Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source and Selection of Samples
2.2. Database Development for Mutations
2.3. Mapping against Reference Genome
2.4. Variant Identification Annotation
2.5. Comparative Variant Analysis
2.6. Data Visualization
3. Results
3.1. Diversity of Mutations Observed in CovSurver (GISAID)
3.2. Mapping of Sequences to Reference Genome
3.3. Variance Annotation
3.4. Statistical Analysis Based on Allele Frequency
3.5. Phylogenetic and Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Worldometer. Corona Cases Worldometer. 2021. Available online: https://www.worldometers.info/about/ (accessed on 21 April 2021).
- Koyama, T.; Platt, D.; Parida, L. Variant analysis of SARS-CoV-2 genomes. Bull. World Health Organ. 2020, 98, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef] [PubMed]
- Github. CoV-Lineages/Pangolin: Software Package for Assigning SARS-CoV-2 Genome Sequences to Global Lineages. 2021. Available online: https://github.com/stevenlovegrove/Pangolin (accessed on 21 April 2021).
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Expert Reaction to Cases of Variant B.1.617 (the “Indian Variant”) Being Investigated in the UK. 2021. Available online: https://www.sciencemediacentre.org/expert-reaction-to-cases-of-variant-b-1-617-the-indian-variant-being-investigated-in-the-uk (accessed on 19 April 2021).
- Koshi, J. Coronavirus|Indian “Double Mutant” Strain Named B.1.617. The Hindu, 2021. Available online: https://www.thehindu.com/news/national/indian-double-mutant-strain-named-b1617/article60685908.ece (accessed on 9 May 2021).
- Variants of Concern or under Investigation. Available online: https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-cases-data (accessed on 19 May 2021).
- V’Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021, 19, 155–170. [Google Scholar] [CrossRef]
- Hou, W. Characterization of codon usage pattern in SARS-CoV-2. Virol. J. 2020, 17, 138. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e889. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. CMLS 2016, 73, 4433–4448. [Google Scholar] [CrossRef] [Green Version]
- Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018, 16, e3000003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Liu, Z.; Chen, Z.; Huang, X.; Xu, M.; He, T.; Zhang, Z. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol. 2020, 92, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Pachetti, M.; Marini, B.; Benedetti, F.; Giudici, F.; Mauro, E.; Storici, P.; Masciovecchio, C.; Angeletti, S.; Ciccozzi, M.; Gallo, R.C.; et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 2020, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Yang, L.; Zhang, X.; Zhang, Q.; Yang, Z.; Liu, Y.; Wei, S.; Liu, W. Discovery of Potential Flavonoid Inhibitors Against COVID-19 3CL Proteinase Based on Virtual Screening Strategy. Front. Mol. Biosci. 2020, 7, 556481. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Albers, C.A.; Lunter, G.; MacArthur, D.G.; McVean, G.; Ouwehand, W.H.; Durbin, R. Dindel: Accurate indel calls from short-read data. Genome Res. 2010, 21, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Wilm, A.; Aw, P.P.K.; Bertrand, D.; Yeo, G.H.T.; Ong, S.H.; Wong, C.H.; Khor, C.C.; Petric, R.; Hibberd, M.L.; Nagarajan, N. LoFreq: A sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 2012, 40, 11189–11201. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Datamash v 1.3—GNU Project—Free Software Foundation. 2018. Available online: https://www.gnu.org/software/datamash (accessed on 17 September 2021).
- Fuchs, J. Variant Frequency Plot: A Tool to Generates a Heatmap of Allele Frequencies Grouped by Variant Type for SnpEff-Annotated SARS-CoV-2 Data; Institute for Virology, University of Freiburg: Freiburg, Germany, 2020. [Google Scholar]
- Wickham, K.M.H.; François, R.; Henry, H. Dplyr: A Grammar of Data Manipulation, R Package Version v 0.8.4. 2018. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 17 September 2021).
