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Abstract: Many ionic liquids, including alkylimidazolium salts, form a nanoheterogeneous structure
with polar and apolar domains in their liquid phase. Using molecular dynamics simulations, the
influence of the structure of the cations of a series of aprotic ([CnC1Im][TFSI], [CnCnIm][TFSI]) and
protic ([HCnIm][TFSI]) alkylimidazolium bistrilimides on the domain structure of their liquid phase
was studied. The characteristic sizes of domains and the extent of domain segregation in different
liquids have been compared. It has been shown that the latter, but not the former, is a key factor
determining the magnitude of the Gibbs free energy of cavity formation in nanostructured ionic
liquids, which in turn governs their solvation properties.
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1. Introduction

Ionic liquids are salts that exist in a liquid state at relatively low temperatures. The
vast number of potential combinations of cation and anion allows for the tailoring of
ionic liquids for various tasks. Changes in the structure of the cation or anion affect the
supramolecular organization of the liquid phase of these solvents. Ionic liquids contain-
ing apolar hydrocarbon chains in their cations often exhibit nanoscale segregation into
polar and apolar domains [1–3]. Nanoheterogeneity affects various properties of ionic
liquids including solvation behavior, conductivity, diffusion coefficients, viscosity, spectral
properties, and so on.

Small- or wide-angle X-ray (SAXS, WAXS) or small-angle neutron (SANS) scattering
methods can be used to obtain information about the nanostructure of ionic liquids [2,4,5].
Scattering data have been reported for quite a large number of ionic liquids, with a par-
ticular focus on the intensity peaks observed at values of the scattering vector modulus q
below 1 Å−1. These peaks are indicative of the nanosegregated structure of ionic liquids.
An increase in the first peak intensity and decrease in the value of q corresponding to its
maximum is observed with increasing length of alkyl chain in cations [2,6–8] due to the
growth of the distance between the charged groups separated by apolar domains. The
introduction of polar groups, such as hydroxyls or ether moieties, into the cation results in
a deterioration of hydrophobic interactions between alkyl residues, which in turn leads to a
strong decrease or complete disruption of the structural heterogeneity [2,9]. These observa-
tions are consistent with other known properties of these liquids. For example, an increase
in the alkyl size in alkylammonium ionic liquids leads to the growth of the solubility of
hydrocarbons, which are preferentially solvated by apolar domains [10]. Conversely, the
hydrocarbon solubility in 2-hydroxyethylammonium nitrate lacking domain segregation is
much lower than in propyl- or ethylammonium nitrate [11].

Interesting comparisons of the structure of symmetric and asymmetric dialkylimi-
dazolium bis(trifluoromethanesulfonyl)imides (bistriflimides) were performed by Xiao
et al. [12] and Rocha et al. [6]. As follows from their scattering data, the size of the hetero-
geneous domains in these liquids is mainly determined by the longest alkyl chain. For
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example, it is similar in 1,3-dibutylimidazolium and 1-butyl-3-methylimidazolium bistri-
flimides but much larger in 1-methyl-3-heptylimidazolium bistriflimide. It was suggested
that long alkyl chains interdigitate in apolar domains.

Another comparison that is important to understand the relationship between the
nature of ions and the structure of the liquid phase is contrasting aprotic (AIL) and protic
(PIL) ionic liquids. The presence of an acidic hydrogen can strengthen the interactions
in polar domains between cation and anion due to the formation of hydrogen bonds,
which influences the structure of the liquid phase. Martinelli et al. showed that protic 1-
alkylimidazolium bistriflimides [7,13] show similar X-ray scattering patterns to the aprotic
imidazolium bistriflimides [8] with the same length of an alkyl chain, namely similar peak
positions but higher peak intensities in the case of PILs. This enhancement was attributed
to the increase in the domain segregation in 1-alkylimidazolium PILs in comparison with
1,3-dialkylimidazolium AILs.

