Techno-Economic Analysis of Atmospheric Water Generation by Hybrid Nanofluids to Mitigate Global Water Scarcity
Abstract
:1. Introduction
2. Methods
2.1. Description of the System
2.2. Thermodynamic Analysis
- All system components are operated under steady-state conditions;
- Kinetic and potential energy changes are negligible;
- Pumps’ and blowers’ energy requirements are negligible;
- The isothermal compressor is operated at an efficiency of 85%;
- The coefficient of performance is 2.5;
- LiCl leaves the scrubber and flash vessel in a saturation state.
2.3. Mathematical Modeling
3. Results and Discussion
3.1. Economic Analysis
3.2. Directions for Future Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macedonio, F.; Drioli, E.; Gusev, A.A.; Bardow, A.; Semiat, R.; Kurihara, M.J.C.E. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. Process. Intensif. 2012, 51, 2–17. [Google Scholar] [CrossRef]
- Ahuja, S. Water quality worldwide. In Handbook of Water Purity and Quality; Academic Press: Cambridge, MA, USA, 2021; pp. 19–33. [Google Scholar]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Change 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 034006. [Google Scholar] [CrossRef]
- Murtaza, F.; Muzaffar, M.; Mustafa, T.; Anwer, J. Water and sanitation risk exposure in children under-five in Pakistan. J. Fam. Community Med. 2021, 28, 103. [Google Scholar] [CrossRef]
- Kumar, S.; Anwer, R.; Sehrawat, A.; Yadav, M.; Sehrawat, N. Assessment of Bacterial Pathogens in Drinking Water: A Serious Safety Concern. Curr. Pharmacol. 2021, 7, 206–212. [Google Scholar] [CrossRef]
- Jarimi, H.; Powell, R.; Riffat, S. Review of sustainable methods for atmospheric water harvesting. Int. J. Low-Carbon Technol. 2020, 15, 253–276. [Google Scholar] [CrossRef]
- Raveesh, G.; Goyal, R.; Tyagi, S.K. Advances in atmospheric water generation technologies. Energy Convers. Manag. 2021, 239, 114226. [Google Scholar] [CrossRef]
- Fathieh, F.; Kalmutzki, M.J.; Kapustin, E.A.; Waller, P.J.; Yang, J.; Yaghi, O.M. Practical water production from desert air. Sci. Adv. 2018, 4, 29888332. [Google Scholar] [CrossRef]
- Sharan, G.; Roy, A.K.; Royon, L.; Mongruel, A.; Beysens, D. Dew plant for bottling water. J. Clean. Prod. 2017, 155, 83–92. [Google Scholar] [CrossRef]
- Gido, B.; Friedler, E.; Broday, D.M. Assessment of atmospheric moisture harvesting by direct cooling. Atmos. Res. 2016, 182, 156–162. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, R.; Zhang, Y.; Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2018, 2, 1452–1475. [Google Scholar] [CrossRef]
- William, G.E.; Mohamed, M.H.; Fatouh, M. Desiccant system for water production from humid air using solar energy. Energy 2015, 90, 1707–1720. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Lord, J.; Thomas, A.; Treat, N.; Forkin, M.; Bain, R.; Dulac, P.; Behroozi, C.H.; Mamutov, T.; Fongheiser, J.; Kobilansky, N.; et al. Global potential for harvesting drinking water from air using solar energy. Nature 2021, 598, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, X.; Sheng, X.; Lin, P.; Tang, J.; Pan, L.; Kaneti, Y.V.; Yang, T.; Yamauchi, Y. Solar-powered sustainable water production: State-of-the-art technologies for sunlight–energy–water nexus. ACS Nano 2021, 15, 12535–12566. [Google Scholar] [CrossRef] [PubMed]
- LaPotin, A.; Kim, H.; Rao, S.R.; Wang, E.N. Adsorption-based atmospheric water harvesting: Impact of material and component properties on system-level performance. Acc. Chem. Res. 2019, 52, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cao, Y.; Lu, X.; Zhao, C.; Yan, C.; Mu, T. Water sorption in protic ionic liquids: Correlation between hygroscopicity and polarity. New J. Chem. 2013, 37, 1959–1967. [Google Scholar] [CrossRef]
- Qi, H.; Wei, T.; Zhao, W.; Zhu, B.; Liu, G.; Wang, P.; Lin, Z.; Wang, X.; Li, X.; Zhang, X.; et al. An interfacial solar—Driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption. Adv. Mater. 2019, 31, 1903378. [Google Scholar] [CrossRef]
- Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Wang, E.N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430–434. [Google Scholar] [CrossRef]
