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Abstract: Years of massive applications of high-throughput atomistic modeling tools such as molecu-
lar docking and end-point free energy calculations in the drug industry and academic exploration
have made them indispensable parts of hierarchical screening. While the similarities between host–
guest and protein–ligand complexes lead to the direct extension of techniques for protein–ligand
screening to host–guest systems, the practical performance of these hit identification tools remains
unclear in host—-guest binding. Recent reports on specific host–guest complexes suggest that the
experience on the accuracy ladder accumulated from protein–ligand cases could be invalid in host–
guest complexes, which makes it an urgent need to perform a systematic benchmark to secure solid
numerical supports and guidance of practical setups. Concerning molecular docking, there still lacks
a comprehensive benchmark considering popular docking programs. As for end-point reranking,
quantitative and rigorous free energy estimation via end-point formulism requires establishing sta-
tistically meaningful measurements of uncertainties due to finite sampling, which is neglected or
underestimated by a significant portion in almost all main-stream applications. Further, a face-to-face
comparison between different screening tools is required for the design of a hierarchical workflow.
To fill the above-mentioned critical gaps, in this work, using a dataset containing tens of host–guest
complexes involving basket-like macromolecular hosts from the octa acid family, we extensively
benchmark seven academic docking protocols and perform post-docking end-point rescoring with
twenty protocols. The resulting comprehensive benchmark provides conclusive pictures of the
practical value of docking and end-point screening in OA host–guest binding.

Keywords: octa acid; host–guest binding; molecular docking; end-point free energy calculation;
three-trajectory realization

1. Introduction

Due to efficiency and accuracy considerations, modern virtual screening often follows
a hierarchical procedure. Low-cost techniques are applied first to eliminate most of the
non-promising molecules in an original dataset, and then it comes to the stage employing
screening tools of higher costs and accuracy to distill hits from the pool of promising
candidates. In the stages where both 3D chemical structures of individual compounds and
atomic-detailed interaction patterns between them are incorporated, molecular docking
and end-point free energy calculations are the most relevant and popular high-throughput
tools for screening of protein–ligand complexes [1–5].

Similar to biomacromolecular assemblies, host–guest complexes are formed by two
interacting components of different sizes packed in a shape-complementary manner. Macro-
molecular hosts are relatively small in size and simpler in composition compared with
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biomolecules. Commonly encountered species include cyclodextrins, cucurbiturils, and
pillararenes, which are often applied as drug carriers and reservoirs [6–11]. Their central
cavities are often hydrophobic to encapsulate external agents, and their rims are often
hydrophilic to serve as hydrogen bond acceptors and/or donors that form directional
polar interactions with solvents or guest molecules staying inside the cavity. As host–guest
complexes are often considered prototypical analogues of protein–ligand complexes, com-
putational techniques developed for virtual screening of protein–ligand complexes are
directly extended to that in host–guest binding [12–16]. However, the validity of such direct
extensions has not been systematically validated. Further, several recent application reports
on specific host–guest datasets report the violation of existing experiences accumulated in
protein–ligand situations [17,18], which makes the act of directly extending the computa-
tional ladder designed for protein–ligand complexes to host–guest cases questionable.

To fill this critical gap and provide direct numerical evidence and guidance of the
design of the hierarchical screening workflow, we devote the current paper to a practical
docking and end-point screening on a series of octa-acid (OA) host–guest complexes. A
dataset containing 31 OA–guest pairs and 17 host–guest pairs involving the methylated
form TEMOA are constructed from SAMPL challenges [19–22], and fourteen molecular
docking protocols and twenty end-point protocols are employed to rank the binding
strength. Compared with previous computational works (e.g., those focusing on docking
protocols) [18], our work considers larger datasets and many mainstream docking protocols
unexplored in the current literature. Further, the extensiveness of the exploration of
end-point protocols is also unprecedented. Our benchmark test covers not only many
mainstream implicit-solvent models but, more importantly, both the single- and three-
trajectory sampling realizations.

The 2D chemical structures of the prototype OA basket, its methylated form, TEMOA,
and the guest molecules are presented in Figure 1. Although, in some situations, multiple
guest molecules could be encapsulated simultaneously in a single host cavity [23,24],
we limit the current investigation to the 1:1 binding in both experimental reference and
computational modeling.
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2. Computational Setup
2.1. Docking Screening of Host–Guest Pairs

Molecular docking is a technique that packs two components (e.g., protein and ligand
and, similarly, host and guest) into a single interacting complex with a certain level of
conformational compatibility. The main components involved in this technique are confor-
mational search and scoring functions. Conformational search techniques and scoring func-
tions of varying features have been constructed up to now. For instance, scoring functions
could be primarily derived from all-atom force fields (e.g., AMBER-like AutoDock) [25,26]
and include empirical terms (e.g., plp and chemplp) [27–31]. Below, we briefly introduce
the docking protocols considered in this work.

