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Abstract: Data-driven flow forecasting models, such as Artificial Neural Networks (ANNs), are
increasingly used for operational flood warning systems. In this research, we systematically evaluate
different machine learning techniques (random forest and decision tree) and compare them with
classical methods of the NAM rainfall run-off model for the Vésubie River, Nice, France. The modeled
network is trained and tested using discharge, precipitation, temperature, and evapotranspiration
data for about four years (2011–2014). A comparative investigation is executed to assess the perfor-
mance of the model by using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and a
correlation coefficient (R). According to the result, Feed Forward Neural Network (FFNN) (a type of
ANN) models are less efficient than NAM models. The precision parameters correlation coefficient
of ANN is 0.58 and for the NAM model is 0.76 for the validation dataset. In all machine learning
models, the decision tree which performed best had a correlation coefficient of 0.99. ANN validation
data prediction is good compared to the training, which is the opposite in the NAM model. ANN can
be improved by fitting more input variables in the training dataset for a long period.

Keywords: water forecasting; river discharge; machine learning; artificial neural network; hydrology

1. Introduction

Due to long-term global climate change, extreme weather patterns become normal,
which is causing floods globally and more frequently [1–3]. Extreme floods can be stim-
ulated by extreme precipitation, longer duration, close repetition of precipitations, or a
combination of these [4–19]. Consequently, river engineering is growing more challenging
day by day. Floods have an enormous social impact on the community and individuals,
which can cause loss of human life, property damage, destruction of crops and livestock
loss, and deterioration of health and migration [20–23]. It is very important to study and
analyze the previous data on flooding to assess flood risk and proposed mitigation and
protection measures.

The development of a model capable of identifying regions of flooding susceptibility
is a critical step toward resilient flood management [24–31]. River managers must obtain
discharge and water surface elevation projections for flood mitigation [32,33]. The forecast
of river flow with high accuracy can be used for the economic interest of a large population
in various economic sectors such as hydropower projects, irrigation, and agricultural land
management, as well as taking action to avoid and reduce the potential risk of floods, and it
is becoming more important for alpine areas, where a large population living downstream
is reliant on river flows for agriculture land and economic activities [34–36]. Data-driven
models, such as Artificial Neural Networks (ANNs), that are not only inexpensive but
also thorough and dependable, have been widely employed in recent decades to anticipate
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stream and river flows [37–45]. Artificial Neural Networks (ANNs) algorithms are self-
learning from their surroundings and making responses; they are extremely adept at dealing
with nonlinear data and producing highly accurate findings and predictions. Despite
the fact that some research has demonstrated that these models perform poorly during
peak hydrological events. Low accomplishment from these models suggests late forecasts,
namely time inaccuracy, under prediction, or both [44]. Similarly, researchers have estimated
the diurnal runoff in rivers using ANNs [44–46]. Model-based prediction of any variable
may be alarming due to several uncertainties such as inadequate or unequal input data,
measurement errors, model simplification, and improper model calibration [47–49]. This
necessitates the use of a strong model that can efficiently alter new scenarios with a
variety of diverse input data and offer the finest depiction. The lack of representative
input observations for training models is one of the most prominent causes of low model
accuracy [50,51].

Forecasting models employ autoregressive inputs, also known as antecedent input
variables, to predict real-time data. Much research has been conducted to determine
whether utilizing preprocessing techniques improves model performance. To improve
prediction accuracy on irregular data, ensemble-based and resampling approaches are
applied. The ensemble is usually used for classification, but regression resampling is
a very old approach for producing a more equally distributed target dataset for use as
training data [52–54]. Machine learning’s two most significant techniques are regression
and classification, where a regressor is used to estimate the data, and classification is simply
predicted in yes/no or flooded/not flooded [55–57]. FFNN model techniques connect input
data to output (objective or target) via a network of neurons and achieve a high level of
connection between input, output, and neurons, allowing the model to reflect the system’s
nonlinear behavior [58,59]. There are several Artificial Neural Network models accessible,
and researchers are still determining which models should be used or are best suited to a
certain situation [60–67]. For time series forecasts, one of the most popular topologies is the
Feed-Forward Neural Network (FFNN), a feedforward type architecture that is based on
the Perceptron neuron model [67–69]. From an arrangement of successive interconnected
neural layers, the information spreads from the input to the output so that on the way
it is abstracted by neurons [68]. Due to its comparatively less complex model structure,
computational efforts, incorporation of non-linearity, and stochasticity in the prediction
process, FFNN yields high performance [69].

