗ 106 (5)

E (%)= (d/l) ∗ 100 (6)

where F refers to the maximum force (N); a = film thickness (m); x = width of film (m);
d = elongation at the moment of rupture (mm); and l = the initial exposure length of the
test film (mm).

2.5.7. Wettability

Film surface wettability was assessed by measuring the contact angle (θ) using a
goniometer (L2004A1, Ossila, UK). The films were cut into 1 cm × 1 cm and attached to the
equipment, and a 2 µL drop of olive oil or deionized water was released on the surface of
the films using a 25 µL precision syringe (Hamilton, Bonaduz, Switzerland).

2.6. Statistical Analysis

All measurements in films were conducted in three independent replicates (N = 3),
and in each independent replicate, the average value was calculated in triplicate. Data
were collected in Microsoft Excel and analyzed using XLSTAT software (Version, 2018.1.,
Addinsoft, Lumivero, Denver, CO, USA) via one-way analysis of variance (ANOVA). Mean



Appl. Microbiol. 2024, 4 1034

comparisons were performed using Tukey’s HSD test adjustment at significance level
α = 0.05 (p ≤ 0.05). In the fed-batch experiment, the analysis of each point was conducted
in duplicate.

3. Results and Discussion
3.1. K. marxianus Strain EXF-5288 Growth in Fed-Batch Condition

In general, K. marxianus strains are characterized as Crab-tree negative, not hav-
ing the ability to produce ethanol using glycose as substrate [29]; however, K. marxi-
anus overall metabolic pathway in glycolysis and the tricarboxylic acid (TCA) cycle re-
main unclear [30]. Regarding this, previous studies have reported ethanol production by
K. marxianus strains [19,31,32]. In the present study, the selection of the initial DCW lactose
concentration at 10.0 g/L was based on preliminary experiments [33] to enhance respiration
over alcoholic fermentation of K. marxianus strain EXF-5288. As shown in Figure 1, the
exponential phase of the strain started at 8 h, while by 13 h, it was able to assimilate total
substrate, reaching a biomass value of 2.58 ± 0.04 g/L (YX/Laccons = 0.32 ± 0.00 g/g). The
first feed (at 14 h) fortified ethanol production from 1.9 ± 0.00 to 5.5 ± 0.3 g/L (Figure 1),
reaching a yield of ethanol YEth/Laccons = 0.36 ± 0.02 g/g. Further addition of DCW lactose
in the medium (second and third feeds) favored the production of ethanol, with Ethmax
= 9.8 ± 0.2 g/L and a respective yield of lactose consumed of 0.42 ± 0.01 g/g (Table 1),
indicating that strain K. marxianus EXF- 5288 could be described as Crab-tree positive. Simi-
lar results regarding high ethanol yield were observed by Ozmihci and Kargi [34], where
ethanol production by K. marxianus strain DSMZ 7239 valorizing cheese whey powder
in a fed-batch bioreactor (1 L) was studied. The ethanol yield of the consumed substrate
reached constantly 0.52 ± 0.02 g/g between initial sugar concentrations of 25 and 150 g/L.
In the present study, fed-batch cycles increased biomass and SCP production (Figure 1).
Specifically, maximum values of biomass and SCP were observed at 28 h (after 3rd feed),
reaching 5.36 ± 0.02 and 2.63 ± 0.04 g/L, respectively. In addition, the protein content of
dry cells reached high yields (42.0–50.0% w/w), indicating that K. marxianus strain EXF-5288
is an ideal candidate for SCP production. Yadav et al. [20] assessed SCP production by
K. marxianus through batch and continuous mode trials using cheese whey (T = 40.0 ◦C;
pH = 3.5; ~50.0 g/L lactose) in a 10L bioreactor. The results showed that protein content
reached 42% w/w, which is in agreement with the findings of the present study regarding
protein content (% w/w).
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Table 1. The production of added value metabolic compounds of K. marxianus strain EXF-5288
cultivated under an initial DCW lactose concentration of 10.0 g/L in a 3 L fed-batch bioreactor.

Feed Hours Biomass (g/L) SCP (g/L) Lactosecons
(g/L) Ethanol (g/L) YSCP/X (g/g) YX/Laccons (g/g) YEth/Laccons

(g/g)

Lac = 9.9 ± 0.2 (g/L) 0.0 0.00 0.00 0.0 0.0 0.00 0.00 0.00
4.0 0.90 ± 0.05 0.41 ± 0.02 0.1 ± 0.0 0.0 0.46 ± 0.00 8.18 ± 1.00 0.00
8.0 1.41 ± 0.05 0.70 ± 0.10 1.6 ± 0.1 0.1 ± 0.0 0.50 ± 0.05 0.87 ± 0.01 0.05 ± 0.00

