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Abstract: A numerical application has been carried out to determine the thermophysical properties
of more than fifty pure liquid compounds involved in the production process of cyclohexanone,
whose real values are unknown, in many cases. Two group-contribution methods, the Joback and the
Marrero-Gani methods, both used in the fields of physicochemistry and engineering, are employed.
Both methods were implemented to evaluate critical properties, phase transition properties, and
others, which are required for their use in industrial process simulation/design. The quality of the
estimates is evaluated by comparing them with those from the literature, where available. In general,
both models provide acceptable predictions, although each of them shows improvement for some of
the properties considered, recommending their use, when required.
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1. Introduction

In a previous work [1], an exhaustive analysis was carried out on the possibilities of
the separation of a set of substances generated in the production process of cyclohexanone,
the base compound for the manufacture of nylon-6, used in the textile industry. However,
the indicated process is not direct, intermediate processes being necessary to obtain &-
caprolactam, a precursor of nylon-6. Therefore, the production of cyclohexanone as a
raw material for different industrial processes, including different types of nylon, is high,
currently at approximately 6 MTm/year [2]. In addition, the quality requirements of the
cyclic ketone are also high, and the purification process from cyclohexane is complex, as
shown in Figure 1. This makes it necessary to optimize the different separation stages, both
technically and economically, whose performance represents an important area of work in
the field of chemical engineering, requiring an appropriate modeling with the support of
the mathematics-thermodynamics binomial.

According to Figure 1, cyclohexanone is obtained by the oxidation of cyclohexane,
producing, in addition to cyclohexanone, cyclohexanol, cyclohexyl hydroperoxide, and
many other compounds, in smaller proportion. The last-mentioned compound is recon-
verted (after washing with water and alkalis) into the first two, after removing undesirable
compounds by decantation. The resulting solution is subjected to distillation, separating
the unreacted cyclohexane in the first unit and recycled into the initial process unit, while
the cyclohexanol is dehydrogenated to convert it to cyclohexanone. The aforementioned
operations, as defined, suggest a simple development of the global process; however, the
current development of the process is quite different due to the formation, during the differ-
ent stages, of many compounds (more than fifty, although they are considered secondary)
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CYCLOHEXANE n

that are produced from the beginning with the oxidation of cyclohexane, and in varying
quantities, some of them unidentified up until now [3-10].
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Figure 1. Scheme indicating the different operation units existing in the cyclohexanone production
process.

Many of the compounds discovered in various cyclohexanone production plants are
shown in Appendix A, indicating the process streams in which they are found. Some of
these substances do not pose a problem for the quality of cyclohexanone, either because
they are easy to separate, e.g., cyclohexane (streams 1, 3, 5, 7, 9, 11) or cyclohexylidene-
cyclohexanone (stream 16), see Figure 1, or because they are only present when the process
operates outside its normal conditions, such as 5-hexenal (stream 19 in Figure 1). However,
other substances are likely to contaminate cyclohexanone, creating the need to design
appropriate separation operations to remove the most undesirable substances. Appendix B
shows a list of substances that influence the global process, including some common
substances, such as phenol and toluene, as well as many others that are unusual and little
studied, whose properties are unknown. In any case, the design of separation processes
depends on the availability of the physicochemical information for the substances involved,
as well as their solutions. The most important information required, such as boiling
temperatures, enthalpies of change of state, thermal capacities, and critical properties,
among others, are used to define the corresponding operation units.

The necessary information is obtained through direct experimentation and with
appropriate equipment; however, these actions are costly, both in terms of money and time.
Without ignoring the importance of experimental work, in the chemical engineering field,
the theoretical estimation methods are sometimes used to generate approximate values of
the properties involved in the design of operations. In the literature [11-15], there are many
methods for estimating the thermophysical properties of pure substances and solutions; of
these, the so-called “group contribution methods” (GCM) prove to be useful and easy to use
in practical engineering cases. A GCM is generated as a mathematical tool that combines
the particular contributions of each of the functional groups present in the molecules of a
compound/system to the calculation of a given thermophysical property. In a previous
work [1], the Joback method [14] was used to discriminate between positional isomers, but
an exhaustive assessment of the reliability of the estimates was not performed.

Once the necessity of certain properties of a large number of substances—more than
fifty involved in the global process, shown in Figure 1—is known, the goal of this work is to
estimate these requirements to achieve the process design. For this, two GCM procedures
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were used: the Joback, previously mentioned, and the Marrero—-Gani [15], checking the
results to determine their reliability given the different levels of theory of both methodolo-
gies, which will be quantified by comparing the predicted results with the values available
in the literature.

2. Two Group-Contribution Methods for Estimating Properties of Pure Substances

The GCMs are based on the assumption that the properties of a chemical compound
can be calculated by combining, by means of certain procedures (differeing according
to the method), the contribution to that property of the different “fragments” that make
up its molecule. To do this, the molecule is broken down using “standardized” entities
or “groups”, varying depending on the method. To each group (see Figures 2 and 3) is
assigned a numerical parameter that quantifies its contribution to the studied property.
This approach makes it possible to calculate the properties of a substance by determining
the number of groups of each type present in the molecule and then applying a simple
calculation defined by the corresponding method. In the first-order GCMs, the contribution
of each group is assumed to be independent of its environment and of other groups. There-
fore, by using experimental data of the compounds containing that group, the contribution
of the parameter associated with it can be determined. In this way, the values obtained can
be used to estimate the properties of other substances for which experimental information
is not available.