The well-known open-source AutoDock tool is presumably the most popular program
in protein–ligand docking. The method achieves good performance in various benchmark
calculations on protein–ligand docking [32,33]. The up-to-date implementation is Autodock
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Vina [25]. Our benchmark test with the Autodock Vina software involves two scoring
functions (Vina and Vinardo) [25,26,34,35], the results of which would thus be abbreviated
as AutoDock-Vina and AutoDock-Vinardo in lateral presentations.

Protein–ligand ANT System (PLANTS) docking calculations are performed with
two scoring functions (plp and chemplp) [31,36]. The conformational search method
features a hybrid ant colony optimization that imitates the foraging behavior of ants via
artificial pheromones [37–39]. The scoring functions with PLANTS are constructed as a
weighted combination of scoring terms of various origins, such as force-field energetics (e.g.,
torsional potential from Tripos) [40] and hydrogen bond terms from Chemscore [41,42].
While, from the names of scoring functions, it is straightforward to know that the plp and
chemplp docking regimes with PLANTS differ in the scoring functions for ranking different
structures, there are further differences in conformational search parameters. According to
existing experiences published in the literature on protein–ligand complexes, the chemplp
scoring function is generally slower in speed but higher in accuracy compared with the plp
selection. The PLANTS results will be abbreviated as PLANTS-plp and PLANTS-chemplp
in the following paragraphs.

The latest implementation of the DOCK program, DOCK6.10, is also considered. The
recommended workflow in the newest implementation incorporates a sphere representation
of the molecular surface, an anchor growth algorithm for flexible conformational search,
and many selections for pose scoring [43–45]. Two scoring functions benchmarked in this
work include the popular (grid-based) energy scoring and contact scoring with a cutoff of
4.5 Å, which will be abbreviated as DOCK6-energy and DOCK6-contact in this manuscript.

The rDock [46] protocol originally developed as RiboDock is designed for RNA–ligand
docking [47]. Later, the method is refined and extended to protein-ligand binding [46].
The sampling procedure in rDock involves a genetic algorithm search, Monte Carlo and
minimization. The rDock scoring function is estimated as the weighted sum of a series of
physical and empirical terms, e.g., inter- and intra-molecular energetics, empirical solvation,
torsional potential from Tripos, and pharmacophore restraints [48].

We summarize in Table 1 the seven docking protocols considered in this work, and
the docking-packed bound structures of all host–guest pairs are shared at https://github.
com/proszxppp/virtual_screening_OA (accessed on 7 January 2024). The center of the
host pocket is selected as the center of the docking box, and a radius of 7 Å or a side length
of 13 Å is used for the dimension of the search space. The unmentioned search algorithm
parameters are set to their default values. For each docking protocol, we compute the
binding strength of the host–guest complexes with two regimes. The first one follows the
most straightforward and popular top-1 treatment that considers the docking score of the
top-1 binding pose as the estimate, while the second one considers the multi-modal binding
behavior by calculating the exponential sum of the top-10 binding modes [18], i.e.,

∆Gbinding = −β−1ln
(
∑i e−β∗scorei

)
(1)

Table 1. Docking protocols benchmarked in this work.

Docking Program Sampling/Scoring Protocol Docking Protocol

AutoDock Vina Vina Autodock Vina
AutoDock Vina Vinardo Autodock Vinardo

PLANTS plp PLANTS-plp
PLANTS chemplp PLANTS-chemplp
DOCK6 Contact DOCK6-Contact
DOCK6 Grid Energy DOCK6-Grid-energy
rDock rDock rDOCK

Consequently, there are fourteen estimates of the binding strengths from molecu-
lar docking.

https://github.com/proszxppp/virtual_screening_OA
https://github.com/proszxppp/virtual_screening_OA


Liquids 2024, 4 489

2.2. Fixed-Charge Parametrization and End-Point Reranking

In end-point screening, the most popular workflow employs fixed-charge force fields
to describe intra- and inter-molecular interactions, samples the end-point ensembles in the
binding/unbinding reaction, and computes the binding strengths with force-field energetics.

To build the fixed-charge model, for both host and guest molecules, the restrained
electrostatic potential (RESP) [49] scheme with the B3LYP [50–52]/6-31G* geometry opti-
mization and electrostatic potential (ESP) scan at the traditional HF [53–55]/6-31G* level
is employed to parametrize the atomic charges, considering its accurate reproduction of
molecular ESP and robustness exhibited in our previous modeling of host–guest bind-
ing [14,56–58], biphasic partition of drug-like molecules [59–61], and extensive validation
of host parameters [56,57,62,63]. For bonded parameters, we use the transferable GAFF2
parameter set [64] for all molecules, considering its success in reproducing the correct host
dynamics observed in our recent work [62]. The RESP charge files (.mol2) are shared online
at https://github.com/proszxppp/virtual_screening_OA (accessed on 7 January 2024) for
reproduction usage.