- Confirmed Cases of COVID-19 Variants Identified in UK. 2020. Available online: https://www.gov.uk/government/news/confirmed-cases-of-covid-19-variants-identified-in-uk (accessed on 17 September 2021).
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e19. [Google Scholar] [CrossRef] [PubMed]
- Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 2019, 10, 2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, C.A.; Pekosz, A.; Lee, C.A.; Diamond, M.S.; Fremont, D.H. Structure and Intracellular Targeting of the SARS-Coronavirus Orf7a Accessory Protein. Structure 2005, 13, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.X.; Fung, T.S.; Chong, K.K.-L.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antivir. Res. 2014, 109, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; Choudhury, P.P.; Roy, B.; Jana, S.S. Missense mutations in SARS-CoV2 genomes from Indian patients. Genomics 2020, 112, 4622–4627. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, B.; Jahanafrooz, Z.; Abbasi, A.; Goli, M.B.; Sadeghi, M.; Mottaqi, M.S.; Zamani, M. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb. Pathog. 2021, 154, 104831. [Google Scholar] [CrossRef]
- Baker, D.; Beek, M.V.D.; Blankenberg, D.; Bouvier, D.; Chilton, J.; Coraor, N.; Coppens, F.; Eguinoa, I.; Gladman, S.; Grüning, B.; et al. No more business as usual: Agile and effective responses to emerging pathogen threats require open data and open analytics. PLoS Pathog. 2020, 16, e1008643. [Google Scholar] [CrossRef]
- Starr, T.N.; Greaney, A.J.; Dingens, A.S.; Bloom, J.D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2021, 2, 100255. [Google Scholar] [CrossRef]
- Nemudryi, A.; Nemudraia, A.; Wiegand, T.; Nichols, J.; Snyder, D.T.; Hedges, J.F.; Cicha, C.; Lee, H.; Vanderwood, K.K.; Bimczok, D.; et al. SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Rep. 2021, 35, 109197. [Google Scholar] [CrossRef]
- Hassan, S.S.; Choudhury, P.P.; Roy, B. Rare mutations in the accessory proteins ORF6, ORF7b, and ORF10 of the SARS-CoV-2 genomes. Meta Gene 2021, 28, 100873. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Garcia-Knight, M.A.; Khalid, M.M.; Servellita, V.; Wang, C.; Morris, M.K.; Sotomayor-González, A.; Glasner, D.R.; Reyes, K.R.; Gliwa, A.S.; et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 2021, 184, 3426–3437.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv Prepr. Serv. Biol. 2020, 1, 1–18. [Google Scholar] [CrossRef]
- Hodcroft, E.B.; Domman, D.B.; Snyder, D.J.; Oguntuyo, K.; Van Diest, M.; Densmore, K.H.; Schwalm, K.C.; Femling, J.; Carroll, J.L.; Scott, R.S.; et al. Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. MedRxiv 2021, 3, 1–11. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hofmann-Winkler, H.; Krüger, N.; Kempf, A.; Nehlmeier, I.; Graichen, L.; Arora, P.; Sidarovich, A.; Moldenhauer, A.-S.; Winkler, M.S.; et al. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Rep. 2021, 36, 109415. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294.e9. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, H.; Lin, H.; Li, M.; Yuan, R.; Peng, J.; Xiong, Q.; Sun, J.; Li, B.; Wu, J.; et al. Identification of Common Deletions in the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol. 2020, 94, e00790–e00820. [Google Scholar] [CrossRef]