(a) (b) V
/\ x1 2
igfam 2. x
< e

Figure 2. Decomposition of molecules according to the Joback method [14]. (a) Cyclohexene,
(b) 2-cyclohexen-1-one.

M

Figure 3. Decomposition of molecules according to Marrero—Gani method [15]. (a) Cyclohexene,
(b) 2-cyclohexen-1-one.

One of the best known first-order methods for estimating the properties of pure
substances is the Joback [14] method used in this work, since it has been shown to produce
estimates with acceptable accuracy and, in addition, it can be applied to a wide variety
of groups and properties, characteristics that justify its relevance as a tool in chemical
engineering calculations.

The major drawback of the Joback method, and also of others classified as first-
order methods, is that they do not differentiate the calculation for the case of molecules
constituting the so-called position isomers. These methods are also unsuitable for complex
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molecules for which the chemical environment significantly influences the thermophysical
behavior. These deficiencies are corrected by the higher-order qualified methods, as they
include additional groups produced by combinations of lower-order groups, and whose
parameters take into account the effect caused by the chemical environment. Marrero and
Gani [15] developed a method that includes groups of several levels (specifically three),
producing acceptable results. Therefore, this method, along with the Joback method, is used
in this work to determine the properties of the selected compounds, as described briefly in
the following section, with examples illustrating the specific calculation procedures.

2.1. The Joback Method

In this procedure, the contributions of the groups generate a parameter in a charac-
teristic equation defined for each property with which the estimation is achieved. The au-
thors [14] provide equations for different thermophysical quantities, such as boiling temper-
atures Ty, melting temperatures Ty, enthalpies of changes of state, vaporization enthalpies
Ahg, melting enthalpies Ahg,, enthalpies of formation Ah{, Gibbs energy formation Agy,
isobaric thermal capacities, cp, and critical properties; pc, v¢, Te. Table Al of Appendix C
compiles the calculation equations for each of these properties, showing the characteristic
parameters of the groups of each property in the second column of the table, whose values
are quantified [14]. To estimate the molecule’s properties, it is broken down into the groups
identified by Joback [14], as shown in Figure 2, with two specific cases taken as examples:
cyclohexene and 2-cyclohexen-1-one. Once the groups have been identified and quantified,
this method multiplies the parameter of each group by adding the value obtained for all
the groups. With these values, the property is estimated using the expressions shown in
the third column of Table A1. Table 1 shows the values obtained for the critical properties
of the two species chosen in Figure 2, comparing the results with those from the literature,
as indicated.

Table 1. Groups for cyclohexene and 2-cyclohexen-1-one, according to Joback method [14], and the
contribution terms for critical properties. Ny is the number of groups in the molecules; 7.y, 7Tk, Uck
are the contributing parameters corresponding to T, pc, and v, respectively. The calculated values
and those estimated by the procedure are shown.

Compounds Groups Nx Tek Tk Uek
-CH,- 4 0.0100 0.0025 48
Cyclohexene =CH- 2 0.0082 0.0011 41
total: 0.0564 0.0122 274
estimated— T./K =567 pc/bar =43.3 ve/cm®-mol~ ! =291
from ref. [16] T./K =560.4 pc/bar = 48.41 ve/cm3-mol~1 =377.4
-CH,- 3 0.0100 0.0025 48
=CH- 2 0.0082 0.0011 41
2-Cyclohexen-1-one >C=0 1 0.0284 0.0028 55
total: 0.0784 0.0125 281
estimated — T¢/K = 655 pe/bar =453 v /cm3-mol 1 =298
from ref. [17] Te/K =685.0 pe/bar = 45.30 ve/em3-mol~! = 304.9

2.2. Marrero—Gani Method

This procedure [15], pointed out in the previous section as of higher order, uses groups
in three different orders. The first-order groups correspond to those with a single functional
group and divide the molecule into fragments similar to those used in the Joback method,
e.g., linear alkanes and monofunctional compounds. Second-order groups are used to
improve the estimation of branched and polyfunctional compounds, with a maximum
of one aromatic ring; these groups are established by combining two or more functional
groups. Lastly, third-order groups are used to represent polycyclic compounds and specific
combinations of functional groups, allowing the method to make satisfactory estimates
of complex molecules. As in the Joback method, the Marrero-Gani method allows the
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same properties to be estimated, with the exception of the isobaric thermal capacity. The
corresponding mathematical equations of this procedure are presented in Appendix D.

The application of the method to the same compounds chosen as examples in Section 2.1
requires the generation of the groups in the molecules. Figure 3a shows that those with
first-order groups corresponding to cyclohexene coincide with those in the Joback method
(Figure 2a), with the addition of the second-order groups. However, 2-cyclohexen-1-one
is a polyfunctional compound, containing both first- and second-order groups, as shown
in Figure 2b. Table 2 shows the results obtained with the application of the Marrero-Gani
method to the estimation of the critical properties of the two selected molecules, comparing
the results with those from the literature.

Table 2. Groups for cyclohexene and 2-cyclohexen-1-one, according to Marrero—Gani method [15],
and contribution parameters for critical properties. Ny is the number of groups in the molecules, and
j is the group order. Calculated values and those estimated by the procedure are shown.