Computer simulations have been successfully used to study the nanoheterogeneous
structure of ionic liquids. Molecular dynamics have been carried out in order to provide
insights into the structure of alkylimidazolium [14,15], alkylammonium [10,16], alkylpyrro-
lidinium [17], and alkylphosphonium [18–20] ionic liquids. In addition to the scattering
patterns, various computational approaches can be used to assess the spatial heterogeneity
using molecular dynamics snapshots. The most common of them are calculation of radial
distribution functions, cluster analysis, and Voronoi tessellation. In our recent work [16],
we used Ripley’s functions, finite-volume integrals of radial distribution functions, and
local atom density variance to identify the existence of a domain nanostructure in ionic
liquids and characterize the domain length scale. In addition, we have shown that the
Gibbs free energy of cavity formation in the liquid is sensitive to the presence of domain
segregation and has much lower values in apolar than in polar domains [10,16]. This
quantity is important to understand the influence of nanoheterogeneity on the solvation
properties of a liquid.

In the present work, we study the structure of the liquid phase of 21 alkylimidazolium
bistriflimides using molecular dynamics simulations. Three groups of bistriflimides are con-
sidered (Figure 1): aprotic symmetric ([CnCnIm][TFSI]) and asymmetric ([CnC1Im][TFSI])
1,3-dialkylimidazolium salts, and protic 1-alkylimidazolium salts ([HCnIm][TFSI]). The
characteristic size of segregated domains in the studied ionic liquids is assessed using
different methods. The relationships between the nature of substituents, the presence and
size of domains, and the cavity formation thermodynamics are analyzed.
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Figure 1. Structures of cations (HCnIm and CnCmIm) and anion (TFSI) of the studied ILs.

2. Methodology
2.1. Molecular Dynamics Simulations

Molecular dynamics simulations were performed using the GROMACS 2022.5 pack-
age [21]. Topologies of cations and anions were created using the fftool program [22]. For all
ions, the models developed by Canongia Lopes et al. were used [23–26]. The partial charges
from these models were scaled by 0.8, which is the value used in a number of previous
studies [27–29] in order to achieve the best agreement of simulation with the experimental
properties of 1-alkyl-3-methylimidazolium salts. Charge scaling represents a computation-
ally cheaper alternative for models with explicit atomic level polarizability which lead
to more accurate results [30–32]. The cutoff distances for van der Waals and short-range
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electrostatic interactions were set to 1.2 nm. For long-range electrostatic interactions, the
particle mesh Ewald method with an interpolation order of 4 and Fourier grid spacing of
0.12 nm was used. The covalent bonds with hydrogen atoms were constrained using the
LINCS algorithm. The leapfrog integration algorithm with time step 1 fs was used.

Cubic simulation cells with periodic boundary conditions contained 500 pairs of
cation and anion of IL. The v-rescale algorithm with a temperature coupling constant of
1 ps was used for temperature control. A constant pressure (1 bar) was maintained by
the Parrinello–Rahman barostat with a pressure coupling constant of 5 ps. Before the
production run, the simulation cell was energy minimized and equilibrated at 298 K. After
this, five cycles of heating to high temperatures at constant volume and cooling to 298 K
in NPT conditions were carried out to ensure the random configuration of ions and the
absence of crystalline structures. Then, the cell was additionally equilibrated for 10 ns in
NPT conditions before starting the production run. The 100 ns long production runs were
recorded in NPT conditions at 298 K. The instantaneous configurations recorded every 1 ps
were analyzed using programs written by authors as well as the standard GROMACS tools.

In simulations, we did not observe crystallization or the systematic drift of any prop-
erties calculated for different instantaneous configurations or blocks. The densities of ionic
liquids from simulations agree well with the experimental values (Table 1).

Table 1. Comparison of calculated and experimental values of the density (ρ) of ILs at 298 K.

