A Reciprocal Cross-Reactivity between Monoclonal Antibodies to SARS-CoV-2 Spike Glycoprotein S1 and Human CXCR2—An Implication of a Viral Mimic of Human CXCR2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study 1 Flow Cytometric Analysis for Samples without Recombinant CoV2S1 (rCoV2S1)
2.1.1. Preparation of Peripheral Leukocytes
2.1.2. Reagents
2.1.3. Cell Staining and Flow Cytometric Analysis
2.2. Study 2 Flow Cytometric Analysis for Samples with rCoV2S1
3. Results
3.1. Study 1
Monoclonal Anti-SARS-CoV-2 Spike S1 Antibody (CR3022) Recognizes the ECD of Human CXCR2
3.2. Study 2
Monoclonal Anti-ECD of the Human CXCR2 Antibody Recognizes rCoV2S1
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcami, A. Viral Mimicry of Cytokines, Chemokines and Their Receptors. Nat. Rev. Immunol. 2003, 3, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.; de Prost, N.; Fourati, S.; Lamoureux, C.; Gricourt, G.; N’debi, M.; Canoui-Poitrine, F.; Désveaux, I.; Picard, O.; Demontant, V.; et al. Viral Genomic, Metagenomic and Human Transcriptomic Characterization and Prediction of the Clinical Forms of COVID-19. PLoS Pathog. 2021, 17, e1009416. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef] [PubMed]
- Rajarathnam, K.; Schnoor, M.; Richardson, R.M.; Rajagopal, S. How Do Chemokines Navigate Neutrophils to the Target Site: Dissecting the Structural Mechanisms and Signaling Pathways. Cell Signal. 2018, 54, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Anders, H.-J.; Bilyy, R.; Bowlin, G.L.; Daniel, C.; Lorenzo, R.D.; Egeblad, M.; Henneck, T.; Hidalgo, A.; Hoffmann, M.; et al. Patients with COVID-19: In the Dark-NETs of Neutrophils. Cell Death Differ. 2021, 1–15. [Google Scholar] [CrossRef]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Tassell, B.W.V.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial Dysfunction and Immunothrombosis as Key Pathogenic Mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef]
- Morrissey, S.M.; Geller, A.E.; Hu, X.; Tieri, D.; Ding, C.; Klaes, C.K.; Cooke, E.A.; Woeste, M.R.; Martin, Z.C.; Chen, O.; et al. A Specific Low-Density Neutrophil Population Correlates with Hypercoagulation and Disease Severity in Hospitalized COVID-19 Patients. JCI Insight 2021, 6, e148435. [Google Scholar] [CrossRef]
- Lai, M.M.C. Recombination in Large RNA Viruses: Coronaviruses. Semin. Virol. 1996, 7, 381–388. [Google Scholar] [CrossRef]
- Rehman, S.U.; Shafique, L.; Ihsan, A.; Liu, Q. Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens 2020, 9, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Ann. Rev. Virol. 2016, 3, 237–261. [Google Scholar] [CrossRef] [Green Version]
- Katancik, J.A.; Sharma, A.; Nardin, E. De Interleukin 8, Neutrophil-Activating Peptide-2 and GRO-Alpha Bind to and Elicit Cell Activation via Specific and Different Amino Acid Residues of CXCR2. Cytokine 2000, 12, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, L.; Yuan, S.; Wu, M.; Xu, Y.; Sun, Q.; Li, S.; Zhao, S.; Hua, T.; Liu, Z.-J. Structural Basis of CXC Chemokine Receptor 2 Activation and Signalling. Nature 2020, 585, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wan, Y.; Wang, N.; Xiang, J.; Wang, T.; Yang, X.; Wang, J.; Dong, X.; Dong, L.; Yan, L.; et al. Selection of a Picomolar Antibody That Targets CXCR2-Mediated Neutrophil Activation and Alleviates EAE Symptoms. Nat. Commun. 2021, 12, 2547. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Shen, L.; Wu, M.; Liu, Z.; Hua, T. Structural Insights into the Activation of Chemokine Receptor CXCR2. FEBS J. 2022, 289, 386–393. [Google Scholar] [CrossRef]
- Rose, J.J.; Foley, J.F.; Murphy, P.M.; Venkatesan, S. On the Mechanism and Significance of Ligand-Induced Internalization of Human Neutrophil Chemokine Receptors CXCR1 and CXCR2. J. Biol. Chem. 2004, 279, 24372–24386. [Google Scholar] [CrossRef] [Green Version]
- Prado, G.N.; Suetomi, K.; Shumate, D.; Maxwell, C.; Ravindran, A.; Rajarathnam, K.; Navarro, J. Chemokine Signaling Specificity: Essential Role for the N-Terminal Domain of Chemokine Receptors. Biochem. USA 2007, 46, 8961–8968. [Google Scholar] [CrossRef] [Green Version]
- Manufacture’s Information on Ab273068. Available online: https://www.abcam.co.jp/recombinant-human-coronavirus-sars-cov-2-spike-glycoprotein-s1-active-ab273068.html (accessed on 21 February 2022).