Compounds Groups j N T Pejij Veijj
CH, (cyc) 1° 4 1.8815 0.009884 49.24
Cyclohexene CH=CH (cyc) 1° 1 3.6426 0.013815 83.91
total: 11.1686 0.053351 280.87
estimated— T./K =558 pc/bar =43.9 ve/cm®-mol~! =289
from ref. [16] Te/K = 560.4 po/bar = 48.41 v /cm3-mol~! =377.4
CH, (cyc) 1° 3 1.8815 0.009884 49.24
2-Cyclohexen-1-one CH=CH (cyc) 1° 1 3.6426 0.013815 83.91
CO (cyc) 1° 1 12.6396 —0.000207 57.38
total: 21.9267 0.043260 289.01
estimated — T/K =714 pe/bar = 49 v /cm3-mol~1 =297
from ref. [17] T./K=685.0 pc/bar = 45.30 ve/cm3-mol~! =304.9

3. Evaluation of Estimates for the Selected Substances

The numerical results obtained for the different properties for all the compounds
selected, estimated with the Joback and Marrero—Gani methods, are given in Appendix C
(Table A2) and Appendix D (Table A5), respectively. A comparison with the values available
in the literature is made in this section.

3.1. Evaluation of Temperatures and Enthalpies of Phase Transition

Figure 4a compares the values found [16-30] for the boiling temperatures, T, and the
estimates obtained by both methods, showing the existence of a direct correlation. The
Joback method produces greater dispersion in the results than does the Marrero-Gani
method, which is reflected in a lower R? coefficient. The residuals yield an average error of
2.2% for the Joback method, and a slightly lower average error of 0.6% for the Marrero-Gani
method, the average standard deviation of the former, 12.5 K, being higher than that of the
latter, 4.5 K.

Figure 4b shows the comparison of the estimates made using both methods for the
melting temperatures, T3, in relation to the values found in the literature [16,23,24,29-40].
In general, both methods present estimates with a lower order than the T?, the average
errors for both methods being close to 9%, with average standard deviations of 32 K for the
Joback method and 25 K for the Marrero—Gani method.

Figure 5a compares the estimates of enthalpies of vaporization, Ah{ with the literature
values [16,20,24,41-48]. Both methods yield similar results, with average errors of 15.3%,
for the Joback method, and 19.7%, for the Marrero—Gani method. The similarity is greater
for the case of melting enthalpies, Ak, [16,30,31,46-50], Figure 5b, yielding average error
values of 15.9%, with Marrero—Gani method, and 16.9%, with the Joback method. However,
in both cases, the determination coefficient for the melting enthalpy is very small.
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temperatures. Labels correspond to the order of compounds established in Appendix B.
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3.2. Critical Properties

Comparison with literature data [16,17,24,39,51-57] of the critical temperatures, T, is
shown in Figure 6a—c, and the estimates are considered acceptable. The two methods
show good experimental vs. model correlations; those of the Marrero-Gani method
rise to an average error of 3.5%, compared to 2.9% according to the Joback method.
In contrast, the critical pressure p. is slightly better represented by the Marrero-Gani
method (5.7%) than by the Joback method (6.2%). The results for the critical volume,
v, yield errors of 5.9% (Marrero—Gani) and 4.6% (Joback), although the information for
this property is currently scarce. Numerical values of all those properties are shown in
Tables A2 and A5 of the Appendices C and D.

3.3. Estimation of Enthalpies of Formation and Thermal Capacities

The amount of information available for the enthalpies of formation, Ah{ [16,24,58-67],
and thermal capacities, ¢, [16,50,64,68-73], is reduced for the set of selected compounds;
therefore, the comments made in this work on these properties cannot be assessed generi-
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cally. The estimation of Ahf is acceptable using both models, as shown in Figure 7a. The
average errors are around 12% for the Joback method and much higher—21%—for the
Marrero-Gani method. The estimation of the cps is only conducted using the Joback method
(Figure 7b), with a systematic deviation that underestimates the value of the property with
respect to the experimental values, showing an average error of more than 32%.
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4. Conclusions

Estimates are presented for different properties of a set of substances involved in the
cyclohexanone production process, as obtained using two group-contribution methods: the
Joback method [14] and the Marrero—Gani method [15]. The predictions made are evaluated
by comparing the results with those available in the experimental research. The latter does
not lead to a clear choice of one method over the other, as the comparisons made do not
sufficiently clarify the preference.

The Marrero—Gani method has a higher level of theory, since it uses groups of different
orders, which allows it to be used for isomeric compounds. In general, it produces better
results for most properties, with the exception of the melting enthalpy, critical temperature,
and critical volume, which are better represented by the Joback method. The latter can also
be used to estimate thermal capacities. Despite these differences and the assessment of the
small errors obtained with both methods, at least statistically, it is acceptable to use either
of the two procedures. The major advantage of using the Joback method is that it is simpler,
where appropriate.

In summary, the use of any of these methods provides a rapid and reasonably reliable
approximation of the different properties required to address a given analysis or simulation
in order to optimize the cyclohexanone production process. For a practical case, the
methods used have served to estimate boiling temperatures and critical properties, which
are important for evaluating the distillation process of the towers shown in Figure 1.
Likewise, the approximation obtained for the enthalpies of phase change, especially those
of vaporization and thermal capacities, facilitates the design of the heat exchangers, such
as the reboilers and condensers of the towers mentioned. The properties corresponding to
the enthalpies of formation and the Gibbs energies are involved in the prediction of the
complex reactions that take place in the different stages of the global process.
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Appendix A. Compounds Present in the Streams of the Cyclohexanone Production Process

1.  Cyclohexane feeding; cyclohexane, hydrocarbons.

2. Oxidant supply; air.

3. Entrance to oxidation; cyclohexane, hydrocarbons, cyclohexanone, cyclohexanol, light
oxides.

4.  Nitrogen.

5. Oxidation effluent; cyclohexane, cyclohexanone, cyclohexanol, light and heavy oxi-
dized, peroxides, formic acid, acetic acid, other monocarboxylic acids, dicarboxylic
acids, esters, butanol, pentanol, cyclopentanone, cyclopentanol, 2-pentanone, 2-
cyclo-hexen-1-one, cyclohexene, 2-methylcyclopentanone, methylcyclopentanol, hep-
tanones, 2-methyl-3-heptanone, 1,3-cyclohexanedione, 1,2-cyclohexanediol, methylcy-
clohexanols, ethers.