Ionic Liquid ρ/(g·mL−1)

MD Experimental

1-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC1Im][TFSI])
1.607 1.614 [33]

1-ethylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC2Im][TFSI])
1.553 1.56913 [7], 1.563 [34]

1-butylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC4Im][TFSI])
1.467 1.47194 [7]

1-hexylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC6Im][TFSI])
1.399 1.40242 [7]

1-octylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC8Im][TFSI])
1.345 1.34633 [7]

1-decylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC10Im][TFSI])
1.301 1.28754 [7]

1-dodecylimidazolium
bis(trifluoromethanesulfonyl)imide

([HC12Im][TFSI])
1.266 1.26068 [7]

1,3-dimethylimidazolium
bis(trifluoromethanesulfonyl)imide

([C1C1Im][TFSI])
1.525 1.5692 [6], 1.56729 [35],

1.557 [33]

1-ethyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C2C1Im][TFSI])
1.482 1.5195 [36], 1.51845 [37],

1.51859 [38]

1-propyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C3C1Im][TFSI])
1.445 1.475 [39], 1475.7 [40],

1.4756 [41]
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Table 1. Cont.

Ionic Liquid ρ/(g·mL−1)

MD Experimental

1-butyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C4C1Im][TFSI])
1.412 1.43704 [42], 1.43635 [39],

1.4369 [41]

1-pentyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C5C1Im][TFSI])
1.382 1.40221 [39], 1.4045 [40],

1.4036 [41]

1-hexyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C6C1Im][TFSI])
1.355 1.3719 [39], 1.3727 [41],

1.37081 [42]

1-heptyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C7C1Im][TFSI])
1.33 1.3454 [41], 1.3446 [6],

1.34413 [43]

1-octyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C8C1Im][TFSI])
1.308 1.32032 [38], 1.32054 [44],

1.32081 [45]

1-decyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C10C1Im][TFSI])
1.269 1.27259 [45], 1.27001 [35],

1.2784 [46]

1-dodecyl-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide

([C12C1Im][TFSI])
1.239 1.2447 [47], 1.2423 [48],

1.24355 [35]

1,3-diethylimidazolium
bis(trifluoromethanesulfonyl)imide

([C2C2Im][TFSI])
1.444 1.4632 [49], 1.4749 [6]

1,3-dipropylimidazolium
bis(trifluoromethanesulfonyl)imide

([C3C3Im][TFSI])
1.381 1.399 [6]

1,3-dibutylimidazolium
bis(trifluoromethanesulfonyl)imide

([C4C4Im][TFSI])
1.329 1.3428 [6], 1.340 [50]

1,3-dihexylimidazolium
bis(trifluoromethanesulfonyl)imide

([C6C6Im][TFSI])
1.249 1.2550 [6]

2.2. Functions Characterizing Nanoheterogeneity

Various approaches can be used to analyze the structure of the liquid phase of ionic
liquids. First of all, we compared the positions of peak maxima in the calculated and
experimental SAXS curves. The calculation was carried out using the gmx saxs program
from the GROMACS package, which uses the Cromer method [51].

The nanoheterogeneity of the liquid phase was also characterized using several func-
tions discussed previously [16]. One of them is the finite-volume Kirkwood–Buff-like
integral [16,52] of the radial distribution function g(r) for a given set of atoms with average
number density ρ:

G(R) = 1/ρ +

R∫
0

(g(r)− 1)4πr2dr (1)

This function is calculated separately for the sets of all “polar” and “apolar” heavy
atoms without distinguishing the atom or element type within the set. For a completely
random (Poisson) distribution of points in space, the function G(R) equals zero at any R.
The positive or negative values reflect the increased or decreased probability of finding
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atoms of the considered set at a given distance from another atom. Hence, clustering
behavior results in positive values of G(R) at the length scales of the cluster diameter.