We then proceed to the sampling procedure. The popular single-trajectory protocol
in end-point calculations only requires the sampling in the host–guest bound state, while
the three-trajectory realization also requires the simulations in the unbound state (i.e.,
solvated host and solvated guest). Thus, for each host–guest pair, three simulation boxes
are needed. The unbound host and guest cells could be constructed via solvation and
neutralization of individual molecules, while some initial guess of the bound conformation
is needed for the bound state. As the computational cost of our sampling and free energy
estimation protocol is high, we only pick the docked poses with one docking protocol as
the starting configurations for the host–guest complexes. Normally, the docking protocol
for generating the initial condition for atomistic simulations should be selected according
to the performance of the docking screening. Therefore, the details of the selected docking
protocol would be discussed later in the results section. The docking-produced initial
conditions are also available in the online repository. The docked host–guest complex
is then solvated in TIP3P water [65], with the 15 Å solute-edge distance and spherical
monovalent counter ions of Na+ or Cl− [66,67] added for neutralization. Periodic boundary
conditions are always employed in our simulations.

Molecular simulations are then initiated using the hybrid-precision GPU engine in
AMBER [68]. We apply SHAKE constraints [69,70] on bonds involving hydrogen, a 2 fs
time step [71], Langevin dynamics for temperature regulation at 300 K, isotropic scaling and
Monte Carlo barostat for pressure regulation at 1 atm, the AMBER default 8 Å real-space
cutoff for non-bonded interactions, and PME for long-range electrostatics. Starting from
the packed initial conditions, we relax the system by performing energy minimization for
5000 cycles, constant-volume heating in 120 ps, and NPT equilibration for 1 ns, after which,
1000 ns unbiased sampling in the host–guest and unbound guest states and 10,000 ns for
the unbound host state are spawned. The uneven distribution of sampling lengths in differ-
ent ensembles arises from the difficult-to-sample behavior (higher energetic fluctuation)
observed in a recent work [72]. The longer sampling time in the solvated host ensemble
helps the minimization of the statistical uncertainty of the three-trajectory estimates. Such
a time scale is extremely long in end-point sampling, reaching a practical limit in end-point
screening. The sampling interval of successive configurations is set to 10 ps.

For free energy extraction, we utilize MM/PBSA and MM/GBSA with four popular
GB models (GBHCT [73,74], GBOBC-I, GBOBC-II [75,76], and GBneck2 [77]). The two GBOBC

models correspond to the two sets of parameters published in the original article [75]. The
salt concentration of counter ions for Debye–Hückel screening is set to 0.1 M. The nonpolar
solvation contribution (the SA part) is computed with the solvent-accessible surface area
method [78]. The popular normal mode approximation [2] is applied on a subsampled
configuration set (1/4 of all configurations) to compute the entropic contribution.

https://github.com/proszxppp/virtual_screening_OA
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The above-mentioned energetics, accumulated and extracted from trajectories, are
arranged to form the end-point estimate

∆Gbinding = Ghost−guest − Ghost − Gguest (2)

Each free-energy term includes enthalpic and entropic components, i.e.,

Gi = Eintra−molecular + Eelectrostatics + EvdW + Gsolv − TSgas (3)

The difference between the single- and three-trajectory sampling protocols lies in the
ensemble that the above terms are estimated. For the popular single-trajectory realization,
all energetics are extracted from the host–guest bound state, while host- and guest-only
terms are computed with configurations from solvated host and solvated guest ensembles
in the three-trajectory realization.

Another consideration concerning the above end-point equation is the exclusion/inclusion
of the entropic term (TSgas). There is a tendency to neglect this term in many applications of
the end-point tool, the reasons for which are mostly the similarity of receptor–ligand pairs
(and thus, the cancellation of the entropic contribution when computing the relative affinity)
and the small improvements of including the entropic term. While the former cancellation
statement could be valid under certain circumstances, in most virtual screening scenarios
dealing with ligands/guests with diverse chemical features, such an approximation is
obviously unsolid, introducing systematic biases of unknown magnitude. Further, such
a treatment does not follow the rigorous derivation of the end-point protocol and, thus,
could be harmful when the reproduction of absolute affinities is pursued. As for the small
improvements observed in certain application reports, the end-point protocol has long been
recognized as exhibiting a severe system-dependent behavior in its screening power. Thus,
the magnitude of improvements by including the entropic contribution as an open question
for newly encountered species requires extensive validation. Whether such a treatment is
preferred remains to be revealed in host–guest complexes. We thus compute two estimates
for each end-point protocol, i.e., with and without the entropic contribution. In Table 2, a
summary of all end-point protocols considered in this work is presented.

