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Abstract: New experimental vapour pressures and vaporisation enthalpies of the ionic liquids [2,4-
dimethyl-1,2,4-triazolium][NTf2], [2-methyl-4-ethyl-1,2,4-triazolium][NTf2], and [2-ethyl-4-methyl-
1,2,4-triazolium][NTf2] were measured using the Langmuir method in combination with the quartz
crystal microbalance. New experimental vapour pressures and vaporisation enthalpies of the molecu-
lar liquids 1H-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-ethyl-1,2,4-triazole, and 1H-1,2,3-triazole were
measured using the transpiration method. Structure–property relationships between molecular and
ionic liquids were studied. These results will facilitate chemical engineering calculations of processes
involving ILs.
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1. Introduction

Triazolium-based ionic liquids (ILs) are considered a new class of solvents for cellulose.
The cations of these ILs are structurally similar to the popular imidazolium cations, but
the 1,2,4- and 1,2,3-triazolium cations lack the isolated ring proton, which leads to a lower
formation of N-heterocyclic carbenes and thus to a lower reactivity and fewer undesired
side reactions [1–3]. Triazolium ILs can be easily produced in high purity and without
contamination by halides, can be a good alternative to “classical” imidazolium ILs for a
number of applications, and can even enable new applications [4].

Since the ILs are generally regarded as neoteric solvents, the solution to practical
questions concerning miscibility, separation of mixtures, volatilisation, vapour pressure,
thermal stability, etc., requires knowledge of thermodynamic data. Such data are not
yet available for the new triazolium ILs. This work extends our previous studies on ILs
containing fluorinated anions [5–8] and deals with the vaporisation thermodynamics of
1,2,4-triazolium-based ILs with the [NTf2] anion (see Figure 1).

The experimental data on the vapour pressures and vaporisation enthalpies of the
three ionic liquids [di-a1kyl-1,2,4-triazolium][NTf2] provide only limited information on
the thermal properties of this new class of solvents. It is therefore important to compare
these new data with those for “classical” imidazolium-based ILs in order to qualitatively
assess the advantages and disadvantages of the new materials. In this context, we will
refer to our previous results on the vaporisation thermodynamics of the [Cnmim][NTf2]
family [5] for comparison.

In fact, the experimental investigation of the vapour pressures of extremely low
volatile ILs is a very challenging task, which is why a sufficient amount of thermal data for
triazolium-based ILs can hardly be expected in the near future. For this reason, the develop-
ment of reliable methods for predicting vaporisation thermodynamics could be important
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for chemical engineering calculations. The experience gained in our recent studies through
a systematic comparison of “molecular liquids versus ionic liquids” [9–11] could be used
in this work to predict the vaporisation enthalpies of 1,2,4-triazolium and 1,2,3-triazolium
ILs paired with the [NTf2] anion. For this purpose, the vapour pressures of the molecular
liquids (triazoles) shown in Figure 2 were measured, and their vaporisation enthalpies
were involved in structure–property correlations with the corresponding triazolium-based
ionic liquids.
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Figure 1. Ionic liquids under study in this work: [2,4-dimethyl-1,2,4-triazolium][NTf2], [2-methyl-4-
ethyl-1,2,4-triazolium][NTf2], and [2-ethyl-4-methyl-1,2,4-triazolium][NTf2], with the anion [NTf2] = 
(trifluoromethylsulfonyl)imide. The abbreviations [2-Cn-4-Cm-1,2,4-T][NTf2] with n, m = 1, 2 are 
helpful for the presentation of the data in the tables in this paper. 
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Figure 2. Molecular liquids under study in this work: 1H-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-
ethyl-1,2,4-triazole, and 1H-1,2,3-triazole. 

2. Experimental Section 
2.1. Materials 

The ionic liquid samples [2,4-dimethyl-1,2,4-triazolium][NTf2], [2-methyl-4-ethyl-
1,2,4-triazolium][NTf2], and [2-ethyl-4-methyl-1,2,4-triazolium][NTf2] used in this work 
were prepared and purified by Dr. hab. Andrzej Skrzypczak, Poznań University of Tech-
nology, Institute of Chemical Technology and Engineering, Poznań, Poland, who passed 
away in 2023. The degree of purity of >99% was determined using the HPLC method. 