Another homogeneity-related function, Γ(R), equals the difference in the density-
normalized average number of atoms belonging to two different sets (domains), A and
B, within radius R from an atom that belongs to one of these sets (A). The reference atom
itself should be counted in order to expect a zero value in the case of a homogeneous
spatial distribution of atoms in both sets. Γ(R) can be expressed through pairwise radial
distribution functions:

Γ(R) = 1/ρA +

R∫
0

(gAA(r)− gAB(r))4πr2dr (2)

If reference A comprises apolar fragments, this function shows the prevalence of apolar
atoms in the vicinity of other apolar atoms. Otherwise, if A refers to the polar fragments, it
shows the prevalence of polar atoms in the vicinity of other polar atoms.

The third function we use to characterize structural (in)homogeneity is the local atom

number density variance σ2(R)
〈N〉(R) inside the balls of radius R centered at random points.

Here,
〈N〉(R) = 4/3πR3ρ (3)

is the average number of atom centers inside these balls, and σ2(R) is the variance of
〈N〉(R). This function has a large positive value if atoms tend to form clusters at the given
length scale. It is calculated separately for polar and apolar atom sets.

2.3. The Gibbs Free Energy of Cavity Formation

The Gibbs free energy of the formation of small cavities in the solvent, which describes
its solvation properties, can be calculated using a variation of the Widom test particle
insertion method [53]. The formation of a cavity is considered as the insertion of a hard-
sphere particle with an infinitely large interaction potential. This particle excludes all
centers of solvent heavy (non-hydrogen) atoms within its radius R. Molecular dynamics
is used to obtain instantaneous solvent configurations. A large number of insertions
is performed into the random points of space for each configuration. Neglecting small
fluctuations in the volume of the system, the Gibbs free energy of cavity formation can be
related to the probability p(R) of successful insertion, i.e., the fraction of insertion attempts
resulting in the absence of heavy atom centers within radius R:

∆cavG = −kT ln p (4)

The accuracy increases with the number of configurations and insertions, which
becomes increasingly important for large cavity radii R. Hence, we produced long (100 ns)
trajectories with instantaneous configurations recorded each 1 ps (105 configurations in
total) and performed 105 insertions for each configuration, which results in 1010 insertions
per liquid. This allows us to obtain ∆cavG values for R < 0.4 nm with the standard deviation
below 0.5 kJ·mol−1 according to block analysis.

3. Results and Discussion
3.1. Scattering Curves Calculated from Simulations

X-ray scattering curves calculated from the MD trajectory snapshots are presented
in Figure 2. As in experiments [6–8,12], up to three peaks are observed in these curves.
Peak I corresponds to the smallest values of q and characterizes the separation distance
between charged groups by the alkyl chain, i.e., the size of apolar domains. Its intensity
and position depend on the length of the alkyl substituent. Peak I can appear as a shoulder
in the case of short alkyl chains and is unnoticeable for substituents with fewer than four
carbon atoms. Peak II observed around 9 nm−1 was reported [54] to describe the distance
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between polar groups of the same charge not separated by alkyl chains. The positions of
the maxima of peaks I and II for calculated and experimental scattering curves are given in
Table 2. Peak III is positioned near 14 nm−1 and is caused by ions located at close distances
(about 0.45 nm). Its position and intensity are almost the same for different bistriflimides
except for protic 1-methyl and 1-ethylimidazolium salts showing slightly lower q values of
the peak maximum, in agreement with experimental observations [6,7].
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Figure 2. Calculated X-ray scattering curves for the studied ionic liquids.