- Abtab SM, T.; Alezi, D.; Bhatt, P.M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Eddaoudi, M. Reticular chemistry in action: A hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 2018, 4, 94–105. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, R.Z.; Wang, L.W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents. Appl. Therm. Eng. 2016, 100, 893–901. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Wu, M.; Hong, S.; Wang, P. Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano Energy 2020, 67, 104255. [Google Scholar] [CrossRef]
- Qi, R.; Dong, C.; Zhang, L.Z. A review of liquid desiccant air dehumidification: From system to material manipulations. Energy Build. 2020, 215, 109897. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Y.; Sun, X.; Zhang, Z.; Mu, T. Water sorption in ionic liquids: Kinetics, mechanisms and hydrophilicity. Phys. Chem. Chem. Phys. 2012, 14, 12252–12262. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, X.; Liu, X.; Wu, Y.; Zhang, F.; Zhang, Z. Anhydrous “Dry Ionic Liquids”: A promising absorbent for CO2 capture. J. Mol. Liq. 2020, 305, 112810. [Google Scholar] [CrossRef]
- Pasqualin, P.; Lefers, R.; Mahmoud, S.; Davies, P.A. Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses. Renew. Sustain. Energy Rev. 2022, 154, 111815. [Google Scholar] [CrossRef]
- Elsarrag, E. Dehumidification of air by chemical liquid desiccant in a packed column and its heat and mass transfer effectiveness. HVACR Res. 2006, 12, 3–16. [Google Scholar] [CrossRef]
- Fabre, E.; Murshed, S.S. A review of the thermophysical properties and potential of ionic liquids for thermal applications. J. Mater. Chem. A 2021, 9, 15861–15879. [Google Scholar] [CrossRef]
- Rafique, M.M.; Gandhidasan, P.; Bahaidarah, H.M. Liquid desiccant materials and dehumidifiers—A review. Renew. Sustain. Energy Rev. 2016, 56, 179–195. [Google Scholar] [CrossRef]
- Liu, X.; Qu, M.; Liu, X.; Wang, L. Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances. Renew. Sustain. Energy Rev. 2019, 110, 444–466. [Google Scholar] [CrossRef]
- Gido, B.; Friedler, E.; Broday, D.M. Liquid-desiccant vapor separation reduces the energy requirements of atmospheric moisture harvesting. Environ. Sci. Technol. 2016, 50, 8362–8367. [Google Scholar] [CrossRef] [PubMed]
- Siegel, N.P.; Conser, B. A Techno-Economic Analysis of Solar-Driven Atmospheric Water Harvesting. J. Energy Resour. Technol. 2021, 143, 090902. [Google Scholar] [CrossRef]
- Yang, K.; Pan, T.; Lei, Q.; Dong, X.; Cheng, Q.; Han, Y. A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 2021, 55, 6542–6560. [Google Scholar] [CrossRef] [PubMed]
- Conde, M.R. Properties of aqueous solutions of lithium and calcium chlorides: Formulations for use in air conditioning equipment design. Int. J. Therm. Sci. 2004, 43, 367–382. [Google Scholar] [CrossRef]
- Shafeian, N.; Ranjbar, A.A.; Gorji, T.B. Progress in atmospheric water generation systems: A review. Renew. Sustain. Energy Rev. 2022, 161, 112325. [Google Scholar] [CrossRef]
- Peeters, R.; Vanderschaeghe, H.; Ronge, J.; Martens, J.A. Fresh water production from atmospheric air: Technology and innovation outlook. Isciencen 2021, 24, 103266. [Google Scholar] [CrossRef]
- Bakthavatchalam, B.; Habib, K.; Saidur, R.; Saha, B.B.; Irshad, K. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective. J. Mol. Liq. 2020, 305, 112787. [Google Scholar] [CrossRef]
- Kode, V.R.; Thompson, M.E.; McDonald, C.; Weicherding, J.; Dobrila, T.D.; Fodor, P.S.; Ao, G. Purification and assembly of DNA-stabilized boron nitride nanotubes into aligned films. ACS Appl. Nano Mater. 2019, 2, 2099–2105. [Google Scholar] [CrossRef]
- De Castro, C.N.; Murshed, S.S.; Lourenço, M.J.V.; Santos, F.J.V.; Lopes, M.M.; França, J.M.P. Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids. Int. J. Therm. Sci. 2012, 62, 34–39. [Google Scholar] [CrossRef]
- Selvam, C.; Mohan Lal, D.; Harish, S. Thermal conductivity and specific heat capacity of water–ethylene glycol mixture-based nanofluids with graphene nanoplatelets. J. Therm. Anal. Calorim. 2017, 129, 947–955. [Google Scholar] [CrossRef]