Prior to the experiments, the samples were vacuum-evaporated for more than 24 h at 
413 K and 10−5 Pa to reduce possible traces of solvents and moisture. The samples used for 
the vaporisation studies using a quartz crystal microbalance (QCM) were additionally 
conditioned within 12 h in the vacuum chamber at the highest temperature of the experi-
ment. This additional purification allowed the removal of residual traces of water and 
volatile impurities as well as the collection of a sufficient amount of vaporised IL on the 
quartz sensor required for FTIR analysis. 
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ethyl-1,2,4-triazolium][NTf2], and [2-ethyl-4-methyl-1,2,4-triazolium][NTf2], with the anion [NTf2]
= (trifluoromethylsulfonyl)imide. The abbreviations [2-Cn-4-Cm-1,2,4-T][NTf2] with n, m = 1, 2 are
helpful for the presentation of the data in the tables in this paper.
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2. Experimental Section
2.1. Materials

The ionic liquid samples [2,4-dimethyl-1,2,4-triazolium][NTf2], [2-methyl-4-ethyl-1,2,4-
triazolium][NTf2], and [2-ethyl-4-methyl-1,2,4-triazolium][NTf2] used in this work were
prepared and purified by Dr. hab. Andrzej Skrzypczak, Poznań University of Technology,
Institute of Chemical Technology and Engineering, Poznań, Poland, who passed away in
2023. The degree of purity of >99% was determined using the HPLC method.

Prior to the experiments, the samples were vacuum-evaporated for more than 24 h at
413 K and 10−5 Pa to reduce possible traces of solvents and moisture. The samples used for
the vaporisation studies using a quartz crystal microbalance (QCM) were additionally con-
ditioned within 12 h in the vacuum chamber at the highest temperature of the experiment.
This additional purification allowed the removal of residual traces of water and volatile
impurities as well as the collection of a sufficient amount of vaporised IL on the quartz
sensor required for FTIR analysis.

The molecular liquid samples 1H-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-ethyl-1,2,4-
triazole, and 1H-1,2,3-triazole were of commercial origin. Provenance and purities are listed
in Table S1 (Supplemental Materials). Before starting the vapour pressure measurements
with the transpiration method, the samples were preconditioned in the saturator (see below
for details). The purity of samples was analysed with a Hewlett Packard 5890 II series gas
chromatograph equipped with a flame ionisation detector and an HP-5 capillary column
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(length, inside diameter, and film thickness of 25 m × 0.32 mm × 0.25 µm). The GC
temperature programme started at T = 323 K, followed by heating at a rate of 0.167 K·s−1

to T = 573 K.

2.2. Absolute Vapour Pressure Measurements

The vapour pressures and standard molar enthalpies of vaporisation of the ILs were
determined using the QCM method [5,12]. In this method, a sample of an IL is placed in
an open measuring cavity within the thermostat block and exposed to a vacuum (10−5 Pa)
with the entire open surface (Langmuir evaporation). The sensor is located directly above
the cavity containing the sample. During evaporation in a vacuum, a certain amount of the
sample is deposited on the quartz crystal. The change in the vibrational frequency of the
crystal is directly related to the mass of the compound deposited on the crystal in a given
time. The molar standard enthalpies of vaporisation were derived from the temperature de-
pendencies of the experimentally measured change in the vibration frequency of the quartz
crystal. The essential experimental details are provided in the Supplemental Materials.

The vapour pressures and standard molar enthalpies of vaporisation of the molecu-
lar liquids (1H-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-ethyl-1,2,4-triazole, and 1H-1,2,3-
triazole) were determined using the transpiration method [13]. In this method, a stream
of nitrogen was passed through the saturator filled with the sample at a precisely defined
flow rate at a constant temperature (±0.1 K). After reaching saturation equilibrium in the
saturator, the material transported by the gas flow was collected in a cold trap within a
defined time and its mass was determined by GC. The standard molar enthalpies and
entropies of vaporisation were derived from the temperature dependence of the absolute
vapour pressures. The necessary details can be found in the Supplemental Materials.

3. Results and Discussion
3.1. Absolute Vapour Pressures and Vaporisation Thermodynamics of Ionic Liquids

Admittedly, one of the most important attributes of ionic liquids is that they have a
negligible vapour pressure (compared to the common molecular solvents). However, this
statement applies more to ambient temperatures, and it is obvious that at higher tempera-
tures, which are relevant for chemical engineering, the vapour pressure already assumes
a considerable size and should be quantified for the development of future technologies.
For example, reliable knowledge of the temperature dependence of the vapour pressure of
ILs is essential for the optimisation of modern catalytic processes such as Solid Catalyst
with Ionic Liquid Layer (SCILL) [14] or Supported Ionic Liquid Phase (SILP) [15] in order
to assess a possible long-term uptake of ILs at any practical temperature. The experimental
vapour pressures at different temperatures for the triazolium ILs measured in this work are
collected in Table S2. The equations used to approximate the experimental data allow the
vapour pressure to be calculated at any practically relevant temperature. The 373 K and
473 K temperatures appear to be reasonable choices for many practical applications, and
the extremely low values of [NTf2]-based IL vapour pressures at these temperatures (see
Table 1) indicate that the negligible mass uptake of IL in various catalytic or separation
applications can also be expected at elevated temperatures.