- Gupta, A.M.; Chakrabarti, J.; Mandal, S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 2020, 22, 598–607. [Google Scholar] [CrossRef]
- Begum, F.; Mukherjee, D.; Das, S.; Thagriki, D.; Tripathi, P.P.; Banerjee, A.K.; Ray, U. Specific mutations in SARS-CoV2 RNA dependent RNA polymerase and helicase alter protein structure, dynamics and thus function: Effect on viral RNA replication. BioRxiv 2020, 2–8. [Google Scholar] [CrossRef]
- Elfiky, A.A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J. Biomol. Struct. Dyn. 2020, 39, 3204–3212. [Google Scholar] [CrossRef]
- Begum, F.; Banerjee, A.K.; Tripathi, P.P.; Ray, U. Two mutations P/L and Y/C in SARS-CoV-2 helicase domain exist together and influence helicase RNA binding. BioRxiv 2020, 1–9. [Google Scholar] [CrossRef]
- Peng, Y.; Du, N.; Lei, Y.; Dorje, S.; Qi, J.; Luo, T.; Gao, G.F.; Song, H. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J. 2020, 39, e105938. [Google Scholar] [CrossRef] [PubMed]
- Mercatelli, D.; Giorgi, F.M. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Front. Microbiol. 2020, 11, 1800. [Google Scholar] [CrossRef] [PubMed]
- Omotoso, O.E.; Babalola, A.D.; Matareek, A. Mutational hotspots and conserved domains of SARS-CoV-2 genome in African population. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 1–7. [Google Scholar] [CrossRef]
- Hassan, S.S.; Kodakandla, V.; Redwan, E.M.; Lundstrom, K.; Choudhury, P.P.; El-Aziz, T.M.A.; Takayama, K.; Kandimalla, R.; Lal, A.; Serrano-Aroca, A.; et al. An Issue of Concern: Unique Truncated ORF8 Protein Variants of SARS-CoV-2. BioRxiv 2021, 1–28. [Google Scholar] [CrossRef]
- Adam, D. What scientists know about new, fast-spreading coronavirus variants. Nature 2021, 594, 19–20. [Google Scholar] [CrossRef]
- Ferreira, I.; Datir, R.; Papa, G.; Kemp, S.; Meng, B.; Rakshit, P.; Singh, S.; Pandey, R.; Ponnusamy, K.; Radhakrishnan, V.S.; et al. SARS-CoV-2 B. 1.617 emergence and sensitivity to vaccine-elicited antibodies. BioRxiv 2021, 25–38. [Google Scholar] [CrossRef]
- Cherian, S.; Potdar, V.; Jadhav, S.; Yadav, P.; Gupta, N.; Das, M.; Rakshit, P.; Singh, S.; Abraham, P.; Panda, S.; et al. SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India. Microorganisms 2021, 9, 1542. [Google Scholar] [CrossRef]
- Yadav, P.D.; Mohandas, S.; Shete, A.M.; Nyayanit, D.A.; Gupta, N.; Patil, D.Y.; Sapkal, G.N.; Potdar, V.; Kadam, M.; Kumar, A.; et al. SARS CoV-2 variant B. 1.617. 1 is highly pathogenic in hamsters than B. 1 variant. Biorxiv 2021, 1–20. [Google Scholar] [CrossRef]