The data in Table 2 indicate a general agreement between calculated and experi-
mental [6–8,12] positions of peaks I and II as well. The values of q corresponding to the
maximum of peak I significantly decrease with increasing alkyl chain length. Larger alkyl
substituents also cause an increase in the intensity of peak I. This peak is not observed for
[HC1Im][TFSI], [HC2Im][TFSI], [C1C1Im][TFSI], [C2C1Im][TFSI], [C3C1Im][TFSI], [C2C2Im]
[TFSI], and [C3C3Im][TFSI], indicating that there is no significant nanoheterogeneity in
these ionic liquids. For [C4C1Im][TFSI] and [C4C4Im][TFSI], a small shoulder is observed.
Protic ionic liquids ([HCnIm][TFSI]) have higher peak I intensity compared to their apro-
tic counterparts ([CnC1Im][TFSI]). This can be explained by the stabilization of domain
structure by hydrogen bonds in the polar domain between the anion and NH group of the
cation. A comparison of SAXS plots for ionic liquids with the same total number of carbon
atoms in positions 1 and 3 of the imidazolium ring of the cation (e.g., [C4C4Im][TFSI]
and [C7C1Im][TFSI]) shows that ionic liquids with long alkyl groups form larger domains
corresponding to lower q and produce much more intensive scattering peaks. Asymmetric
and symmetric ionic liquids with the same length of the alkyl chain (e.g., [C6C1Im][TFSI]
and [C6C6Im][TFSI]) produce peaks with much closer positions corresponding to a similar
domain size as pointed out previously [12].

Peak II undergoes a small shift to lower q with alkyl chain length growing from C2 to
C4. This can also be explained by the emergence of the domain structure with the clusters
of polar groups. Further growth of alkyl chain length does not change significantly the
position of peak II.
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Table 2. Positions of the maxima of peak I in calculated and experimental X-ray scattering curves.

Ionic Liquid Peak I (nm−1) Peak II (nm−1)

Calc. Exp. Calc. Exp.

[HC1Im][TFSI] no peak – 8.9 –

[HC2Im][TFSI] no peak no peak [7] 8.7 8.7 [7]

[HC4Im][TFSI] 4.9 (weak peak on
shoulder) 5.1 (weak peak) [7] 8.3 8.6 [7]

[HC6Im][TFSI] 3.9 4.1 [7] 8.7 8.4 [7]

[HC8Im][TFSI] 3.1 3.4 [7] 8.5 8.3 [7]

[HC10Im][TFSI] 2.8 2.9 [7] 8.4 8.3 [7]

[HC12Im][TFSI] 2.6 2.6 [7] 8.3 8.3 [7]

[C1C1Im][TFSI] no peak no peak [6] 9.1 9.1 [6]

[C2C1Im][TFSI] no peak no peak [6,8,12] 9.0 9.0 [8], 9.0 [6], 8.9 [12]

[C3C1Im][TFSI] no peak no peak [6,12] 8.7 8.7 [12], 8.7 [6]

[C4C1Im][TFSI] no peak shoulder [6,8,12] 8.7 8.6 [8], 8.5 [6], 8.5 [12]

[C5C1Im][TFSI] 4.4 (weak) 4.4 (weak) [12], 4.9 (weak) [6] 8.8 8.5 [12], 8.5 [6]

[C6C1Im][TFSI] 3.9 4.1 (weak) [8], 4.3 [6] 8.7 8.5 [8], 8.4 [6]

[C7C1Im][TFSI] 3.8 3.6 [6] 8.6 8.4 [6]

[C8C1Im][TFSI] 3.0 3.5 [8], 3.4 [6] 8.5 8.5 [8], 8.4 [6]

[C10C1Im][TFSI] 3.0 2.8 [8], 2.9 [6] 8.4 8.5 [8], 8.5 [6]

[C12C1Im][TFSI] 2.6 2.4 [8], 2.5 [6] 8.3 8.5 [8], 8.4 [6]

[C2C2Im][TFSI] no peak no peak [6,12] 8.6 8.6 [12], 8.7 [6]

[C3C3Im][TFSI] no peak shoulder [6,12] 8.1 8.1 [12], 8.1 [6]

[C4C4Im][TFSI] shoulder shoulder [6,12] 7.9 7.9 [12], 8.0 [6]

[C6C6Im][TFSI] 4.5 4.6 [6] 8.0 7.8 [6]

3.2. Heterogeneity of Polar/Apolar Atom Distribution

For the analysis using functions described in Section 2.2, only the carbon atoms of the
side chain of the imidazolium cation were considered as belonging to the apolar domain
(also called apolar atoms below). The remaining heavy atoms, namely all the atoms in the
anion and carbon and nitrogen atoms in the imidazolium ring of the cation, were attributed
to the polar domain.