The goal of this study is to assess the capacity of the ANN model to forecast discharge
(output) by employing river flow characteristics and comparing it to conventional numerical
approaches as well as other ML algorithms (e.g., random forest and decision tree). These
input data are preprocessed in order to fit smoothly into the model and the rainfall-runoff
(RR) model of the MIKE 11 river is used for numerical modeling, with input variables from
the Vésubie River, which is part of the Var River in Nice, France.

2. Materials and Methods
2.1. Study Area

The research area is a 44.93 km sub the Vésubie River in the southeast of France at
44◦04′12′ ′ N, 7◦15′19′ ′ E, and elevation above sea level of 964 m. The Vésubie River is
one of the Var River’s segments (together with Tinee, Upper Var, Esteron, Vésubie, and
Lower Var) totaling 393.35 km2. The Vésubie has a minimum elevation of 152 m and a high
height of 3001 m, with an average slope of 37.19 percent. The land-use types are mostly
agricultural, forests, and a few urban sections.

The weather of the watershed is normal in winter as compared to summer; the mean
temperature remains in the range of −3.1 to 26.7. Redpoint on the left of Figure 1 the
Vésubie River’s rain gauge station is shown. For this segment of the river, meteorological
data include daily time series of rainfall, evapotranspiration in (mm), and temperature in
C. Hydrological data daily time series of runoff is collected from the Météo-France website
where the data are measured at the station of “LANTOSQUE_SPAC”. The geological data
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25 m resolution DEM of the Vésubie is extracted from the geo-database produced by the
GIS department of Métropole Nice, Côte d’Azur using ArcMap.
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The Vésubie River begins with a flow of water from the high alpine of north town
Saint-Martin-Vésubie from the border of Italy, which eventually joins the Upper Var of the
Var River and connects to the Var’s outflow. France’s fifth biggest city Nice is located there
and frequently suffered flood hazards during the flood events because of the steep slope
distributed all over the catchment, the concentration-time during the flood event became
relatively short.

2.2. Data Preprocessing

The daily time series data of discharge, precipitation, temperature, and evapotranspi-
ration is preprocessed to fit in the model for the best prediction. We found that discharge of
all other three-time series had been collected for 7 years in raw file data, from 2008–2014 and
discharge was only from 2011 to 2014. Consequently, all other data are trimmed and data
from 2011 to 2014 are used for modeling. The gap and irregularities of the time series are
also checked and as a result, all of the data are cleaned except for discharge. In discharge,
there was a negative value found in May of 2013 and December 2014, which was most
probably caused by gauge error. Therefore, these negative values are filled with the average
values of their first three-time steps.

2.3. Analysis and Visualization

Based on the observation and metadata in Table 1, the mean discharge for 4 years
from 2011–2014 is 7.65 m3/s, and peak discharge was recorded as 95.5 m3/s on the
5 November 2014, and the lowest was on 22 October 2011. Average precipitation is 2.88 mm
and maximum precipitation was observed at 182.6 mm just one day before when maximum
discharge was recorded, the minimum precipitation is 0 showing that there is no rainfall
on that day. The mean temperature is 12.39 ◦C which is close to the average temperature
of the autumn season. The minimum temperature is recorded at −3.1 on 6 February 2012
and the maximum temperature is 26.7 on 19 August 2012. The average evapotranspiration
is 2.7 mm which is very near to the average precipitation, showing the strong side of
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MicroClimate parameters, the minimum evapotranspiration is 0.21 mm, and the maximum
was 8.28.

Table 1. Meta Data.

Parameters Mean Std Maximum Minimum

Discharge (m3/s) 7.65 8.48 95.5 0.43
Precipitation (mm) 2.88 9.64 182.5 0
Temperature (◦C) 12.39 6.52 26.7 −3.1

Evapotranspiration (mm) 2.7 1.73 8.28 0.21

The standard deviation of precipitation is way higher than its mean as compared to
other parameters which means that it has high variation and abnormal distribution.

Figure 2 shows the daily plot of discharge, precipitation, temperature, and evapotran-
spiration. In the discharge plot, it is shown that there is a hike in the second last month of
the year which is also similar to the precipitation plot. Temperature and evapotranspiration
follow a seasonal pattern, wherein in summer they reach a peak and in winter they go
down.
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Figure 2. Daily plot of Discharge, Precipitation, Temperature, and Evapotranspiration.