6.  Washing water; water.

7. Washing emulsion; water, cyclohexane, cyclohexanone, cyclohexanol, light and heavy
oxidized, peroxides, formic acid, acetic acid, other monocarboxylic acids, dicarboxylic
acids, esters, butanol, pentanol, cyclopentanone, cyclopentanol, 2-pentanone, 2-cyclo
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10.
11.

12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

hexen-1-one, cyclohexene, 2-methylcyclopentanone, 1-methylcyclopentanol, hep-
tanones, 2-methyl-3-heptanone, 1,3-cyclohexanedione, 1,2-cyclohexanediol, methylcy-
clohexanols, ethers.

Acid water; water, formic acid, acetic acid, other monocarboxylic acids.

Oxidized product; cyclohexane, cyclohexanone, cyclohexanol, light and heavy oxi-
dized, peroxides, monocarboxylic acids, dicarboxylic acids, esters, butanol, pentanol,
cyclopentanone, cyclopentanol, 2-pentanone, 2-cyclohexen-1-one, cyclohexene, 2-
methyl cyclopentanone, 1-methylcyclopentanol, heptanones, 2-methyl-3-heptanone,
1,3-cyclo hexanedione, 1,2-cyclohexanediol, methylcyclohexanols, ethers.

Alkali; water, sodium hydroxide.

Saponification emulsion; water, sodium hydroxide, cyclohexane, cyclohexanone, cy-
clohexanol, light and heavy oxidized, peroxides, monocarboxylic acids, dicarboxylic
acids, esters, butanol, pentanol, cyclopentanone, cyclopentanol, 2-pentanone, cyclo-
hexenone, cyclohexene, methylcyclopentanone, methylcyclopentanol, heptanones,
methylheptanone, cyclohexanedione, cyclohexanediol, methylcyclohexanols, ethers.
Sodium salts; sodium hydroxide, sodium salts.

Saponified product; sodium hydroxide, cyclohexanone, cyclohexanol, light oxidized.
Cx Irecycle; cyclohexanone, cyclohexanol, light oxides.

KA-Oil; cyclohexanone, cyclohexanol, oxides, alcohols, aldehydes and ketones.
Purified cyclohexanone; butanol, pentanol, cyclopentanol, cyclopentanone, 5-hexenal,
hexanal, 2-hexanone, cyclohexanone, cyclohexanol, 2-cyclohexen-1-one, heptanones,
methylcyclohexanones, butylcyclohexane, cyclohexyl-butyl-ether.

Residue from the purification of cyclohexanone; cyclohexanol, 2-cyclohexen-1-one,
2-cyclohexen-1-ol, heptanones, methylcyclohexanones, butylcyclohexane, cyclohexyl-
butyl-ether, cyclohexene oxides, cyclohexylidene-cyclohexanone, cyclohexanone oligo
mers, pentylcyclohexane, cyclohexyl acetate, other light/heavy condensation prod-
ucts.

Heavy-residue; cyclohexylidene-cyclohexanone, cyclohexanone oligomers, heavy
condensation products.

Cyclohexanol for dehydrogenation; cyclohexanone, cyclohexanol, 2-cyclohexen-1-one,
2-cyclohexen-1-ol, heptanones, methylcyclohexanones, butylcyclohexane, cyclohexyl-
butyl-ether, cyclohexene oxides, cyclohexylidene-cyclohexanone, cyclohexa-none
oligomers, n-pentylcyclohexane, cyclohexyl acetate, other light/heavy condensation
products.

Cyclohexanol recycle; cyclopentanol, hexanal, 2-hexanone, cyclohexanone, cyclo-
hexanol, cyclohexenone, cyclohexenol, heptanones, methylcyclohexanone, cyclohexyl-
butyl ether.

Hydrogen.

Appendix B. Compounds Involved in the Production Process of Cyclohexanone

Order number, compound, empirical formula, structure, and CAS number are indi-

cated.
No. Compound Formula Chemical Structure CAS#
o
1 acetic acid CoH40, )J\ 64-19-7

OH

2 1 ,1'—bicyclohexy1 C12H22 <:>_<:> 92-51-3
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10