- Wall, E.C.; Wu, M.; Harvey, R.; Kelly, G.; Warchal, S.; Sawyer, C.; Daniels, R.; Hobson, P.; Hatipoglu, E.; Ngai, Y.; et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 2021, 397, 2331–2333. [Google Scholar] [CrossRef]
- Yadav, P.D.; Sapkal, G.N.; Ella, R.; Sahay, R.R.; Nyayanit, D.A.; Patil, D.Y.; Deshpande, G.; Shete, A.M.; Gupta, N.; Mohan, V.K.; et al. Neutralization against B. 1.351 and B. 1.617. 2 with sera of COVID-19 recovered cases and vaccinees of BBV152. BioRxiv 2021, 1–10. [Google Scholar] [CrossRef]
Sr No. | Country | No. of Genome Sequences | No. of Mutations Observed in CoVsurver (GISAID) Metadata Analyzed Using AnCOVID19 Database | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E Protein | M Protein | NS3 | NS6 | NS7a | NS7b | NSP8 | NSP10 | NSP12 | NSP13 | NSP14 | NSP15 | NSP16 | NSP1 | NSP2 | NSP3 | NSP4 | NSP5 | NSP6 | NSP7 | NSP8 | NSP9 | N | Spike | |||
1 | Australia | 23 | 0 | 2 | 4 | 2 | 3 | 1 | 6 | 0 | 6 | 5 | 6 | 9 | 3 | 2 | 3 | 10 | 7 | 1 | 4 | 0 | 0 | 0 | 6 | 25 |
2 | Bahrain | 22 | 1 | 3 | 6 | 1 | 4 | 1 | 3 | 0 | 7 | 3 | 3 | 4 | 1 | 0 | 4 | 11 | 3 | 1 | 4 | 1 | 0 | 1 | 10 | 22 |
3 | Belgium | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 11 |
4 | England | 188 | 2 | 4 | 16 | 11 | 10 | 3 | 10 | 4 | 15 | 19 | 10 | 5 | 4 | 13 | 13 | 34 | 17 | 3 | 7 | 3 | 3 | 3 | 25 | 44 |
5 | Germany | 11 | 0 | 2 | 3 | 1 | 3 | 1 | 1 | 0 | 4 | 4 | 1 | 4 | 2 | 1 | 2 | 6 | 4 | 0 | 2 | 2 | 0 | 0 | 8 | 28 |
6 | Guadeloupe | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 7 |
7 | India | 399 | 4 | 53 | 57 | 4 | 17 | 2 | 21 | 6 | 34 | 86 | 45 | 50 | 13 | 13 | 21 | 159 | 140 | 52 | 55 | 2 | 4 | 2 | 165 | 311 |
8 | Ireland | 3 | 0 | 1 | 2 | 1 | 1 | 0 | 2 | 0 | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 9 |
9 | Italy | 3 | 1 | 1 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 0 | 2 | 8 | 3 | 0 | 1 | 0 | 0 | 0 | 6 | 14 |
10 | New Zealand | 11 | 1 | 2 | 2 | 0 | 4 | 1 | 0 | 0 | 4 | 5 | 2 | 4 | 1 | 0 | 3 | 7 | 3 | 0 | 3 | 0 | 0 | 0 | 6 | 15 |
11 | Nigeria | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 7 |
12 | Scotland | 10 | 0 | 2 | 3 | 2 | 2 | 1 | 2 | 0 | 4 | 4 | 1 | 2 | 1 | 0 | 0 | 5 | 3 | 0 | 3 | 0 | 0 | 0 | 6 | 21 |
13 | Singapore | 50 | 0 | 5 | 6 | 13 | 6 | 1 | 7 | 0 | 7 | 6 | 10 | 6 | 3 | 2 | 11 | 13 | 6 | 3 | 5 | 1 | 2 | 0 | 7 | 29 |
14 | Sint Maarten | 1 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 9 |
15 | South Korea | 1 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 1 | 1 | 2 | 1 | 3 | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 11 |
16 | Spain | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
17 | Switzerland | 5 | 0 | 2 | 2 | 0 | 4 | 0 | 0 | 0 | 2 | 4 | 0 | 3 | 0 | 0 | 2 | 9 | 2 | 0 | 6 | 0 | 0 | 0 | 7 | 20 |
18 | Turkey | 2 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 4 |
19 | USA | 72 | 1 | 5 | 7 | 3 | 8 | 1 | 6 | 0 | 10 | 8 | 4 | 8 | 3 | 2 | 8 | 30 | 7 | 3 | 6 | 1 | 1 | 0 | 19 | 35 |
20 | Wales | 7 | 0 | 2 | 2 | 1 | 5 | 0 | 1 | 1 | 4 | 5 | 1 | 3 | 1 | 1 | 1 | 3 | 1 | 0 | 2 | 1 | 0 | 0 | 4 | 18 |