As stated above, RDF integrals G(R) and Γ(R), and local density fluctuations σ2(R)
〈N〉(R)

can be calculated separately for the polar and apolar domains. This always resulted in a pair
of curves sharing similar features. Most importantly, G(R) and Γ(R) had their first zero, and

σ2(R)
〈N〉(R) had its maximum at the close values of radii R for calculations with polar and apolar
atoms. The same result was observed in the analysis of the structure of alkylammonium
salts [16]. Hence, these functions characterize a general length scale of heterogeneities in

ionic liquids. Below, only the results of calculations of G(R) and σ2(R)
〈N〉(R) for the polar domain

and Γ(R) for the polar atoms as reference are shown.
Figures 3–5 show the dependences of the calculated functions on radius R.
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Figure 3. Function G(R) characterizing inhomogeneity of heavy atom distribution in polar fragments
of ILs.
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Figure 4. Function Γ(R) characterizing inhomogeneity of heavy atom distribution in ILs around
polar atoms.
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Figure 5. The variance of the number density σ2

〈N〉 of polar atoms in ionic liquids.

G(R) and Γ(R) show the oscillating behavior typical for domainless liquids [16] in
the case of bistriflimides with fewer than four carbon atoms in the alkyl substituent. For
the liquids with seven or more carbon atoms in the substituent, large-period oscillations
caused by well-defined domains are present. In the liquids from C4 to C6, progressive
degradation of the first minimum of oscillations corresponding to the emergence and
strengthening of domain structure is observed. From the curves in Figures 3 and 4, it
is clear that heterogeneous structure is more pronounced in protic than in aprotic ionic
liquids with the same alkyl substituent. Analysis of the radial distribution function between
the center of mass of the anion and N3 atom of the imidazolium ring shows that its first
maximum is observed at the lower distance R for PILs such as [HC10C1Im][TFSI] than
for AILs like [C10C1Im][TFSI] (Figure 6). A shoulder in the RDF for [HC10C1Im][TFSI]
corresponds to the part of cations not involved in hydrogen bonding with anion.
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The above conclusions are fully supported by the curves of the variance of atom
density shown in Figure 5. C1–C3 liquids have no maximum or even shoulder caused by
the difference in the atom density inside and outside domains. Other liquids show signs of
nanoheterogeneity. The variance is also larger for protic than for aprotic liquids. Symmetric
ionic liquids [CnCnIm][TFSI] exhibit better segregation of polar and apolar domains than
asymmetric liquids [CnC1Im][TFSI], which is also visible in the G(R) and Γ(R) curves.

The radii corresponding to the first zero of G(R) and Γ(R) as well as double of the

radius of maximum of σ2(R)
〈N〉(R) function for domain-forming bistriflimides are given in

Table 3. All these quantities generally reflect the size of the domains. The values of R0
for G(R) and Γ(R) almost always coincide. They correspond to the radius of the sphere at
which polar and apolar atoms become on average represented proportionally to their total
number in the liquid, i.e., the sphere around a polar atom includes both polar and apolar
domains. The value of maximum atom number variance Rmax is always much smaller. It
would correspond to the radius of domains if they were spherical. The values of 2Rmax are
usually closer to the values of R0.

Table 3. Quantitative characteristics of domains in the studied ionic liquids: R0 is the radius corre-
sponding to the first zero of G(R) or Γ(R), 2Rmax is twice the radius corresponding to the maximum
of σ2

〈N〉 .