11

12

13

14

15

Compound

[1,1"-bicyclohexyl]-2,3'-dione

1-butanol

butoxycyclohexane

butylcyclohexane

2-butylcyclohexanone

cycloheptanone

1,2-cyclohexanediol

1,3-cyclohexanedione

cyclohexanol

cyclohexanone

2-cyclohexen-1-0l

2-cyclohexen-1-one

1-(1-cyclohexen-1-yl)-2-propanone

Formula

C12Hi80,

C4Hy90

C1oH200

CioH2o

C1oH180

CyH;,0

CeH1202

CeHgOs

Ce¢H120

CeH19O

CeHgO

CgHsO

C9H14O

Chemical Structure

@M

-
G
>
s
(e
-
>

g

CAS#

55265-34-4

71-36-3

24072-44-4

1678-93-9

1126-18-7

502-42-1

931-17-9

504-02-9

108-93-0

108-94-1

822-67-3

930-68-7

768-50-3
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16

17

18

19

20

21

22

23

24

25

26

27

Compound

cyclohexene

cyclohexyl acetone

cyclohexyl butanoate

cyclohexyl ethanone

cyclohexyl ethanoate

cyclohexyl ether

cyclohexyl hexanoate

cyclohexyl pentanoate

2-cyclohexylidencyclohexanone

cyclopentanol

cyclopentanone

3,3-dimethylhexane

Formula

CeHio

C9H16O

Ci1oHi802

CgHy140

CgH140,

C1oH20

C12H20,

C11HoO,

C1oHy30

CsH190

C,HgO

CgHis

Chemical Structure

CAS#

110-83-8

103-78-6

1551-44-6

823-76-7

622-45-7

4645-15-2

6243-10-3

1551-43-5

1011-12-7

96-41-3

120-92-3

563-16-6
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28

29

30

31

32

33

34

35

36

37

38

39

Compound

4-(1,1-dimethylpropyl)cyclohexanone

2-ethylidenecyclohexanone

formic acid

2-heptanone

3-heptanone

hexanal

2-hexanone

5-hexenal

1-methoxycyclohexane

5-methyl-2-
isopropylidenecyclohexanone

2-methyl-3-heptanone

methylcyclohexane

Formula

C11H0O

CgH1,0O

CH,0,

C7H 140

CyH 140

C6H12O

C6H120

CeH19O

C7H14O

C1oH160

CgH160

CyHyy

Chemical Structure

-0
s
g

oA

A

2 L3378

CAS#

16587-71-6

1122-25-4

64-18-6

110-43-0

106-35-4

66-25-1

591-78-6

764-59-0

931-56-6

15932-80-6

13019-20-0

108-87-2
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40

41

42

43

44

45

46

47

48

49

50

51

Compound

2-methylcyclohexanone

3-methylcyclohexanone

methylcyclopentane

1-methylcyclopentanol

(1-methylethyl)cyclohexane

2-methylcyclopentanone

1-pentanol

2-pentanone

3-pentyl-1-cyclohexene

pentylcyclohexane

phenol

p-tert-butylcyclohexanol

Formula

CyH;1,0

CyH;,0

CeH12

C6H120

CoHyg

CeHy00O

CsHp2O

CsH190

Ci1Hyo

CiiHx

CeHgO

C1oH200

Chemical Structure

OH

LI RO

]

o
Yata

HO

CAS#

583-60-8

591-24-2

96-37-7

1462-03-9

696-29-7

1120-72-5

71-41-0

107-87-9

15232-92-5

4292-92-6

108-95-2

98-52-2
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No. Compound Formula Chemical Structure CAS#
O,

52 2-tetrahydrofurylmethanol Cs5H100; Q/\% 97-99-4

53 1,2,3 4-tetrahydronaphthalene CioH12 @O 119-64-2
/ N\

54 toluene C,Hg @ 108-88-3

Appendix C. Mathematics of the Joback Method

Equations used to estimate the thermophysical properties of pure substances by the
Joback method are compiled in Table Al. The estimated values for the selected compounds
in this work are shown in Table A2.

Table Al. Parameters and equations used in the Joback method.

Property Parameter Equation
Boiling temperature/K Tp k T9 = 198.2 + ) Ny Ty
k
Melting temperature/K Tk TR = 1225+ Y Ny Tek
k
. 271
Critical temperature/K Tek T.=T, |:0.58 44 0.965% Ny To — (Z Nch,k>
Kk k
Critical pressure/bar TTe k pe = (0.113 + 0.0032Natoms — ¥ N 7Tc,k>
Kk
Critical volume/cm?-mol~! Uck Ve = 175+ ) Nyv i
K
Gibbs energy of formation/ kJ-kmol ! Agex Ag? = 53.88 + ) NicAgt i
K
Enthalpy of formation/ kJ-kmol ! Ahgy Al = 68.29 + Y- Ny Ahgy
K
Enthalpy of vaporization/ kJ-kmol 1 Ahy i AhY =153 + 3 NiAhy
K
Enthalpy of melting/ kJ-kmol 1 Ahp, Ahg, = —0.88 + Y NiAhm
K
cA ;B A B
Isobaric thermal capacity /kJ-kmol ~1-K~! Pk’ TPk = %Nkcp,k —3793+T %Nkcp,k +0.210 | +

CC 'CD

pk’ “pk

+T72 (z Nkcgk - 3,91~10—4> + 78 (2 Nkc}?k + 2.06~10‘7)
k ’ k ’

where Ny is the number of groups of type “k” in the molecule whose properties are to be calculated and Natoms
is the total number of atoms in it. The parameters T, , Tik, Tk, and are the group contributions for the boiling,
melting, and critical temperatures, respectively; 77y is the contribution parameter for the critical pressure, v is
that of the critical volume, Ag¢y is the group contribution parameter for the Gibbs energy of formation, and Ahgy,
Ahyy, Al i are those corresponding to the enthalpies of formation, vaporization and melting, respectively; cék ;
Cglk ; Cg/k ; Cgk are the group contributions to calculate the thermal capacities.

Table A2. Properties estimated by the Joback method [14] for the selected compounds in this work.