Country | Total Variations | Type of Mutation | Observed Variation Rate | Number of Effects | ||
---|---|---|---|---|---|---|
SNP | INS | DEL | ||||
Australia | 57 | 54 | 0 | 3 | 524 | 104 |
Bahrain | 69 | 53 | 8 | 8 | 433 | 131 |
England | 122 | 110 | 4 | 8 | 245 | 268 |
Germany | 50 | 46 | 0 | 4 | 598 | 83 |
India | 78 | 63 | 0 | 15 | 383 | 152 |
New Zealand | 69 | 65 | 1 | 3 | 433 | 156 |
Scotland | 69 | 64 | 1 | 4 | 433 | 126 |
Singapore | 85 | 78 | 2 | 5 | 351 | 170 |
South Korea | 33 | 32 | 0 | 1 | 906 | 52 |
Switzerland | 48 | 44 | 1 | 3 | 622 | 96 |
USA | 63 | 42 | 0 | 21 | 474 | 143 |
Wales | 42 | 40 | 0 | 2 | 711 | 73 |
No. | Type of Effect and Region | Australia | Bahrain | England | Germany | India | New Zealand | Scotland | Singapore | South Korea | Switzerland | USA | Wales |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Codon change and Codon deletion | 0.96% | 3.82% | 0.74% | 3.61% | 5.92% | 0.64% | 0.79% | 1.16% | - | 1.04% | 8.84% | - |
2 | Codon change and Codon insertion | - | 6.87% | 0.37% | - | - | 1.28% | - | - | - | 1.04% | - | - |
3 | Codon deletion | 0.96% | 0.76% | 2.21% | - | 0.66% | 0.64% | 0.79% | 0.58% | - | 1.04% | 3.40% | - |
4 | Codon insertion | - | 0.76% | - | - | - | - | - | - | - | - | - | - |
5 | Frame shift | - | 10.69% | 7.35% | - | 6.58% | 6.35% | - | - | - | 26.53% | - | |
6 | Intergenic | 3.85% | 3.05% | 2.21% | 4.82% | 4.61% | 3.21% | 3.97% | 4.07% | 7.69% | 4.17% | 5.44% | 6.85% |
7 | Non synonymous coding | 66.35% | 49.62% | 55.52% | 53.01% | 55.92% | 66.03% | 62.70% | 65.70% | 65.39% | 51.04% | 40.82% | 60.27% |
8 | Splice site region | - | - | - | - | - | - | - | 1.16% | - | - | - | - |
9 | Start lost | - | - | - | - | - | - | - | - | - | - | 2.72% | - |
10 | Stop gained | - | - | 1.47% | - | - | - | 0.79% | 0.58% | - | - | - | - |
11 | Synonymous coding | 27.89% | 24.43% | 30.15% | 38.55% | 26.32% | 28.21% | 24.60% | 26.74% | 26.92% | 41.67% | 12.25% | 32.88% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mevada, V.; Patel, R.; Dudhagara, P.; Gandhi, H.; Beladiya, U.; Vaghamshi, N.; Godhaniya, M.; Ghelani, A. Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2. COVID 2022, 2, 513-531. https://doi.org/10.3390/covid2050038
Mevada V, Patel R, Dudhagara P, Gandhi H, Beladiya U, Vaghamshi N, Godhaniya M, Ghelani A. Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2. COVID. 2022; 2(5):513-531. https://doi.org/10.3390/covid2050038
Chicago/Turabian StyleMevada, Vishal, Rajesh Patel, Pravin Dudhagara, Himani Gandhi, Urvisha Beladiya, Nilam Vaghamshi, Manoj Godhaniya, and Anjana Ghelani. 2022. "Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2" COVID 2, no. 5: 513-531. https://doi.org/10.3390/covid2050038
APA StyleMevada, V., Patel, R., Dudhagara, P., Gandhi, H., Beladiya, U., Vaghamshi, N., Godhaniya, M., & Ghelani, A. (2022). Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2. COVID, 2(5), 513-531. https://doi.org/10.3390/covid2050038