Table 1. Absolute vapour pressures of ILs [2-Cn-4-Cm-1,2,4-T][NTf2] with n, m = 1, 2 at 373 K and at
473 K.

Cation psat × 106 [Pa] psat × 103 [Pa]

373 K 473 K

[2-C1-4-C1-1,2,4-T] 20 70.8
[2-C1-4-C2-1,2,4-T] 36 134.8
[2-C2-4-C1-1,2,4-T] 35 121.5
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The absolute vapour pressure data of ILs are still rarely available in the literature,
and it is interesting to compare the general vapour pressure values within the families of
imidazolium-based ILs with fluorinated anions [CF3SO3]−, [PF6]−, [BF4]−, and [NTF2]−

(see Figure 3).
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Figure 3. Vapour pressures of typical ILs. Chain-length dependence of absolute vapour pressures at
T = 423.15 K for homologous series: (∆)—[Cnmim][CF3SO3] from [16], (#)—[Cnmim][NTf2] [5], (♢)—
[Cnmim][PF6] from [7], (✩)—[Cnmim][BF4] from [6], and (x)—[2-Cn-4-Cm-1,2,4-triazolium][NTf2]
from this work.

Figure 3 shows that the vapour pressures of [di-alkyl-1,2,4-triazolium][NTf2] are
several times higher than those of ILs based on the [BF4] and [PF6] anions. The values of
the absolute vapour pressures of the [di-alkyl-1,2,4-triazolium][NTf2] and [Cnmim][NTf2]
series do not differ significantly. The apparent decrease in vapour pressure for ILs with the
[C2mim] cation compared to ILs with the [C4mim] cation appears to be common for this
series of ILs with [PF6] and [BF4] anions and is not as pronounced for ILs with the same
cation but [NTf2] and [CF3SO3] anions. In the case of [di-alkyl-1,2,4-triazolium][NTf2],
replacing one of the CH3 substituents with C2H5 leads to an almost twofold increase
in vapour pressure. Such an increase can be interpreted as an even–odd effect in the
vaporisation properties for ILs with a short alkyl chain. A similar dependence is observed
for [Cnmim][CF3SO3] when going from n = 3 to 4 [16].

The standard molar enthalpies of vaporisation of ionic liquids (see Table 2) were
derived from the temperature dependence of the absolute vapour pressures given in
Table S2 (see for details in Supplemental Materials).
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Table 2. Thermodynamics of vaporisation of [2-Cn-4-Cm-1,2,4-T][NTf2] with n, m = 1, 2 derived from
experimental results a.

IL Triazole Cation T-Range Tav ∆
g
l Ho

m(Tav) b ∆
g
l Go

m(Tav) c ∆
g
l Co

p,m
d ∆

g
l Ho

m(298 K) e

K kJ·mol−1 J·K−1·mol−1 kJ·mol−1

1 2 3 4 5 6 7

[2-C1-4-C1-1,2,4-T] 348-395 371.0 122.2 ± 1.0 69.5 ± 1.0 −49 125.7 ± 1.2
[2-C1-4-C2-1,2,4-T] 345-393 368.4 123.7 ± 1.0 68.1 ± 1.0 −57 127.7 ± 1.3
[2-C2-4-C1-1,2,4-T] 343-390 365.9 122.4 ± 1.0 68.5 ± 1.0 −57 126.3 ± 1.3

a Uncertainties of thermodynamic functions are expressed as the standard uncertainty. b The standard molar
enthalpy of vaporisation at the average temperature, Tav, of the QCM experiment. c The standard Gibbs energies
of vaporisation at the average temperature, Tav, of the QCM experiment. d From Table S3. e Adjusted to 298 K
according to Kirchhoff’s Law using the ∆g

l Co
p,m–values from column 6. The experimental QCM uncertainties were

extended with uncertainty of the heat capacity difference assessed to be of 20 J·K−1·mol−1.