TS TS T, . e AR A AR Al N
No. Compound K K K e mokmol  KJjmol k]/fgr?ol Wmol  J/mol 28K
J/(molK)
1 acetic acid 3907 2729 5873 5731 0171 4348 3779 4067 1108 657
2 1,1'-bicyclohexyl 5443 2628 7826 2735 0587 3205 0.8 4785 1639 2750
3 [1,1'-bicyclohexyl]-2,3'-dione 6487 3762 9091 2799 0588 4578 1461 6311 953 2192
4 1-butanol 4067 1901 5711 3976 0344 3546 1980 4325 1287 1380
5 butoxycyclohexane 4702 2321 6659 2525 0547 3276 472 4069 1468  238.0
6 butyicyclohexane 4478 2098 6446 2569 0529 1954  57.8 3828 1349 2230
7 2-butylcyclohexanone 5156 2781 7291 2663 0536 3331 648 4253 1300  228.0
8 cycloheptanone 4559 245 6892 3946 0361 2570  —945 3633 2.6 1230
9 1,2-cyclohexanediol 5028 3589 7204 348 0342 4649 2736 5377 1655 1950
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Table A2. Cont.
T T T, Pe e AR Age AKS AR ‘p
No. Compound K K K bar  mi/kmol Kj/mol  kl/mol  kJ/mol  kjfmol 228K
J/(molK)
10 1,3-cyclohexanedione 4965 3054 7433 4529 0319 3679  —2133 48.19 1.08 114.7
11 ¢yclohexanol 4319 264 6546 4925 0270  —2787  —1209 41.73 9.30 147.0
12 cyclohexanone 4287 2372 6560 4323 0313 —2302  —90.8 33.94 1.57 105.0
13 2-cyclohexen-1-ol 4310 2647 6562 6289 0257  —2209  —909 42.02 10.53 140.0
14 2-cyclohexen-1-one 4279 238 6548 4535 0299 1724  —608 34.23 2.79 97.5
15 1-(1-cyclohexen-1-yl)-2-propanone 4886 2718 7074  34.04 0.458 —180.8 12.0 43.46 14.40 190.0
16 cyclohexene 360.1  169.8 5669 4328 0292 —347 61.8 29.98 3.8 926
17 cyclohexylacetone 4787 2485 689.0  30.39 0.479 —287.4 —79.6 42.80 12.50 201.0
18 cyclohexyl butanoate 5060 2522 7084 2582 0555 5127  —2526 45.69 17.86 239.0
19 ¢yclohexylethanone 4559 2372 6692 3388 0423 2667  —88.0 40.58 9.91 178.0
20 cyclohexyl ethanoate 4602 2291 6684 4152 0443 —4714  —269.4 40.94 14.44 169.0
21 cyclohexyl ether 5443 2628 7826 2646 0587  —3205 0.8 47.85 16.39 275.0
22 cyclohexyl hexanoate 551.7 274.7 748.6 21.43 0.667 —554.0 —235.8 50.14 23.04 285.0
23 cyclohexyl pentanoate 5289 2634 7285 2347 0611 5333  —244.2 47.92 20.45 262.0
24 2-cyclohexylidencyclohexanone 621.1 362.1 8720  27.33 0.606 —235.8 43.5 59.44 11.56 220.1
25 cyclopentanol 4047 2562 6210 5455 0223 2519  —117.2 39.33 8.81 129.0
26 cyclopentanone 4016 2295 6223 4756 0265 —2034 871 31.54 1.08 87.0
27 3,3-dimethylhexane 3792 1823 5534 2585 0473 —217.2 19.3 34.77 14.67 184.0
28 4-(1,1-dimethylpropyl)cyclohexanone 5352 2918 7589  24.63 0.581 —362.5 —53.6 46.13 13.79 251.0
29 2-ethylidenecyclohexanone 4811 2701 7098 3526  0.408 1955  —285 39.62 7.07 142.0
30 formic acid 3631 2038 5344 7588 0127  —301.8  —2786 43.65 472 46.1
31 2-heptanone 4134 21858 590.0 2996 0434  —3004  —1209 39.08 15.49 167.3
32 3-heptanone 4134 21858 5900 2996 0434  —3004  —1209 39.08 15.49 167.3
33 hexanal 3853 1989 5578 3647  0.389 2528  —99.9 35.37 15.35 148.0
34 2-hexanone 3906 2068 5681 3599 0378 —2798  —1293 35.30 14.66 144.0
35 5-hexenal 3820 1971 5581 3552 0370  —1273  —120 34.70 14.07 137.0
36 1-Methoxycyclohexane 3744 1905 569.6 3353 0331 2389  —688 31.62 6.42 151.0
37 5-methyl-2-isopropylidenecyclohexanone 522.1 274.5 755.1 27.58 0.520 —266.9 —279 43.40 12.01 219.0
38 2-methyl-3-heptanone 4358 2148 6152 2727 0483 3263  —1148 40.96 14.55 189.2
39 Methylcyclohexane 3791 176 5816 3522 0361 ~1335 325 31.61 5.72 155.0
40 2-methylcyclohexanone 3520 16828 5469 3839 0313 ~106.7 36.2 29.40 523 1126
41 3-methylcyclohexanone 3520 16828 5469 3839 0313 ~106.7 36.2 29.40 523 1126
42 1-methylcyclopentanol 4278 2914 6516 5066 0277  —2573  —1143 40.41 5.11 121.0
43 2-methylcyclopentanone 4198  236.5 6374 4011 0.320 —244.4 —86.4 37.61 4.74 117.5
44 (1-methylethyl)cyclohexane 4244 1836 6282 2863 0467  —180.1 46.9 35.67 7.38 200.0
45 methylcyclopentanone 3519 1682 5469 3839 0312  —106.6 36.1 29.40 523 1117
46 1-pentanol 4060 2069 5676 3877 0335 —2988  —145.6 4340 12.79 131.0
47 2-pentanone 3676 196 5459 3741 0321 2591  —137.7 33.96 10.30 1207
48 3-pentyl-1-cyclohexene 4698 2219 6663 2419 0571 ~1583 96.2 40.80 17.30 239.0
49 pentylcyclohexane 4706 2211 6652 2336 0585 —216.1 66.2 40,51 16.08 246.0
50 phenol 4390 283 6710 5926  0.230 —96.5 329 4358 1151 95.2
51 p-tert-butylcyclohexanol 5236 2718 729.8  25.77 0.576 —270.8 —32.7 50.04 18.90 2143
52 2-tetrahydrofurylmethanol 4493 2358 6352 4829 0315 —-399.6  —227.7 48.45 14.06 125.0
53 1,2,3 4-tetrahydronaphthalene 4755 2601 7081 3569 0438 62.3 1925 41.19 10.27 144.0
54 toluene 3862 1951 5978 4114  0.320 48.7 1205 3345 7.93 102.0
Appendix D. Mathematics of the Marrero-Gani Method
The Marrero—Gani method estimates the same properties as the Joback method, with
the exception of the thermal capacity. The combination of groups of different order is
performed in the same way for each property, following Equation (A1):
— 2l A2 3
f=1NiAj + ) MAT +) Oy (A1)
i j k
where Nj, M;, and Oy are, respectively, the number groups of first, second, or third order for
a given type present in the molecule, and Ail, Ajz, and Ai are the characteristic parameters
of the corresponding group. The function f varies according to the property to be estimated,
as shown in Table A3. The constants used for that function are presented in Table A4.
Results obtained from the application of the method for the selected compounds are shown
in Table A5.
Table A3. Equations used in the Marrero—Gani method [15] for estimating the different thermophysi-
cal properties.
Property f= Right-Hand Side of Equation (A1)
Melting temperature/K exp(T5 /T2 ) Y NiTgi+55 MiTR,; + L Ok Tig