10.5 2.13 ± 0.04 0.89 ± 0.04 4.6 ± 0.2 0.6 ± 0.0 0.42 ± 0.01 0.46 ± 0.01 0.14 ± 0.00
13.0 2.58 ± 0.04 1.12 ± 0.04 8.0 ± 0.2 1.9 ± 0.0 0.44 ± 0.00 0.32 ± 0.00 0.23 ± 0.00

1st
Lac = 0.0 ± 0.0 (g/L) 14.0 2.58 ± 0.04 1.12 ± 0.04 8.0 ± 0.2 2.9 ± 0.1 0.44 ± 0.00 0.32 ± 0.00 0.36 ± 0.01

22.5 3.97 ± 0.06 1.89 ± 0.04 15.2 ± 0.3 5.5 ± 0.3 0.48 ± 0.00 0.26 ± 0.00 0.36 ± 0.02
24.0 3.97 ± 0.06 1.89 ± 0.04 15.2 ± 0.3 5.9 ± 0.2 0.48 ± 0.00 0.26 ± 0.00 0.39 ± 0.02

2nd
Lac = 3.7 ± 0.3 (g/L) 26.0 4.95 ± 0.09 2.15 ± 0.05 19.7 ± 0.1 7.6 ± 0.3 0.43 ± 0.00 0.25 ± 0.00 0.39 ± 0.02

27.0 4.95 ± 0.09 2.15 ± 0.05 21.1 ± 0.5 8.7 ± 0.3 0.43 ± 0.00 0.23 ± 0.00 0.41 ± 0.02

3rd
Lac = 0.0 ± 0.0 (g/L) 28.0 5.36 ± 0.02 2.63 ± 0.04 23.5 ± 0.1 9.8 ± 0.2 0.50 ± 0.01 0.23 ± 0.00 0.42 ± 0.01

Lac = concentration of lactose (g/L); Lactosecons = consumed lactose (g/L); YSCP/X = total SCP on a dry basis
(g/g); YX/Laccons = biomass yield on lactose consumed (g/g); and YEth/Laccons = ethanol yield on lactose consumed
(g/g). Culture conditions: pH = 3.5; incubation temperature T = 20.0 ◦C; and 2 VVM. The analysis for each point
was conducted in duplicate.

3.2. The Development and Characterization of SCP-Based Edible Films
3.2.1. Color Film Opacity

The presence of dry yeast cells led to a brownish film color (Figure 2), while regarding
color parameters, no significant differences were observed (Table 2). On the contrary,
another study showed that an increase in glycerol from 40 to 60% (w/w) led to a decrease
in ∆E values of whey protein isolate and whey protein concentrate films [5]. Regarding
film opacity, no statistical differences were observed. This is in agreement with Ramos
et al. [5], since an increase in glycerol concentration in edible films did not lead to significant
differences in opacity at 600 nm. In this study, film opacity values ranged from 3.5 ± 0.7 to
6.0 ± 2.2, which is similar to another study, where the presence of Debaryomyces hansenii in
chitosan-based edible films led to opacity values from 3.35 to 7.45 [12].
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Table 2. The effects on color parameters and film opacity of SCP-based edible films with increased
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SCP-Based
Edible Films L* a* b* C* h* Film Opacity
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3.2.2. Moisture Content, Solubility, and Swelling Index

An increase in glycerol concentration increased the MC in edible films from 11.2 ± 0.7%
(30GLY) up to 25.9 ± 0.3% (50GLY), showing a typical behavior for hydrophilic materials
(Table 3). Glycerol is a hydrophilic plasticizer that loses the structure of films by exposing
their hydroxyl groups and provides more active sites where moisture molecules could be
adsorbed [35]. Previous studies have shown that an increase in the amount of plasticizer
led to an increase in the moisture content of protein-based edible films [5,36]. The results of
this study are in line with previous studies, since the MC of 40GLY SCP-based edible films
was 15.0 ± 2.7%, while in protein-based films fortified with Trametes versicolor biomass
reached 10.3 ± 1.6% [37].

Table 3. The effect of glycerol concentration on the moisture content, solubility, swelling index (S.I.),
and water vapor permeability (WVP) of SCP-based edible films.

SCP-Based Edible Films Moisture Content (%) Solubility (%) S.I (%) WVP
(g·mm/m2·d·kPa)

30GLY 11.2 ± 0.7 a 48.5 ± 2.5 a 33.2 ± 2.5 a 20.5 ± 4.1 a

40GLY 15.0 ± 2.7 a 75.0 ± 1.3 b 34.4 ± 1.8 a 19.2 ± 3.8 a

50GLY 25.9 ± 0.3 b 58.2 ± 2.8 c 38.8 ± 1.1 a 21.4 ± 1.2 a

Means in a column followed by the same letters (a, b, and c) are not significantly different (p > 0.05). 30GLY (30%
glycerol (w/w of dry cells)), 40GLY (40% glycerol (w/w of dry cells)), and 50GLY (50% glycerol (w/w of dry cells)).
All measurements were conducted in three independent replicates (N = 3).