Table 2. End-point protocols benchmarked in this work.

Sampling
Protocol

With/Without
Normal-Mode

Entropy

Energy Evaluation

MM/PBSA MM/GBHCTSA MM/GBOBC-ISA MM/GBOBC-IISA MM/GBneck2SA

Single-trajectory
sampling

enthalpy-only ∆H single-trajectory
MM/PBSA ∆H

single-trajectory
MM/GBHCTSA ∆H

single-trajectory
MM/GBOBC-ISA ∆H

single-trajectory
MM/GBOBC-IISA ∆H

single-trajectory
MM/GBneck2SA ∆H

with entropy ∆G single-trajectory
MM/PBSA ∆G

single-trajectory
MM/GBHCTSA ∆G

single-trajectory
MM/GBOBC-ISA ∆G

single-trajectory
MM/GBOBC-IISA ∆G

single-trajectory
MM/GBneck2SA ∆G

Three-trajectory
sampling

enthalpy-only ∆H three-trajectory
MM/PBSA ∆H

three-trajectory
MM/GBHCTSA ∆H

three-trajectory
MM/GBOBC-ISA ∆H

three-trajectory
MM/GBOBC-IISA ∆H

three-trajectory
MM/GBneck2SA ∆H

with entropy ∆G three-trajectory
MM/PBSA ∆G

three-trajectory
MM/GBHCTSA ∆G

three-trajectory
MM/GBOBC-ISA ∆G

three-trajectory
MM/GBOBC-IISA ∆G

three-trajectory
MM/GBneck2SA ∆G

3. Results and Discussion
3.1. Performance of Docking Methods
3.1.1. Scoring Power

In virtual screening, the predictive power of a method is often evaluated by the scoring
power and the ranking power. The former could be quantified with the root-mean-squared
error (RMSE) and the Pearson correlation coefficient, while for the latter, we could compute
ranking coefficients including Kendall τ [79] and the Pearlman’s predictive index (PI) [80].
RMSE quantifies the deviations of computed values from the reference, Pearson r measures
the linear correlation between the calculated and experimental reference, Kendall τ assesses
the correspondence of the computed affinity rank with the reference rank, and PI, as a
metric similar to Kendall rank coefficient, also takes the difference between experimental
values into consideration. While RMSE is larger than zero, the other three metrics range
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from −1 to 1. A close-to-unity Pearson correlation coefficient suggests perfect linear
calculation–experiment correlation, and close-to-unity Kendall τ and PI indicate perfect
predictions of the affinity rank. A fact worth noting here concerns the physical meaning
of docking scores. As the reproduction of absolute values of binding affinities is often
considered a critical goal, many scoring functions as a weighted combination of physics-
based and empirical terms take on an energy-like form. In most situations, the unit of
scoring functions is set as kcal/mol [27–30]. Thus, computing the absolute deviations
of docking scores from experimental affinities is a reasonable analysis. In cases where
the dimensionless behavior of the scoring function is explicitly claimed, e.g., the contact-
based scoring (DOCK6-contact), we should instead focus only on the ranking power of the
docking method.

All docking estimates and the associated quality metrics are summarized in
Tables S1 and S2. We visualize the prediction performance in Figure 2 to facilitate en-
abling a straightforward comparison. When it comes to the scoring power, for all docking
techniques, a certain level of host-dependent behavior is observed for the quality metrics.
For Pearson r, the OA performance is much better than TEMOA, while the opposite is true
for RMSE. The AutoDock family (AutoDock-Vina and AutoDock-Vinardo) are superior
to all other docking tools, regardless of the use of the top-1 or exponential sum treatment.
AutoDock-Vina is slightly better than AutoDock-Vinardo in both Pearson correlation and
RMSE. The RMSE from AutoDock is as small as 1~2 kcal/mol, which deduces that the
AutoDock family of docking are powerful tools in reproducing the absolute affinities of
host–guest complexes. The next top-performing method varies with the quality metrics
used as the criterion. When considering Pearson r, the next top-performing family is the
PLANTS docking (PLANTS-chemplp and PLANTS-plp). By contrast, when using RMSE
as the criterion, the rDock tool achieves better performance. Compared with the rDOCK
RMSE ~5–8 kcal/mol, the PLANTS-plp and PLANTS-chemplp scores exhibit huge devia-
tions from the experimental binding affinities, although the units of their scoring functions
are claimed to be kcal/mol [27–30]. However, a major performance difference in Pearson
r is observed between OA– and TEMOA–guest systems for rDOCK, indicating the poor
robustness of the docking tool. Specifically, the Pearson correlation coefficients of PLANTS
and rDock scores are similar (~0.5) for OA–guest complexes, but huge differences could
be observed in the TEMOA–guest cases (PLANTS~0.2 but rDOCK~−0.2). Therefore, the
rDOCK method lacks robustness in host–guest screening and is excluded in the current per-
formance comparison. The DOCK6 results with both energy and contact scoring perform
worst in Pearson correlation coefficient (~0–0.2), although the DOCK6-energy estimates are
closer to experimental affinities when compared with PLANTS. Overall, using the Pearson
correlation coefficient as the criterion, the performance rank is AutoDock-Vina > AutoDock-
Vinardo > PLANTS-plp/PLANTS-chemplp > DOCK6-contact > DOCK6-energy, whereas
under the RMSE criterion, the performance follows AutoDock-Vina > AutoDock-Vinardo >
DOCK6-energy > PLANTS-plp/PLANTS-chemplp > DOCK6-contact.