Boiling temperature/K

exp(Ty/Tg,) L Ni Ty +255 M Ty, + Lk Ox Tiggye
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Table A3. Cont.

Property

f=

Right-Hand Side of Equation (A1)

Critical temperature/K
Critical pressure/bar

Critical volume/cm?-mol !

Gibbs energy of formation/kJ-kmol
Enthalpy of formation/k]J-kmol !
Enthalpy of vaporization/kJ-kmol !

Enthalpy of melting/ l<]~l<mol’1

exp(T./Tw)
(pe = pa) ™" = p
Ue — Ve
Agp — BgRy
NS
MRS — MRS,
AT, — AT,

Y NiTai+ Y MiToj + Ly Ok Tesk
Y Nipai+y Mjpej + Li Oxpesk
Y Nivai+1 Mjvej + Y OxOcsk
L Nighi+X5 Mgy + Xk Owgiae
¥ Nl Mgy + D Ouhiy
L Nikigy; +15 MihGy; + L Oz

L Niltg+ 15 Mg + Lo Ot

Table A4. Generic constants used in the Marrero-Gani method [15] for equations shown in Table A3.

Generic Constants

T5,0/K
Tg,o /K
To/K

pe1/bar

pea/bar=03
Uepycm®-mol 1
Aggo/k]-rnor1
Ah‘f’,o/k}mol’1
Ahg/o/k]-mol’1
Ah;’n’o/k}mol’1

147.450
222.543
231.239
5.9827
0.108998
7.95
—34.967
5.549
11.733
—2.806

Table A5. Properties estimated by the Marrero—Gani method [15] for the selected compounds used in

this work.

.