The vaporisation enthalpies of triazolium-based ionic liquids were determined for
the first time. However, it is interesting to compare these results with those known for
imidazolium-based ionic liquids that are paired with the same [NTf2] anion and have a
comparable number of C atoms in the alkyl chains attached to the cation. It has been found
that the ∆g

l Ho
m(298 K) = 122.7 ± 1.1 kJ·mol−1 [5] of [C1mim][NTf2] is slightly lower than

that of [2-C1-4-C1-1,2,4-T][NTf2] from this work. The vaporisation enthalpy ∆g
l Ho

m(298 K) =
126.4 ± 1.1 kJ·mol−1 [5] of [C2mim][NTf2] is almost the same as that of the corresponding
triazolium-based ILs [2-C1-4-C2-1,2,4-T][NTf2] and [2-C2-4-C1-1,2,4-T][NTf2] (see Table 2).
In general, however, the results for the triazolium- and imidazolium-based ILs can be
considered to agree within their combined uncertainties. This similarity opens up the
possibility of establishing structure–property correlations between the imidazolium-based
ILs (for which a considerable amount of vaporisation thermodynamics data are available)
and the triazolium-based ILs, whose data are only limited by the results of the current
study. This correlation will be discussed in Section 3.4.

3.2. Absolute Vapour Pressures and Vaporisation Thermodynamics of Molecular Liquids:
1,2,4-Triazoles

The primary vapour pressure–temperature dependencies for 1H-1,2,4-triazole, 1-
methyl-1,2,4-triazole, 1-ethyl-1,2,4-triazole, and 1H-1,2,3-triazole measured in this work (see
Table S4) were fitted uniformly using a three-parametric equation (see Supplemental Materi-
als for details). From these data, the standard molar enthalpies of vaporisation/sublimation
at the respective temperatures T were derived (see Table S4). The final results at the
reference temperature T = 298 K, ∆g

l,crHo
m(298 K), are summarised and compared in Table 3.

As can be seen from Table 3, the available experimental data for 1H-1,2,4-triazole
are confusing. Our complementary transpiration measurements for this compound have
helped to resolve inconsistencies and determine the level of enthalpy of sublimation for this
compound. The weighted average ∆g

crHo
m(298 K) = 84.3 ± 0.5 kJ·mol−1 was recommended

for thermochemical calculations. The latter value was combined with the fusion enthalpy
for this compound (see Table S5) to derive the vaporisation enthalpy ∆g

l Ho
m(298 K) = 71.2 ±

1.0 kJ·mol−1 of 1H-1,2,4-triazole (see Table 3), which is essential as “molecular liquid” for
the purpose of this work. The vapour pressures and vaporisation enthalpies for 1-methyl-
1,2,4-triazole, 1-ethyl-1,2,4-triazole, and 1H-1,2,3-triazole were measured for the first time
in this work.
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Table 3. Compilation of available enthalpies of sublimation/vaporisation ∆g
cr,lH

o
m for triazoles.

Compound/CAS M a T-Range ∆
g
cr,lH

o
m(Tav) ∆

g
cr,lH

o
m(298 K) b Ref.

K kJ·mol−1 kJ·mol−1

1H-1,2,4-triazole (cr) K 322–350 84.1 ± 1.0 84.6 ± 1.0 [17]
n/a (80.6 ± 0.5) [18]
K 281.5–295.7 84.1 ± 1.3 84.0 ± 1.3 [19]
C 306.0 80.5 ± 0.9 (80.6 ± 0.9) [20]
T 322.2–367.5 83.7 ± 0.6 84.3 ± 0.7 Table S4

84.3 ± 0.5 c average

1H-1,2,4-triazole (liq) 71.2 ± 1.0 Table S5

1-methyl-1,2,4-triazole (liq) T 275.0–337.8 53.1 ± 0.3 53.4 ± 0.4 Table S4
1-ethyl-1,2,4-triazole (liq) T 280.6–313.1 57.0 ± 0.4 56.8 ± 0.5 Table S4