In terms of the ranking power, interestingly, the disparities in performance among
various docking methods do not appear to be as significant as those observed in the
previous scoring scenario. While AutoDock-Vina remains the top performer for host–
guest complexes involving both OA and TEMOA, AutoDock-Vinardo exhibits a major
failure when applied to TEMOA-guest systems. Aside from AutoDock-Vinardo, rDOCK
scores also demonstrate an obvious disparity in ranking performance for OA and TEMOA.
As the unstableness of their ranking performance is an undesired behavior of robust
screening tools, we omit the two docking methods from the performance comparison.
The performance rank of the remaining docking methods is AutoDock-Vina > PLANTS-
plp/PLANTS-chemplp > DOCK6-contact > DOCK6-energy.
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3.1.2. Computational Cost

In addition to the predictive power, another property of great practical interest is
the computational cost of a docking tool. We thus summarize the CPU times of finishing
the docking calculations for all host–guest pairs using each docking protocol, as shown
in Figure S1. Note that we always employ the embarrassingly parallel approach in dis-
tributed computing, in order to minimize the communication overhead and maximize the
timing performance. A single trail is performed and the consumed CPU time could be
influenced by various factors in the computing node, but the current timing data still enable
a reasonable comparison. From the CPU time comparison, we know that the AutoDock
family, rDOCK and DOCK6-energy docking protocols require similar computational re-
sources, while the PLANTS family and DOCK6-contact protocols are much faster (almost
1/10 CPU time).

3.1.3. Structural Consideration

Apart from the screening power and timing information, another crucial aspect of a
docking protocol is the quality of bound structures produced. Unfortunately, the absence
of experimentally deposited bound structures makes it impossible to perform a face-to-face
comparison of this docking power. However, valuable insights could still be obtained if we
take a deeper analysis of the bound structures. To compare the binding modes produced
by different docking protocols, we consider two calculation regimes. The quantitative
estimator of the structural variation is the root-mean-squared deviation (RMSD) of non-
hydrogen heavy atoms of the guest molecule. With the bound structures produced by
different docking protocols, the first RMSD estimation regime aligns the guest molecules
and computes the RMSD of the guest molecule, i.e., setting the weights of all host atoms
to zero in both structural alignment and RMSD calculation. This is the most traditional
method in RMSD analysis, and measures the intra-molecular conformational variation of
the guest molecule in the bound state. The second RMSD estimation follows a slightly
modified regime, which aligns the host molecule (i.e., setting weights of guest atoms to zero
but those of host atoms to one) and computes the RMSD of the guest molecule (weights
of host atoms to zero and guest weights to one). In contrast to the conventional approach
used previously, the RMSD from this altered regime accounts for both translational and
rotational contributions of the guest in the host cavity (e.g., change of the binding site) and
the intra-molecular conformational variation of the guest molecule. As a result, the second
strategy reflects the net structural difference in the binding modes.

As the structural comparison is performed between pairs of the docking protocols,
2D RMSD matrices are formulated. The RMSD matrices of the two estimation regimes are
merged for a clearer presentation, with the upper-right triangle holding the first traditional
estimates and the bottom-left triangle containing the values of the second altered regime.
The heatmaps of several examples are presented in Figure 3, while those of all host–guest
pairs are summarized in Figures S2 and S3. For the first two cases (i.e., Figure 3a,b), both
the RMSD of intra-molecular conformational variations (upper-right triangle) and the
net structural difference (bottom-left triangle) are small, which indicates that the bound
structures produced by all docking protocols are similar. In the other cases (Figure 3c,d),
various docking protocols yield bound structures with substantial disparities, which implies
that the bound-structure similarity does not always hold and there are situations in which
different docking protocols predict distinct bound structures.