T},

Ve

Ag AR AR®

AR,

<
No. Compound K K K bar mikmol  LJ/mol  kJimol  kJ/mol  kJ/mol
1 acetic acid 397.3 308.4 646.20 58.88 0.159 —369.2 —426.9 28.95 9.55
2 1,1-bicyclohexyl 5117 271.7 727.00 25.60 0.598 42.6 —272.0 57.98 12.91
3 [1,1'-bicyclohexyl]-2,3'-dione 579.8 354.2 867.22 30.29 0.599 —528.3 —229.8 85.54 23.04
4 1-butanol 381.7 213.0 553.80 43.70 0.276 —277.8 —151.9 50.83 10.93
5 Butoxycyclohexane 464.5 231.5 676.94 22.89 0.610 —40.9 —357.0 59.80 19.52
6 butylcyclohexane 454.1 199.4 650.20 25.40 0.533 70.0 —200.3 49.37 13.49
7 2-Butylcyclohexanone 4933 286.4 762.27 27.58 0.544 —105.3 —366.3 63.58 19.70
8 cycloheptanone 451.7 278.9 734.20 41.37 0.361 -111.9 —286.1 48.90 9.75
9 1,2-cyclohexanediol 504.2 349.0 714.14 44.00 0.341 —263.8 —466.5 90.63 16.06
10 1,3-cyclohexanedione 493.4 331.6 807.20 51.56 0.312 —295.2 —429.1 58.73 13.74
11 cyclohexanol 434.0 287.8 650.00 42.60 0.322 —109.5 —286.2 61.20 9.84
12 cyclohexanone 431.2 265.7 715.26 45.93 0.312 —125.2 —267.5 45.56 8.68
13 2-cyclohexen-1-ol 437.2 288.9 648.32 45.39 0.307 —49.6 —189.2 62.29 8.88
14 2-cyclohexen-1-one 443.2 267.8 714.00 49.12 0.297 —59.2 —183.0 53.06 10.23
15 1-(1-cyclohexen-1-yl)-2-propanone 470.7 262.3 685.83 31.52 0.460 —27.4 —205.9 52.37 14.73
16 cyclohexene 356.1 183.6 558.00 43.92 0.289 104.7 —8.9 32.86 2.66
17 cyclohexylacetone 473.7 266.4 679.01 29.83 0.483 -75.0 -301.2 54.96 15.75
18 cyclohexyl butanoate 486.2 237.2 683.41 25.83 0.545 —245.5 —543.1 61.08 18.83
19 cyclohexylethanone 453.7 278.5 662.05 33.33 0.427 —83.1 —280.4 49.43 13.11
20 cyclohexyl ethanoate 441.0 225.4 639.90 31.20 0.448 —481.9 —267.1 53.53 12.88
21 cyclohexyl ether 515.7 281.6 732.56 26.16 0.608 -39 —342.5 64.85 16.71
22 cyclohexyl hexanoate 515.7 257.9 727.13 20.21 0.713 —221.3 —605.5 75.81 26.75
23 cyclohexyl pentanoate 497.7 244.4 698.92 23.63 0.601 —237.4 —563.9 65.99 21.47
24 2-cyclohexylidencyclohexanone 565.4 323.2 783.20 31.56 0.501 —72.1 —341.8 58.93 12.95
25 cyclopentanol 413.4 275.3 622.23 47.41 0.273 —122.8 —267.6 57.86 11.73
26 cyclopentanone 403.8 251.1 694.64 51.44 0.262 —138.5 —248.9 4222 7.61
27 3,3-dimethylhexane 385.1 187.3 555.14 25.68 0.466 17.2 -217.9 38.06 10.52
28 4-(1,1-dimethylpropyl)cyclohexanone 503.9 2983 776.91 27.06 0.575 -90.3 —392.6 65.55 16.86
29 2-ethylidenecyclohexanone 478.4 276.7 737.22 33.74 0.448 —47.1 —211.7 63.55 11.38
30 formic acid 362.8 259.4 554.90 83.20 0.102 —279.9 —303.6 48.32 13.31
31 2-heptanone 426.7 223.8 611.13 29.34 0417 —300.8 —122.0 46.38 17.58
32 3-heptanone 417.1 227.2 596.91 29.44 0.418 —305.0 —125.4 46.29 17.26
33 hexanal 407.6 228.8 591.00 33.10 0.373 —251.1 —100.7 43.90 20.10
34 2-hexanone 400.8 215.1 589.20 32.47 0.373 —278.6 —127.6 41.82 14.20
35 5-hexenal 405.6 232.5 594.10 34.76 0.359 —128.8 —14.9 42.80 17.07
36 1-Methoxycyclohexane 408.2 203.4 607.23 32.33 0.406 —63.2 —279.8 37.51 10.73
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Table A5. Cont.

P T T. . ve A AR2 AR® AR®
No. Compound K K K b m?/kmol k]/fol KJimol  1J/mol  kJ/mol
37 5-methyl-2-isopropylidenecyclohexanone 4972 299.0 753.09 28.05 0.558 —33.8 —255.2 77.19 11.98
38 2-methyl-3-heptanone 4312 233.0 613.20 26.78 0.470 —1228 —334.2 49.16 16.81
39 Methylcyclohexane 374.2 182.4 577.23 35.07 0.370 446 —~137.8 35.17 6.74
40 2-methylcyclohexanone 448.3 266.3 723.99 38.52 0.370 —299.4 —125.3 48.95 11.81
41 3-methylcyclohexanone 448.3 266.3 723.99 38.52 0.370 —299.4 —125.3 48.95 11.81
42 1-methylcyclopentanol 409.2 283.5 580.05 44.29 0.325 —142.0 —3134 57.35 5.99
43 2-methylcyclopentanone 4224 251.8 704.16 4252 0.321 —280.8 —138.6 4561 10.74
44 (1-methylethyl)cyclohexane 427.9 191.4 621.05 28.42 0.481 57.3 —196.4 43.00 11.32
45 methylcyclopentanone 340.4 155.8 538.30 38.44 0.313 31.3 —-119.2 31.83 5.64
46 1-pentanol 4109 221.5 580.32 38.12 0.332 —1439 —298.6 55.80 14.20
47 2-pentanone 362.1 210.4 544.80 37.06 0.306 —~1416 —263.3 36.47 11.98
48 3-pentyl-1-cyclohexene 4732 180.7 652.99 25.51 0.559 128.8 ~109.7 59.95 16.49
49 pentylcyclohexane 476.9 208.7 668.01 23.27 0.590 78.0 —2212 54.28 16.13
50 phenol 455.0 308.0 687.06 59.65 0.271 —32.6 —94.3 64.25 15.36
51 p-tert-butylcyclohexanol 494.8 240.6 694.60 24.12 0.595 216.4 —43.5 58.23 13.72
52 2-tetrahydrofurylmethanol 4512 2583 641.69 48.15 0.305 —239.0 —399.2 64.17 14.14
53 1,2,3,4-tetrahydronaphthalene 480.8 2417 664.03 31.37 0.521 110.1 —613 77.10 11.86
54 toluene 383.8 202.1 604.05 42.18 0.317 123.6 50.6 38.43 9.90
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