- Angayarkanni, S.A.; Sunny, V.; Philip, J. Effect of nanoparticle size, morphology and concentration on specific heat capacity and thermal conductivity of nanofluids. J. Nanofluids 2015, 4, 302–309. [Google Scholar] [CrossRef]
- Tiznobaik, H.; Shin, D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int. J. Heat Mass Transf. 2013, 57, 542–548. [Google Scholar] [CrossRef]
- Hone, J.; Llaguno, M.C.; Biercuk, M.J.; Johnson, A.T.; Batlogg, B.; Benes, Z.; Fischer, J.E. Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A 2002, 74, 339–343. [Google Scholar] [CrossRef]
- Hone, J. Phonons and thermal properties of carbon nanotubes. In Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2001; pp. 273–286. [Google Scholar]
- Halelfadl, S.; Estellé, P.; Aladag, B.; Doner, N.; Maré, T. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef]
- Halelfadl, S.; Maré, T.; Estellé, P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 2014, 53, 104–110. [Google Scholar] [CrossRef]
- Kode, V.R.; Hinkle, K.R.; Ao, G. Interaction of DNA-Complexed Boron Nitride Nanotubes and Cosolvents Impacts Dispersion and Length Characteristics. Langmuir 2021, 37, 10934–10944. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estellé, P.; Maré, T. Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime. Exp. Therm. Fluid Sci. 2014, 55, 174–180. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhou, L.P.; Peng, X.F. Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Ther. 2006, 27, 139–151. [Google Scholar] [CrossRef]
- Higano, M.; Miyagawa, A.; Saigou, K.; Masuda, H.; Miyashita, H. Measuring the specific heat capacity of magnetic fluids using a differential scanning calorimeter. Int. J. Therm. 1999, 20, 207–215. [Google Scholar] [CrossRef]
- Zeng, X.; Tao, W.K.; Simpson, J. An equation for moist entropy in a precipitating and icy atmosphere. J. Atmos. Sci. 2005, 62, 4293–4309. [Google Scholar] [CrossRef]
- Seader, J.D.; Henley, E.J.; Roper, D.K. Separation process principles. In Chemical and Biochemical Operations, 3rd ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Shoaib, N.; Aboosadi, Z.A.; Esfandiari, N.; Honarvar, B. Experimental Study of Dehumidification Process by CaCl2 Liquid Desiccant Containing CuO Nanoparticles. Int. J. Air-Cond. Refrig. 2020, 28, 2050009. [Google Scholar] [CrossRef]
- Kang, Y.T.; Kim, H.J.; Lee, K.I. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. Int. J. Refrig. 2008, 31, 850–856. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
33 wt.% | 37.65 kJ kg−1 | ||
36.7 wt.% | 0.7 | ||
2.69 kJ kg−1 K−1 | 4.0 | ||
349.15 K | 1.99 kJ kg−1 K−1 | ||
300.15 K | 1.4 | ||
264.35 kJ kg−1 | 2.5 | ||
0.7 | negligible |
AWG Configuration | Desiccant Solution | Sensible Load (kJ/kgH2O) | Latent Load (kJ/kgH2O) | Compressor Load (kJ/kgH2O) | |
---|---|---|---|---|---|
AWG with latent + sensible recovery | LiCl | 342 | 271 | 398 | 1.06 |
AWG with latent + sensible recovery | LiCl + 0.5 vol.% MWCNTs | 175 | 271 | 398 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kode, V.R.; Stuckenberg, D.J.; Went, E.K.; Erickson, O.M.; Plumer, E. Techno-Economic Analysis of Atmospheric Water Generation by Hybrid Nanofluids to Mitigate Global Water Scarcity. Liquids 2022, 2, 183-195. https://doi.org/10.3390/liquids2030012
Kode VR, Stuckenberg DJ, Went EK, Erickson OM, Plumer E. Techno-Economic Analysis of Atmospheric Water Generation by Hybrid Nanofluids to Mitigate Global Water Scarcity. Liquids. 2022; 2(3):183-195. https://doi.org/10.3390/liquids2030012
Chicago/Turabian StyleKode, Venkateswara R., David J. Stuckenberg, Erick K. Went, Owen M. Erickson, and Ethan Plumer. 2022. "Techno-Economic Analysis of Atmospheric Water Generation by Hybrid Nanofluids to Mitigate Global Water Scarcity" Liquids 2, no. 3: 183-195. https://doi.org/10.3390/liquids2030012
APA StyleKode, V. R., Stuckenberg, D. J., Went, E. K., Erickson, O. M., & Plumer, E. (2022). Techno-Economic Analysis of Atmospheric Water Generation by Hybrid Nanofluids to Mitigate Global Water Scarcity. Liquids, 2(3), 183-195. https://doi.org/10.3390/liquids2030012