From the 2D RMSD matrices for all systems shown in Figures S2 and S3, an interesting
observation is the small RMSD of the PLANTS-chemplp and PLANTS-plp structures in both
of the two RMSD estimation regimes, which indicates a certain level of similarity of bound
structure predictions with the two protocols of similar origins (i.e., PLANTS). Thus, it seems
indifferent, practically, to pick a scoring protocol with PLANTS docking. Such a behavior is
generally absent for the AutoDock family (AutoDock-Vina and AutoDock-Vinardo) and
DOCK6 (energy and contact scoring), which insinuates that these scoring protocols are
truly independent by construction and serve as independent tools in structure ranking.
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Figure 3. 2D RMSD of guest molecules for host–guest bound structures produced by various
docking protocols. The upper-right triangle presents the intramolecular conformational variation
estimated by the align-guest-compute-guest strategy, while the bottom-left triangle depicts the overall
displacement (including both translational and rotational motions of the molecule and intra-molecular
conformational change) evaluated with the align-host-compute-guest strategy. In (a,b) we present
two examples that all docking protocols give similar models for the bound state, while subplots
(c,d) are examples where some of the docking protocols produce bound structures significantly
different from the other. The heatmaps of all host–guest pairs are given in Figures S2 and S3.

Another structural similarity is observed between the top-performing AutoDock-Vina
and PLANTS protocols, where the net structural RMSD is below 2 Å for more than 60%
host–guest pairs. This suggests that the PLANTS family of intermediate ranking power
could reproduce the top-performing AutoDock-Vina structures with a high probability.
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3.1.4. Take-Home Message

Overall, considering all the above analyses of scoring and ranking powers, we recom-
mend the AutoDock-Vina protocol as the docking tool for screening host–guest complexes.
If the practitioners are dealing with a huge dataset with relatively limited computational
resources, the PLANTS family (PLANTS-plp or PLANTS-chemplp) serve as a much cheaper
solution with intermediate accuracy in docking screening. The other techniques (DOCK6-
contact, DOCK6-energy, rDOCK, and AutoDock-Vinardo) are not recommended due to
unstable and/or low performance.

Regarding the bound structures produced by different algorithms, the closeness to
reference cannot be evaluated due to the absence of experimentally deposited structures.
However, the top-performing AutoDock-Vina, PLANTS-plp, and PLANTS-chemplp often
produce similar structures (c.f., low RMSDs from both of the two computing regimes shown
in Figures 3, S2 and S3). Therefore, structurally, the bound structures and the guest confor-
mations produced by the three recommended docking protocols would not be significantly
different, and either of them could produce bound structures of a reasonable quality.

3.2. End-Point Free-Energy Calculations
3.2.1. How Long Do We Need to Converge the Statistics

With all the docking results summarized above, we then turn to the post-docking
end-point screening in this section. Since AutoDock-Vina consistently outperforms other
methods in both quality metrics and host-specific datasets, the most straightforward and
reasonable treatment for post-docking end-point screening is extracting the AutoDock-
Vina-generated docked poses as the starting configurations of the end-point simulation of
the bound complex. Note that the docking-produced bound structures are also available in
the online GitHub repository.

Before comparing the performance statistics of end-point screening, we conduct pre-
liminary sanity checks to consolidate the simulation outcome. The convergence check is
indispensable in the free-energy calculation. It supports the validity of approximating the
ensemble averages with the time-series data. Therefore, instead of directly comparing the
end-point results with experimental values, we first look into the time-series data. The
time variations of the single-trajectory MM/GBneck2SA estimates for 31 OA and 17 TEMOA
host–guest complexes are plotted in Figures S4 and S5, respectively, with the longest 1000 ns
bound-state statistics as the reference value for the long-time limit. The plots clearly show
that the end-point estimates of most host–guest pairs could be well-converged with de-
viations below kBT (~0.59 kcal/mol at room temperature) within tens of ns, but, in some
situations (e.g., OA-L30 and OA-L31 pairs), the end-point results still exhibit noticeable
fluctuations and/or systematic drifts with 1000 ns unbiased sampling. Based on these
observed convergence behaviors of the absolute affinities, we believe that ~100 ns serves as
a practically usable setup for converged end-point estimates for most host–guest complexes
involving OA derivatives.