Solubility is an important factor for the application of edible films. To improve product
integrity and water resistance, potential applications could require water insolubility. On
the other hand, film’s solubility in water prior to use may be advantageous in certain
cases [38]. Regarding the results, it seems that SCP-based edible films’ integrity in water
is affected by glycerol concentration. Specifically, the increase of glycerol from 30 to 40%
w/w increased S up to 75.0 ± 1.3% (Table 3); however, further increases in plasticizer
concentration decreased S to 58.2 ± 2.8%. Ramos et al. [5] proposed that the partial
insolubility of protein-based films may be attributed to their highly stable proteinaceous
polymeric network, since only small molecules (i.e., monomers, nonprotein materials, and
small peptides) are totally soluble. In the present study, the solubility rate of SCP-based
edible films indicates that their use as packaging materials in high-moisture foods may
not be favorable; however, their application in foods characterized by lower moisture
and low water activity (i.e., flour, spices, nuts, and herbs) [39] may be feasible, providing
light protection since SCP-based films were characterized by high values of film opacity
(transparent food packaging is those with an opacity < 5 [40]).

The swelling index refers to structural alterations that impact the internal structure
of a biopolymer caused by water absorption. The S.I values did not seem to be affected
significantly by the increase in plasticizer concentration and ranged from 33.2 ± 2.5 to
38.8 ± 1.1%. Papadaki et al. [11] developed whey protein edible films under different
pH values, resulting in a swelling index value of 39.5 ± 2.1% at pH 7 with 40% glycerol as
the plasticizer, which is in line with the S.I values of the present study.

3.2.3. Water Vapor Permeability

Water vapor permeability refers to a property of food packaging materials that deter-
mines food quality during preservation and storage through moisture loss or gain control.
Several factors affect the WVP of protein-based films, including the presence of polar and
non-polar amino acids, pH value, surface charge, and non-homogeneity of the film [14]. In
this study, WVP values ranged from 19.2 ± 3.8 to 21.4 ± 1.2 (g·mm/m2·d·kPa). These find-
ings indicate higher WVP values compared to studies examining protein-based edible films,
including whey protein films [41] and gelatin–casein phosphopeptides [42]. These results
indicate that the durability of SCP-based edible films regarding water barriers requires
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further investigation. Specifically, the factors that need to be considered are the storage
time (to investigate the effect of ambient humidity in edible films) and the application of
enclosed products with high or low water activity to investigate if microbial spoilage and
undesirable organoleptic characteristics will occur [43]. Furthermore, previous studies
have shown that an increase in plasticizer concentration (such as glycerol) normally leads
to an increase in WVP [38,44], since the hydrophilic nature and amount reduces internal
hydrogen bonding and increases intermolecular spacing [45]. However, in this study,
increased glycerol concentrations did not increase the WVP of the SCP-based films (Table 3).
Those findings could be explained due to the presence of lipids in SCPs (yeast cells are
not defatted, containing approximately 15% w/w of lipids in the present study), which
reinforce hydrophobicity in the film [14]. Moreover, the SCP is characterized by a high
content of non-polar amino acids [14,46], which contribute to hydrophobicity.

3.2.4. Mechanical Properties

Mechanical properties are important factors of films because they indicate the resis-
tance of the films during their shelf life. Tensile strength refers to film resistance due to the
cohesion between the chains, while the elongation at break refers to its plasticity, which is
the capacity of the film to extend before fracturing [36]. As shown in Table 4, SCP-based
edible films did not result in high mechanical resistance since the TS value did not exceed
1.3 ± 0.6 Mpa, while their E (%) ranged from 4.7 ± 0.5 to 6.9 ± 2.0%. Regarding TS values,
similar results were observed by Papadaki et al. [11] for protein-based films reinforced with
40% w/w glycerol. Specifically, TS values ranged from 0.7 to 1.8 Mpa under different pH
treatments. Glycerol increases did not significantly affect mechanical parameters. This is
not in line with previous studies, since it is expected that an increase in the water content
of films decreases the protein–protein interactions, resulting in higher flexibility and less
resistance [47]. In this study, SCP-based edible films presented poor mechanical properties
compared to plant-based (i.e., soy protein, gliadin, and zein) and animal-based edible films
(i.e., gelatin and casein) [48], and in order to improve the mechanical properties of the
examined edible films, reinforcement with active compounds could be applied, as has
been carried out in other protein-based films [25,49]. Moreover, it has to be mentioned
that the degree of protein denaturation could possibly alter the physicochemical char-
acteristics of edible films; therefore, the study of different denaturation times requires
further investigation.