In Figure 3, the left side matrix plot illustrates that the correlation between daily
temperature and evapotranspiration is best among all of them, at around 0.8, and after that
discharge and precipitation have a good correlation, which is 0.39. The discharge versus
precipitation graph shows that discharge is the outline of the precipitation like cumulative
water.

In Figure 4. The left side matrix plot illustrates that the monthly correlation is better
than the daily data, temperature and evapotranspiration are the best among all of them,
at around 0.91, and after that discharge and precipitation have a good correlation which
is 0.64. The discharge versus precipitation graph shows that the discharge follows the
precipitation one step before.

Figure 5 shows the seasonal correlation of four-year data, which start from winter,
summer, spring, and autumn, among all of them discharge has the best correlation with
precipitation in autumn of 2014 which is 0.49. On the right side, the 2014 autumn season
graph shows discharge versus precipitation, in which discharge follows the precipitation
one step before.
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2.4. Feed-Forward Neural Network (FFNN)

A Feed-Forward Neural network (FFNN) is an ANN-based model that mimics the
biological structure of the human brain and is used to understand and capture the behavior
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of very complex systems. The FFNN model learns and gain knowledge from the experience.
This technique is particularly effective in solving dynamic and nonlinear issues such as
prediction and recognition. The FFNN is one of the most extensively utilized ANN designs
for the classification and regression of water resource data. FFNN networks are perceptron
extensions that consist of input and output layers with some arbitrary hidden layer in
between. Figure 6 depicts the FFNN model and the neuron connections.
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Each hidden layer holds several neurons. Mathematically a neuron is defined as:

ne= ∑n
i=0 xiwi+bi (1)

u=f(ne) (2)

where xi (j = 0, . . . , n) are the inputs wi (j = 0, . . . , n) are the synaptic weights and bi is the
activation threshold (bias) in the neuron potential “ne”.

Neurons are the calculating units that gather input data, analyze them, and generate
output using the activation function. Although the weight connections are entirely linear,
the activation function changes the output to a nonlinear form, allowing the neural network
to capture the issue’s nonlinearity. The activation function used to introduce the non-
linearity to the model is ReLU (Rectified Linear Unit). This function is used to introduce
the non-linearity in the model. The total number of layers used to perform DNN is four
including a normalized input feature layer, two hidden layers, and a linear single-output
layer. The total number of weights for each trainable neuron is 4609 whereas 11 neurons
are found to be non-trainable. The weights of the connections between neurons encode the
FFNN’s capacity to interpret the behavior of a system. The FFNN is trained by adjusting the
connection weights to replicate the behavior of the actual system. Back error propagation
(BEP), the most widely used supervised training algorithm, is one way for training the
neural network. BEP comprises feed-forward and reverses error propagation.

2.4.1. ANN Model

All portions of this work are carried out in Python 3.8, and the problem’s modeled
network has three layers: an input layer, a hidden layer, and an output layer. The input
layer is made up of three neurons that represent the problem’s input parameters, which are
precipitation, temperature, and evapotranspiration. The discharge values are represented
by one neuron in the output layer. In a typical ANN design, the output layer reflects
the intended values of the needed prediction parameter for which the modeling is to be
conducted. The output is given from the data during the training phase. However, when
the model is employed as a predictor after training, the network derives these values when
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given with a dataset that is not a subset of training data. To prevent unnecessary model
complexity, three hidden layers with different nodes are added to the network for optimum
network topology. All the layers are created as Dense and combined with Sequence by
using Keras and TensorFlow library. In terms of network parameters, the input and hidden
layers employ a rectified ‘linear’ activation function, while the output layer uses a ‘linear’
activation function. In a neural network, the activation function describes how the weighted
sum of the input is converted into an output from a node in a network layer.

Using termination criteria or early finishing, the number of training epochs is deter-
mined. This is accomplished by segmenting the calibration data into training and validation
subsets.

Mean square error (MSE) is used as a Loss function, it is a method of evaluating how
well the algorithm models a dataset. Good predictions have a low value of loss and a bad
high loss value. Adam optimizer is used, which is the algorithm that updates the weights
based on the mean square error, and accuracy is used in the matrix. All of the arguments
are compiled with the model and history is fitted with the model by using the training
dataset and epochs.

2.4.2. Different Machine Learning Models for Comparison
Linear Regression

Linear regression is a simple method for supervised learning which works on struc-
tural as well as time-series data. It is used for forecasting the parameter which is of
continuous nature. It is the assumption that the dependency of Y on X1, X2, and Xp is
linear. This relationship is denoted by the following formula:

Y=β0+β1 X+ε (3)

Decision Tree

A decision tree is a decision-making approach that employs a flowchart-like tree struc-
ture or is a model of decisions and all of their potential outcomes. Decision-tree algorithms
are classified as supervised learning algorithms. It is applicable to both categorical and
continuous output variables.