1H-1,2,3-triazole (liq) T 297.2–348.7 59.9 ± 0.4 59.9 ± 0.4 Table S4
1-methyl-1,2,3-triazole (liq) 44.0 ± 1.5 Figure 4
1-ethyl-1,2,3-triazole (liq) 47.0 ± 1.5 Figure 5

a Techniques: K = Knudsen-effusion method; T = transpiration method; C = calorimetry; n/a = not available.
b Uncertainty of the sublimation/vaporisation enthalpy U(∆g

cr,l H
o
m) is the expanded uncertainty (0.95 level of

confidence, k = 2) calculated according to a procedure described elsewhere [21,22]. It includes uncertainties
from the experimental conditions, uncertainties of vapour pressure, uncertainties from the fitting equation, and
uncertainties from temperature adjustment to T = 298 K. c Weighted mean value (the uncertainties were used
as a weighting factor). Values in parentheses were excluded from the calculation of the mean. Value in bold is
recommended for further thermochemical calculations.
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3.3. Vaporisation Thermodynamics of Molecular Liquids: 1,2,3-Triazoles

From the 1,2,3-triazole family, only 1H-1,2,3-triazole was commercially available for
thermodynamic studies. For the purposes of this work, the vaporisation enthalpies for
1-methyl-1,2,3-triazole and 1-ethyl-1,2,3-triazole are required for the structure–property
correlations with the corresponding ionic liquids. To assess these vaporisation enthalpies,
we used reliable thermodynamic data on imidazole and alkylimidazoles as well as on
pyrazole and alkylpyrazoles from the literature (see Table S6). The idea of evaluation is
shown in Figure 4.

It has turned out that the replacement of the hydrogen bonded to the nitrogen atom in
both 1-H-imidazole and 1H-pyrazole by the CH3 group lowers the vaporisation enthalpies
for both molecules by ≈16 kJ·mol−1 (see Figure 4). It can therefore be assumed that the
same decrease can also be expected for 1H-1,2,3-triazole. With the known vaporisation
enthalpy ∆g

l Ho
m(298 K) = 59.9 ± 0.4 kJ·mol−1 of 1H-1,2,3-triazole (see Table 3) and the

averaged contribution H → CH3 = −15.9 kJ·mol−1 (see Figure 4), the required vaporisation
enthalpy ∆g

l Ho
m(298 K) = 44.0 ± 1.5 kJ·mol−1 of 1-methyl-1,2,3-triazole was derived (see

Table 3).
A similar idea was realised for 1-methyl-1,2,3-triazole, where the averaged contribu-

tion H → CH3CH2 = −12.9 kJ·mol−1 (see Figure 5) was added to ∆g
l Ho

m(298 K) = 59.9 ±
0.4 kJ·mol−1 of 1H-1,2,3-triazole (see Table 3) to obtain the required vaporisation enthalpy
∆g

l Ho
m(298 K) = 47.0 ± 1.5 kJ·mol−1 of 1-ethyl-1,2,3-triazole (see Table 3).
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3.4. Molecular versus Ionic Liquids: Structure–Property Relationships for Predicting Vaporisation
Thermodynamics

It is noticeable that the vaporisation enthalpies of heterocycles with two or three
nitrogen atoms have very similar vaporisation enthalpies (see Figure 6).
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Figure 6. Comparison of the vaporisation enthalpies, ∆g
l Ho

m(298 K), of 1-H-imidazole with those of 1H-
1,2,4-triazole and 1H-1,2,3-triazole (left). Comparison of the vaporisation enthalpies, ∆g

l Ho
m(298 K), of

1-ethyl-imidazole with those of 1-ethyl-1,2,4-triazole and 1-ethyl-1,2,3-triazole (right). Experimental
data are from Table 3 and Table S6. (All data are given in kJ·mol−1).

Indeed, ∆g
l Ho

m(298 K) = 71.2 ± 1.0 kJ·mol−1 of 1H-1,2,4-triazole (see Table 3) is indis-
tinguishable from ∆g

l Ho
m(298 K) = 71.3 ± 1.7 kJ·mol−1 of 1H-imidazole (see Table S6). Also,

∆g
l Ho

m(298 K) = 56.8 ± 0.5 kJ·mol−1 of 1-ethyl-1,2,4-triazole (see Table 3) is almost the same
as the ∆g

l Ho
m(298 K) = 57.5 ± 1.9 kJ·mol−1 of 1-ethyl-imidazole (see Table S6). A similar

trend was already observed in Section 3.1 for the triazolium- and imidazolium-based ILs.
As a matter of fact, the vaporisation thermodynamics of the [Cnmim][NTf2] ionic

liquids family with alkyl chain length n = 1 to 18 are well established [5], and the reliable
vaporisation enthalpies, ∆g

l Ho
m(298 K), are compiled in Table S7. The reliable vaporisation

enthalpies, ∆g
l Ho

m(298 K), of the corresponding molecular liquids of the 1-alkyl-imidazole
family with alkyl chain length n = 1 to 18 are also known and are summarised in Table S7.
The correlation of the ∆g

l Ho
m(298 K)-values of molecular liquids (axis X) and ionic liquids

(axis Y) is shown in Figure 7.
As can be seen from this plot, there is a remarkable linear correlation between the