Table 4. The effect of glycerol concentration on the mechanical properties (tensile strength (TS) and
elongation at break (E)) and wettability of SCP-based edible films.

SCP-Based Edible Films TS (Mpa) E (%) OCA◦

30GLY 1.3 ± 0.6 a 6.9 ± 2.0 a 47.1◦±0.5 a

40GLY 0.3 ± 0.1 a 5.6 ± 0.8 a 46.7◦ ± 1.3 a

50GLY 0.4 ± 0.1 a 4.7 ± 0.5 a 54.0◦ ± 0.5 a

Means in a column followed by the same letter (a) are not significantly different (p > 0.05). 30GLY (30% glycerol
(w/w of dry cells)), 40GLY (40% glycerol (w/w of dry cells)), and 50GLY (50% glycerol (w/w of dry cells)).
OCA—Oil contact angle. All measurements were conducted in three independent replicates (N = 3).

3.2.5. Wettability

Wettability refers to a general term used to define the spreading behavior of any liquid
over a surface. In this study, the wettability of SCP-based edible films was tested with
different liquids (water and olive oil). Since water droplets were rapidly absorbed by the
surface of SCP-based edible films and penetrated them, as shown in Figure 3, analysis
was performed only with olive oil. The Wenzel model predicts that the hydrophilicity of
a roughened surface, indicated by a reduced apparent contact angle, will increase when
its smooth surface’s initial contact angle (θ0) is less than 90◦. Conversely, if θ0 > 90◦,
the reverse effect is expected. Since oils typically have lower surface tension and smaller
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contact angles than water, Wenzel’s model suggests that, in general, most surfaces would be
oleophilic [50]. An oil droplet that wets a textured surface is in the “Wenzel state” and tends
to leave an oily trail or stain as it slides and spreads [51]. Regarding this, SCP-based edible
films could be described as having oleophilic surfaces since the degree of OCA ranged
from 46.7◦ ± 1.3 to 54.0◦ ± 0.5 (Table 4), as well as the fact that the oil droplets were spread
across the films (Figure 3). The surface behavior of protein-based edible films could be
associated with the orientation of functional groups of hydrophilic and hydrophobic amino
acids [52], as well as the kind of protein. For example, in a study examining gelatin-based
edible films, the contact angle was 112.15◦ ± 2.98, indicating a hydrophobic surface [53].
On the contrary, when soy protein isolate edible films were studied, the degree of water
contact angle was 60.9◦ ± 1.8, indicating a hydrophilic surface [54]. In the present study,
an increase in glycerol concentration did not significantly affect the degree of the OCA.
Likewise, when Kokozka et al. [45] increased their glycerol concentration from 30 to 50–60%
in WPI-edible films, there was no significant difference in contact angle degrees (ranging
from 37.8◦ ± 2.7 to 42.5◦ ± 9.8).
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on the product enclosed and mainly in low-moisture foods. Focusing on the zero-food 
waste strategy, the present study demonstrated the development of SCP-based edible 
films. It could be proposed that the next steps include optimization and property enhance-
ment of SCP-based edible films (i.e., improved quality and shelf life of packaged foods 
through the optimization of water transfer, gas exchange, mechanical and rheological 
properties, and inhibition of oxidation) in order to be used as a sustainable approach to 
substitute or totally replace non-biodegradable materials. 
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Figure 3. Wettability on SCP-based edible films with different liquids (water and olive oil). 30GLY
(30% glycerol (w/w of dry cells)), 40GLY (40% glycerol (w/w of dry cells)), and 50GLY (50% glycerol
(w/w of dry cells)). All measurements were conducted in three independent replicates (N = 3).

4. Conclusions

In the present study, novel edible films derived from SCP through the biotechnological
treatment and valorization of cheese whey were developed, proposing an eco-friendly
packaging material. The yeast strain K. marxianus EXF-5288 was cultivated in fed-batch
bioreactor mode, valorizing DCW lactose, and totally consumed the substrate with par-
allel production of added-value compounds including SCP and ethanol. The combined
physicochemical results and surface properties lead to the conclusion that SCP-based edible
films derived from bioprocesses could be applied as packaging materials, depending on
the product enclosed and mainly in low-moisture foods. Focusing on the zero-food waste
strategy, the present study demonstrated the development of SCP-based edible films. It
could be proposed that the next steps include optimization and property enhancement of
SCP-based edible films (i.e., improved quality and shelf life of packaged foods through the
optimization of water transfer, gas exchange, mechanical and rheological properties, and
inhibition of oxidation) in order to be used as a sustainable approach to substitute or totally
replace non-biodegradable materials.
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