Ionic Liquid
G(R) Γ(R) σ2

〈N〉

R0/nm R0/nm 2Rmax/nm

[HC4Im][TFSI] 0.8 0.82 0.80

[HC6Im][TFSI] 1.23 1.21 1.06

[HC8Im][TFSI] 1.34 1.35 1.40

[HC10Im][TFSI] 1.54 1.52 1.60

[HC12Im][TFSI] 1.71 1.70 1.80

[C4C1Im][TFSI] – 0.60 –

[C5C1Im][TFSI] 0.78 0.70 –

[C6C1Im][TFSI] 0.87 1.33 0.76

[C7C1Im][TFSI] 1.32 1.36 0.96

[C8C1Im][TFSI] 1.37 1.39 1.30

[C10C1Im][TFSI] 1.52 1.50 1.56

[C12C1Im][TFSI] 1.68 1.67 1.76

[C4C4Im][TFSI] 0.69 0.61 –

[C6C6Im][TFSI] 0.83 0.84 0.80

The obtained results indicate that the size of domains rapidly grows in the liquids
from C4 to C6. The values of R0 and 2Rmax can diverge for these liquids due to the presence
of double peaks in the calculated curves, which is linked to the loose domain segregation.
For the liquids with longer alkyl substituents, single sharp peaks and agreeing domain
size characteristics were obtained, evidencing that they have well-defined nanostructure.
The results obtained for [C6C1Im][TFSI] and [C6C6Im][TFSI] allow us to suggest that they
form domains with a similar size. The size of domains coincides for protic and aprotic
bistriflimides with the same alkyl group.

3.3. Gibbs Free Energy of Cavity Formation

The concept of cavity formation is widely used in studies of solvation processes.
Solvation of any molecule can be considered as its accommodation in the cavity of the
molecular size that has been pre-formed in a solvent. The free energy cost of cavity
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formation is determined by the solvent–solvent interactions. In ionic liquids with domain
segregation, cavities predominantly form in apolar domains. This should lead to lower free
energy of solvation and higher hydrocarbon solubility in such liquids.

Calculated values of the Gibbs free energy of cavity formation ∆cavG in the studied
liquids are shown in Figure 7. ∆cavG always decreases with increasing length of the alkyl
substituent. A rapid decrease is observed for C1–C6 liquids due to the emergence and
strengthening of domain segregation. In contrast, only a small decrease occurs for C8–C12
liquids, in which well-defined domains are present, and cavities form predominantly in
apolar domains with similar free energy cost for all liquids. At the same time, these liquids
have a significantly different domain length scale, which has no huge effect on ∆cavG.
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Figure 7. The Gibbs free energy of cavity formation in alkylimidazolium bistriflimides at 298 K
for spherical cavities with various radii R: (a,b) dependence on the alkyl substituent chain length;
(c) comparison of protic and aprotic ionic liquids; (d) comparison of liquids with symmetrically and
asymmetrically alkylated cations.

An interesting trend is observed for the difference in the cavity formation Gibbs free
energy between protic and aprotic ionic liquids (Figure 7c). For liquids with fewer than four
carbon atoms in the alkyl chain, ∆cavG is slightly higher in protic liquids. In the absence of
a domain structure, hydrogen bonds formed between cations and anions in protic liquids
impede cavity formation, similar to what was observed for the hydrogen-bonded molecular
solvents [55]. For [HC4Im][TFSI] and [C4C1Im][TFSI], the values of ∆cavG become almost
the same. Protic liquids with larger alkyl chains have lower ∆cavG values than aprotic
liquids. In this case, hydrogen bonds are isolated in polar domains and improve domain
segregation, which facilitates cavity formation in apolar domains.