Despite the variations in end-point results in some systems, even with 1000 ns sam-
pling, they may not significantly perturb the prediction quality or screening power. To check
whether this not-so-well convergence behavior of specific systems would impact the quality
metrics in a statistically significant manner, we computed the time series of the four quality
metrics (RMSE, τ, PI, and Pearson r), as depicted in Figure 4. For both OA and TEMOA
host–guest binding, all four of the quality metrics keep fluctuating in the first 40 ns, and
only after 100 ns do the statistics seem stabilized, although minor fluctuations could still be
observed in the last several blocks. This phenomenon illustrates that end-point free-energy
calculations generally converge after ~100 ns sampling in host–guest complexes involving
OA derivatives. Therefore, a practical recommendation for practitioners using end-point
free-energy techniques is to extend the sampling time to at least ~100 ns in order to avoid
systematic biases introduced by sampling insufficiency. Notably, end-point sampling of
such length is generally much longer than commonly applied selections, e.g., several to
10 ns in existing reports [13,81,82], highlighting potential pitfalls in current practices.
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Figures S4 and S5.

3.2.2. Screening Power of End-Point Estimators

The long-time 1000 ns estimates of all end-point protocols (with or without normal
mode entropy, implicit solvent model, and the single- or three-trajectory sampling protocol)
are summarized in Tables S3–S10. The four quality metrics (RMSE, τ, PI, and Pearson r)
and an additional error metric, named mean signed error (MSE), for each dataset are also
provided. For easier comparison between performances of different end-point protocols,
we plot the quality metrics in Figure 5.

We first focus on the most popular end-point regime based on the single-trajectory
sampling protocol and investigate whether the inclusion/exclusion of the entropic contribu-
tion would incur noticeable variations. Comparing the statistical metrics of the ∆H and ∆G,
intriguingly, the end-point performance, in most cases, is improved with the inclusion of
the entropic term. For example, the RMSE measuring the reproduction of absolute affinities
is too huge ~10 kcal/mol for the ∆H estimates, but is minimized to ~4 kcal/mol by the
addition of the entropic contribution. Therefore, including the entropic contribution is not
a treatment that merely increases the computational cost, but serves as a treatment that
completes the theoretical rigor of the end-point workflow and deserves to be considered.
Although this observation could be dependent on the system under investigation, for safety,
the most reliable end-point estimation scheme for practitioners to follow is still the most
rigorous workflow, i.e., including the entropic contribution.
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The exact values of end-point estimates are summarized in Tables S3–S10.

We then include the three-trajectory results into the analysis set and compare the
performance statistics of all end-point protocols. We start by picking the top-performing
methods for the OA and TEMOA host–guest datasets. The top-2 end-point protocols
based on various quality metrics are listed in Table 3, where different methods achieve
top performance under different criteria. To extract some statistical insights into the top-
performing selections, we perform two types of analyses. The first one aims at achieving
the highest robustness across different hosts (receptors) in virtual screening, and thus
picks the end-point protocol that exhibits the top performance for both OA and TEMOA
hosts. The robust end-point selections based on individual quality metrics are then given
in Table 4. Interestingly, for four quality metrics reflecting different aspects of the screening
problem (i.e., ranking and scoring), only two unique end-point protocols appear in the
table, i.e., single-trajectory MM/GBneck2SA ∆G and three-trajectory MM/GBneck2SA ∆H.
These two options are robust screening protocols that perform consistently top for OA
derivatives. The second analysis is based on the number of occurrences in the top-2 table
(i.e., Table 3). Interestingly, this analysis identifies two end-point regimes that are exactly
the same as the previous robustness analysis, as given in Table 5. According to the statistical
insights observed from the two analyses, we recommend the two end-point protocol, single-
trajectory MM/GBneck2SA ∆G and three-trajectory MM/GBneck2SA ∆H, in practical virtual
screening of host–guest complexes.

Table 3. Best-performing screening regimes for the two host–guest sets with different quality metrics.

Metrics
Host OA Top-1 OA Top-2 TEMOA Top-1 TEMOA Top-2

RMSE Single-trajectory
MM/GBneck2SA ∆G

Single-trajectory
MM/GBOBC-IISA ∆G

Single-trajectory
MM/PBSA ∆H

Single-trajectory
MM/GBneck2SA ∆G

Kendall τ Three-trajectory
MM/GBneck2SA ∆H

Single-trajectory
MM/GBneck2SA ∆H

Single-trajectory
MM/GBneck2SA ∆G

Three-trajectory
MM/GBneck2SA ∆H

PI Three-trajectory
MM/GBneck2SA ∆G

Single-trajectory
MM/GBneck2SA ∆G

Three-trajectory
MM/GBneck2SA ∆H

Single-trajectory
MM/GBneck2SA ∆G

Pearson r Three-trajectory
MM/GBneck2SA ∆H

Single-trajectory
MM/GBneck2SA ∆H

Three-trajectory
MM/GBneck2SA ∆H

Single-trajectory
MM/GBneck2SA ∆G
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Table 4. Robust end-point protocols that achieve top performances for both OA and TEMOA host–
guest pairs under individual criteria.