Random Forest

Random forest is another supervised machine learning technique developed by. This
method is the result of the aggregation of multiple decision trees. It performs well when
the number of observations is large in comparison to the number of variables. It is strong in
the sense that it easily adapts to varied learning activities and efficiently provides rankings
of varying priority. If the training dataset changes little, an individual decision tree can
provide a significant variation in model output. Algorithm details may be found in the
sources.

2.4.3. Hydrodynamic Models (NAM)

The NAM model is integrated into the MIKE model software package to create the
hydrological model. The NAM model was created at the Technical University of Denmark’s
Department of Hydrodynamics and Water Resources. The Danish “Nedbr–Afstrmnings
Model”, which meaning precipitation-runoff-model, is abbreviated as NAM. It is currently
a component of the MIKE 11 river modeling system’s rainfall-runoff (RR) model. The NAM
model is a deterministic, conceptual, lumped runoff simulation model that models the
rainfall-runoff process in rural catchments. It features a straightforward framework that is
simple to grasp, learn, and use. NAM requires a small quantity of input data.

The data applied in this model exercise were supported by Météo-France and Métropole
Nice, Côte d’Azur. The 25 m resolution DEM (MNT_25.tif) of the Vésubie catchment can be
loaded by ArcMap. The model is set up in MIKE ZERO software by open rainfall-runoff
(RR) parameters. The DEM of Vésubie is converted into shapefile (points) by using ArcMap
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and elevation zones are divided into 100 m intervals (31 classes) and the elevation zone is
extracted from the map by using “Selection By Attributes”. Four-time series data are added,
the model is saved, and one file is created of MIKE11 simulation. Only rainfall-runoff
is active in MIKE 11 simulation and rainfall-runoff (RRPart1) is added. After setting the
simulation period with a 1-day time step auto-calibration is performed.

2.5. Model Development

The input data spans four years, from 2011 to 2014. Table 2 shows the statistical
properties of the data set, which comprise training and testing. Data from 2011 to 2013 are
utilized for training, while data from one year are used for testing. Training data are used
to construct the model, while testing data are used to evaluate the model.

Table 2. Data splitting training and test results.

Partition Period No. of Record

Training 2011–2013 1096
Testing 2013–2014 365

Complete 2011–2014 1461

To avoid variables with large values from dominating the model, normalization is
conducted where each variable sits within the interval between (−1, 1). Normalization is
very common and important in machine learning models because of its data sensitivity. If
the data features do not look standard than the model behaves badly. Standardization leads
to being more stable and less influenced by the range of variables. All data are normalized
by using the following function:

z=
x−u

s
(4)

where u is the mean and s is the standard deviation of the data samples.

Criteria for Model Performance

Root Mean Squared Error (RMSE), mean absolute error (MAE), and coefficient of
determination (R) were used to assess the accuracy of the anticipated discharge. These are
the most widely used for evaluating time series forecasting outcomes.

The coefficient of determination is calculated using Equation (5), which attempts to
explain the link between the variables. The closer this value is to one, the better the model
fits. A value larger than 0.7, on the other hand, is acceptable.

R=
∑
(

^
y−y

)2

∑
(

y−¯
y
)2 (5)

where
^
y is the series’ observed value, y is the forecast value, and

¯
y is the series’ average

value The variance is the difference between the expected and mean values, whereas the
total variance is the difference between the original and mean values.

Equations (6) and (7) are used to determine the RMSE and MAE, where n is the number
of items in the series.

RMSE =

√√√√√∑
(

y−^
y
)2

n
(6)

MAE=
∑
∣∣∣∣y−^

y
∣∣∣∣

n
(7)
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Functions having error values near zero are the most accurate at forecasting future
values, as explained more in the result.