A comparison of aprotic ionic liquids with symmetric and asymmetric cations (Figure 7d)
indicates a similar cost of cavity formation for ionic liquids with the same total number
of carbon atoms (e.g., [C3C3Im][TFSI] and [C5C1Im][TFSI]) but not for liquids with the
same length of the alkyl groups ([C6C6Im][TFSI] and [C6C1Im][TFSI]) which were shown
above to have a similar domain size. This is in part a result of a much higher fraction of
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liquid volume occupied by the apolar domains in ionic liquids with two alkyl groups
than in those with a single group. A rough approximation with a two times higher
fraction of apolar domain in [C6C6Im][TFSI] than in [C6C1Im][TFSI] leads to the difference
∆∆cavG = RTln2 = 1.7 kJ·mol−1 if only the cavities in the apolar domain are considered.
The observed difference is even larger due to the better segregation of polar and apolar
domains in the liquids in symmetrical cations, which has been shown above. Hence,
the solvation properties of such pairs of liquids will differ significantly despite the same
domain length scale.

4. Conclusions

A nanoheterogeneous structure comprising polar and apolar domains is typical for
ionic liquids with sufficiently long alkyl substituents. It has previously been shown that
in the case of alkylammonium nitrates, even ethylammonium nitrate shows signs of
nanoheterogeneity. In the case of alkylimidazolium bistriflimides ([HCnIm][TFSI] and
[CnCmIm][TFSI]), our analysis of molecular dynamics snapshots as well as previously
reported scattering data indicate domain segregation in the presence of butyl or longer
alkyl substituents. As the length of the alkyl substituent increases, larger domain sizes
and better segregation are observed. At the same time, ionic liquids with symmetric and
asymmetric cations with the same alkyl substituent ([CnCnIm][TFSI] and [CnC1Im][TFSI])
have similar domain length scales, but better segregation is observed for symmetric cations.
Protic alkylimidazolium bistriflimides [HCnIm][TFSI] have more pronounced nanohetero-
geneity than aprotic salts [CnC1Im][TFSI] but do not differ from them in domain size. This
is explained by hydrogen bonding between the acidic hydrogen in the cation and the anion.

The nanoheterogeneous structure can dramatically affect the solvation properties of
ionic liquids. For the first time, we have analyzed the dependence of the Gibbs free energy
of cavity formation in ionic liquids on both the domain length scale and the extent of
domain segregation. We have shown that the latter, but not the former, plays a crucial role
in determining the solvation properties of nanostructured ionic liquids. For example, a
rather small decrease of the Gibbs free energy of cavity formation is observed from 1-octyl-
to 1-undecyl-3-methylimidazolium bistriflimide despite an apparent increase in domain
size. At the same time, increasing the alkyl substituent chain length by a single methylene
group from C1 (no domain segregation) to C6 (clear evidence of nanoheterogeneity) liquids
leads to a much more pronounced decrease in ∆cavG. In addition, cation–anion hydrogen
bonding in aprotic ionic liquids strengthens the domain structure if it is present, and
thus results in a higher propensity of cavity formation in [HCnIm][TFSI] liquids than in
[CnC1Im][TFSI] liquids with n > 4. For the liquids with smaller alkyl substituents and no
domain segregation, the situation is reversed: cation–anion hydrogen bonds increase the
energy cost of cavity formation and result in larger ∆cavG values in AILs.

The most intriguing result of the work comes from the comparison of ionic liquids with
symmetrically and asymmetrically substituted cations ([CnCnIm][TFSI], [CnC1Im][TFSI],
and [C2n-1C1Im][TFSI]). The Gibbs free energies of cavity formation were found to be
governed by the total number of carbon atoms in the substituents. The length scale of the
domains again does not play a significant role, while the fraction of the volume occupied
by the apolar domains and the extent of domain segregation are important.

Thus, it has been shown that the structure of the ionic liquid cation has complex
relationships with the bulk phase properties such as cavity formation thermodynamics
even for a series of structurally similar alkylimidazolium bistriflimides. This study once
again highlights the links between the structure of the ions of different ionic liquids, the
nanostructure of their liquid phase, and their solvation properties.
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