Metrics Robust Selection

RMSE Single-trajectory MM/GBneck2SA ∆G
Kendall τ Three-trajectory MM/GBneck2SA ∆H

PI Single-trajectory MM/GBneck2SA ∆G
Pearson r Three-trajectory MM/GBneck2SA ∆H

Table 5. Number of observations for which end-point protocols perform at the top in the top-
2 analysis.

End-Point Protocol Number of Observations

Single-trajectory MM/GBneck2SA ∆G 6
Single-trajectory MM/GBneck2SA ∆H 2
Single-trajectory MM/GBOBC-IISA ∆G 1

Single-trajectory MM/PBSA ∆H 1
Three-trajectory MM/GBneck2SA ∆H 5
Three-trajectory MM/GBneck2SA ∆G 1

3.3. The Value of Post-Docking End-Point Rescoring

With all the reliable docking and end-point statistics accumulated so far, it is finally
possible to explore the most significative aspect of virtual screening and inspect the practical
value of applying post-docking end-point rescreening. The recommended protocols of both
molecular docking and end-point free energy calculations are compared in a face-to-face
manner in Figure 6. While the recommended docking protocol AutoDock-Vina performs
best in reproducing the absolute affinities (RMSE) for both hosts and achieves very high
correlation coefficients for the OA host–guest pairs, its ranking power for the methylated
form (TEMOA host–guest pairs) exhibits a severe performance drop. By contrast, both
of the two recommended end-point protocols, single-trajectory MM/GBneck2SA ∆G and
three-trajectory MM/GBneck2SA ∆H, perform reasonably well for both hosts. Such a stable
performance confirms the robustness of the recommended end-point protocols, validating
the value of post-docking end-point screening.
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4. Concluding Remarks

Virtual screening often follows a hierarchical workflow design based on efficiency
and accuracy considerations. In protein–ligand binding, high-throughput techniques
based on atomistic modeling include molecular docking and end-point free-energy cal-
culations, which are directly extended to host–guest complexes due to the similarity of
these receptor–ligand assemblies. However, recent reports on specific systems suggest that
the computational ladder based on protein–ligand experience could be no longer valid
in the altered receptor–ligand/host–guest complexes. Therefore, there is an urgent need
for a face-to-face comparison between the screening performance of molecular docking
and end-point calculations in order to provide solid numerical data guiding the design
of hierarchical virtual screening. To this end, based on a comprehensive dataset contain-
ing ~50 host–guest pairs formed by basket-like OA derivatives and drug-like guests, we
perform a detailed and systematic benchmark on docking and end-point screening of OA
host–guest systems.

Seven docking protocols with varying features are considered. While rDock, DOCK6-
energy and DOCK6-contact and AutoDock-Vinardo are rejected due to low accuracy
predictions or lack of robustness across different hosts/receptors, the AutoDock-Vina and
PLANTS family (chemplp and plp) are considered usable options in host–guest dock-
ing. These three selections perform reasonably well in ranking different host–guest pairs
with a given receptor/host, and the binding poses predicted by the three recommended
docking protocols agree well, with more than 60% host–guest pairs having structural de-
viations < 2 Å. As for efficiency considerations, the AutoDock-Vina protocol achieves the
highest performance statistics but is costlier compared with the PLANTS family.

Twenty protocols (implicit solvent models, single- and three-trajectory sampling, and
the inclusion/exclusion of the entropic contribution) are considered for end-point screening.
Under the popular single-trajectory realization, we observe that the inclusion of the entropic
contribution could be pivotal in reproducing the absolute values of binding affinities, and
it also improves the correlation statistics under most circumstances. As the theoretical
rigor of the end-point workflow is achieved with the inclusion of this entropic term, we
believe that it should not be casually neglected. Unless there is solid evidence supporting
the elimination of the entropic term, it is undesirable to perform this approximation. As for
the overall performance of all end-point protocols, while the prevailing protocol exhibits
certain dependence on the binding target (receptors/hosts) and criterion (quality metrics),
statistically, we identify two end-point protocols, single-trajectory MM/GBneck2SA ∆G and
three-trajectory MM/GBneck2SA ∆H, that consistently deliver top-tier performance across
different hosts/receptors. Face-to-face comparison between the recommended end-point
and docking protocols reveals the higher robustness of the end-point tool, validating the
value of post-docking end-point screening.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/liquids4030027/s1, Figure S1: The computational costs of different
docking protocols; Figures S2 and S3: the 2D RMSD matrices with two computational regimes;
Figures S4 and S5: the time-dependent behavior of single-trajectory MM/GBneck2SA estimates;
Tables S1 and S2: the docking scores; Tables S3–S10: end-point estimates in single- and three-trajectory
regimes under all parameter combinations; These are given in the supporting information.
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