3. Results and Discussion

This section delves deeper into a comparison of performance across all approaches.
The training and validation dataset results, as well as their comparison with experimental
discharge levels, are shown. The performance scores of the models under consideration
are computed throughout the training and testing phases. Based on the provided input
architecture, Table 3 displays the performance score assessment metrics of ANN, linear
regression, decision tree, random forest, and the NAM model. The performance of tree-
based regressors e.g., decision tree and random forest algorithms in the training phase is
better than in the testing phase (unseen data) due to the optimization and convergence
through voting and bagging criteria. However, MLP offered better performance in the
testing phase with unseen data minimizing/optimizing the cost function. The best R,
MAE, and RMSE values for daily discharge forecasting in the decision tree algorithm for
training data are 0.99, 0.03, and 0.28, respectively, while for testing NAM models projected
best. The key comparison is between the ANN and NAM models, with the NAM model
outperforming the others. The R, MAE, and RMSE values for the training phase are 0.78,
3.53, and 6.49, respectively, and 0.76, 5.85, and 7.94 for the testing phase. However, the
MAE of ANN for testing is better than the NAM model of MAE. Table 3 shows that ANN
and linear regression have comparable values in both training and testing.

Table 3. Model Performance in Discharge Prediction.

Models
Training/Calibration Data Test/Validation Data

R MAE RMSE R MAE RMSE

ANN 0.47 4.22 6.68 0.58 5.68 9.10
Linear

Regression 0.39 4.67 7.16 0.48 6.16 9.71

Decision Tree 0.99 0.03 0.28 0.32 7.61 11.42
Random

Forest 0.94 1.76 2.94 0.43 6.31 9.79

NAM Model 0.78 3.53 5.49 0.76 5.85 7.94

The observed data and forecasted data by ANN models and NAM models are com-
pared and given in the picture below to demonstrate the model performance accuracy on
the real dataset. Low significant prediction accuracy is shown by a wide deviation from the
ideal line (red line in Figure 7 for ANN). For the testing phase, NAM has a high coefficient
of determinant value R = 0.76, but ANN has just 0.58. Both models anticipate peak flow
well in November, but the NAM models predict better overall. Figure 8 shows scatter plots
for both the ANN and NAM models to further assess prediction performance.

Furthermore, in Figure 9, the NAM model’s training phase performance is better than
the testing phase performance, but the ANN model’s testing phase performance is better
than the training phase. Based on the stated performance score measures, the NAM model
outperforms the ANN model.

Figure 10, which depicts the entire plot of the observed and anticipated calibration and
validation of both the Model ANN and the NAM model, shows that, with the exception of
the November peak flood, the NAM model follows a better peak of the flood than the ANN
model. It is also discovered that ANN has a higher validation efficiency than calibration
when compared to the NAM model.

In a comparison of all the performed models, tree-based regressors, i.e., decision trees
and random forests, have the best prediction overall, because of their low overfitting and
easy interpretability. However, their performance is lower with the testing data, meaning
they are outperformed by the ANN forecasting with the unseen data. Therefore, the
applicability of the ANN model is much wider compared to the other ML regressors as
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it may perform better in several other sites. A model should be selected based on the
uniqueness of the dataset for a specific location and the requirement of applying the model
in the unseen area. However, by using random forest, the feature ranking of input data
is also accessible. Evapotranspiration has a higher feature ranking than precipitation
and temperature. The feature ranking values are 0.357037, 0.322140, and 0.320824 for
evapotranspiration precipitation and temperature.
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4. Conclusions

From 2011 to 2014, we investigated the machine learning methods Artificial Neural
Network with NAM model or precipitation-runoff-model for forecasting the daily dis-
charge flow of the Vésubie River in Nice, France. Between 2012–2013 and 2013–2014, the
performance measurement metrics Root Mean Square Error (RMSE), Mean Absolute Error
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(MAE), and coefficient of determination (R) were used to input data sets for both the
training and testing phases.

After partitioning the data set into training and testing and finally normalizing, the
ANN model is built using Keras’ Sequence and Dense libraries and TensorFlow’s Tensor-
Flow Library. Using meteorological, hydrological, and geological data, the NAM model is
run in the MIKE11 river modeling system. Other machine learning algorithms, in addition
to ANN, are used.

It was determined that the NAM model outperformed the ANN model, and the
decision tree outperformed all other models of input data for the training and testing
phases, respectively. The NAM model has a coefficient of determination of 0.76, however,
the ANN model only has a coefficient of determination of 0.58 but evaluating the coefficient
of determination of ANN is better than training. Despite the better results of the NAM
model, ANN is also a dependable model for the long-term use of multiple input datasets as
a feature to acquire a good result by learning all the datasets and making excellent accuracy
forecasts.

While adopting the data-driven techniques, such as ANNs, researchers are still seeking
solutions to the prevalent problem of poor performance with deficient input data. Further-
more, we may deduce that the work’s accuracy might be improved further by including
more experimental data when training the network.
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