∆g
l Ho

m(298 K)-values for the [Cnmim][NTf2] family and the 1-alkyl-imidazole family:

∆g
l Ho

m([Cnmim][NTf2]) = 0.9781 × ∆g
l Ho

m(1-alkyl-imidazole) + 69.1 with R2 = 0.9989

The very high correlation coefficient R2 can be seen as proof of the good consistency
of the experimental data for each family.

It is now interesting to know how the 1,2,4-triazolium-based ILs are associated with
this correlation. The experimental vaporisation enthalpies for these ionic liquids from Table 2
and their corresponding molecular liquids, 1-methyl-1,2,4-triazole and 1-ethyl-1,2,4-triazole
from Table 3, are plotted in Figure 7, and the points are highlighted in red. Figure 7 shows
that the point for [2-C1-4-C1-1,2,4-T][NTf2] is slightly above the line, but this outlier is to
be expected since such behaviour of the first representatives in the homologous series is
typical for ionic and molecular liquids [5]. However, the points for [2-C1-4-C2-1,2,4-T][NTf2]
and [2-C2-4-C1-1,2,4-T][NTf2] lie practically (within the uncertainties) on the correlation
of the imidazole derivatives. This observation suggests that the vaporisation enthalpies
of ILs based on 1,2,4-triazolium with a longer than ethyl chain length are likely to be very
similar to those of the corresponding [Cnmim][NTf2] family. This assumption is important
for chemical engineering calculations with the alkyl-1,2,4-triazolium-based ILs, which are
promising for various practical applications [23].
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What about the vaporisation enthalpies, ∆g
l Ho

m(298 K), of the 1,2,3-triazolium-based
ILs which are even more promising than 1,2,4-triazolium-based ILs [24,25]? To approach
the answer to this question, we compare the experimental data for heterocycles in Figure 6.
While the derivatives of 1-H-imidazole and 1-H-1,2,4-triazole have very close ∆g

l Ho
m(298

K)-values, the derivatives of 1-H-1,2,3-triazole, in contrast, are obviously and systematically
more volatile by ≈11 kJ·mol−1. These systematics, in conjunction with the structure–
property observations specific to imidazolium and triazolium ILs evident in Figure 7,
suggest that the vaporisation enthalpies for the [alkyl-1,2,3-triazolium][NTf2] family could
be reliably estimated from the data for the [Cnmim][NTf2] family by subtracting 11 kJ·mol−1

from imidazolium-based ILs of the corresponding chain length. These estimates can be
reliably used for chemical engineering calculations with the alkyl-1,2,3-triazolium-based
ILs required for various practical applications.

4. Conclusions

Structure–property correlations between similarly shaped ionic and molecular liquids
have proven to be a valuable tool to determine the consistency of experimental data within
homologous series and to reveal general trends in vaporisation thermodynamics. These
trends allow an assessment of the vaporisation enthalpies, ∆g

l Ho
m(298 K), of new ILs with

the help of the well-established data for imidazolium-based ionic liquids combined with the
evaluated data for molecular liquids.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/liquids4030032/s1, Table S1: Provenance and purity of ILs studied
in this work. Table S2: Details on vapor pressure measurements with Quartz-Crystal Microbalance.
Results for vapor pressure temperature dependence and vaporization enthalpies determined by QCM.
Table S3: Details on vapour pressure measurements of molecular liquids using the transpiration
method. Compilation of data on molar heat capacities heat capacity differences. Table S4: Results
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of transpiration method: absolute vapour pressures, standard molar vaporisation/sublimation
enthalpies and standard molar vaporisation/sublimation entropies. Table S5: Thermodynamics
of phase transitions of 1H-1,2,4-triazole. Table S6: Auxiliary data for vaporisation enthalpies of
nitrogen containing heterocycles available from the literature. Table S7: Compilation of enthalpies
of vaporization for [Cnmim][NTf2] and for alkyl-imidazole. Figure S1: The scheme of the QCM
experimental setup. Figures S2–S4: The IR spectra for ionic liquids under study. Figure S5: The
scheme of the transpiration experimental setup. References [5,7,12,13,21,22,26–37] are cited in the
Supplementary Materials.
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