- Yuan, M.; Wu, N.C.; Zhu, X.; Lee, C.-C.D.; So, R.T.Y.; Lv, H.; Mok, C.K.P.; Wilson, I.A. A Highly Conserved Cryptic Epitope in the Receptor Binding Domains of SARS-CoV-2 and SARS-CoV. Science 2020, 368, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Masso-Silva, J.A.; Moshensky, A.; Lam, M.T.Y.; Odish, M.; Patel, A.; Xu, L.; Hansen, E.; Trescott, S.; Nguyen, C.; Kim, R.; et al. Increased Peripheral Blood Neutrophil Activation Phenotypes and NETosis in Critically Ill COVID-19 Patients: A Case Series and Review of the Literature. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, ciab437. [Google Scholar] [CrossRef]
- Meizlish, M.L.; Pine, A.B.; Bishai, J.D.; Goshua, G.; Nadelmann, E.R.; Simonov, M.; Chang, C.-H.; Zhang, H.; Shallow, M.; Bahel, P.; et al. A Neutrophil Activation Signature Predicts Critical Illness and Mortality in COVID-19. Blood Adv. 2021, 5, 1164–1177. [Google Scholar] [CrossRef] [PubMed]
- Mukaida, N. Pathophysiological Roles of Interleukin-8/CXCL8 in Pulmonary Diseases. Am. J. Physiol.-Lung C 2003, 284, L566–L577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, J.; Neil, S.; Wintle, J.; Clark-Lewis, I.; Moore, H.; Lam, C.; Auer, M.; Hub, E.; Rot, A. Transcytosis and Surface Presentation of IL-8 by Venular Endothelial Cells. Cell 1997, 91, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Chuntharapai, A.; Kim, K.J. Regulation of the Expression of IL-8 Receptor A/B by IL-8: Possible Functions of Each Receptor. J. Immunol. Baltim. Md. 1995, 155, 2587–2594. [Google Scholar]
- Kledal, T.N.; Rosenkilde, M.M.; Schwartz, T.W. Selective Recognition of the Membrane-bound CX3C Chemokine, Fractalkine, by the Human Cytomegalovirus-encoded Broad-spectrum Receptor US28. FEBS Lett. 1998, 441, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Desmetz, C.; Lin, Y.; Mettling, C.; Portalès, P.; Rabesandratana, H.; Clot, J.; Corbeau, P. The Strength of the Chemotactic Response to a CCR5 Binding Chemokine Is Determined by the Level of Cell Surface CCR5 Density. Immunology 2006, 119, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.F.; Quinones, M.P.; Mummidi, S.; Srinivas, S.; Gaitan, A.A.; Begum, K.; Jimenez, F.; VanCompernolle, S.; Unutmaz, D.; Ahuja, S.S.; et al. CCR5 Expression Levels Influence NFAT Translocation, IL-2 Production, and Subsequent Signaling Events during T Lymphocyte Activation. J. Immunol. 2009, 182, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Bodaghi, B.; Jones, T.R.; Zipeto, D.; Vita, C.; Sun, L.; Laurent, L.; Arenzana-Seisdedos, F.; Virelizier, J.-L.; Michelson, S. Chemokine Sequestration by Viral Chemoreceptors as a Novel Viral Escape Strategy: Withdrawal of Chemokines from the Environment of Cytomegalovirus-Infected Cells. J. Exp. Med. 1998, 188, 855–866. [Google Scholar] [CrossRef] [Green Version]
- Billstrom, M.A.; Lehman, L.A.; Worthen, G.S. Depletion of Extracellular RANTES during Human Cytomegalovirus Infection of Endothelial Cells. Am. J. Resp. Cell Mol. 1999, 21, 163–167. [Google Scholar] [CrossRef]
- Kanduc, D.; Shoenfeld, Y. Molecular Mimicry between SARS-CoV-2 Spike Glycoprotein and Mammalian Proteomes: Implications for the Vaccine. Immunol. Res. 2020, 68, 1–4. [Google Scholar] [CrossRef]
- Beaudoin, C.A.; Jamasb, A.R.; Alsulami, A.F.; Copoiu, L.; van Tonder, A.J.; Hala, S.; Bannerman, B.P.; Thomas, S.E.; Vedithi, S.C.; Torres, P.H.M.; et al. Predicted Structural Mimicry of Spike Receptor-Binding Motifs from Highly Pathogenic Human Coronaviruses. Comput. Struct. Biotechnol. J. 2021, 19, 3938–3953. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.S.; Caricchio, R.; Casanova, J.L.; Combes, A.J.; Diamond, B.; Fox, S.E.; Hanauer, D.A.; James, J.A.; Kanthi, Y.; Ladd, V.; et al. The Intersection of COVID-19 and Autoimmunity. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Cheng, M.H.; Zhang, S.; Porritt, R.A.; Rivas, M.N.; Paschold, L.; Willscher, E.; Binder, M.; Arditi, M.; Bahar, I. Superantigenic Character of an Insert Unique to SARS-CoV-2 Spike Supported by Skewed TCR Repertoire in Patients with Hyperinflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 25254–25262. [Google Scholar] [CrossRef]
- Wucherpfennig, K.W. Mechanisms for the Induction of Autoimmunity by Infectious Agents. J. Clin. Investig. 2001, 108, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Segal, Y.; Shoenfeld, Y. Vaccine-Induced Autoimmunity: The Role of Molecular Mimicry and Immune Crossreaction. Cell Mol. Immunol. 2018, 15, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.E.; Feng, A.; Meng, W.; Apostolidis, S.A.; Mack, E.; Artandi, M.; Barman, L.; Bennett, K.; Chakraborty, S.; Chang, I.; et al. New-Onset IgG Autoantibodies in Hospitalized Patients with COVID-19. Nat. Commun. 2021, 12, 5417. [Google Scholar] [CrossRef]
- Ishay, Y.; Kenig, A.; Tsemach-Toren, T.; Amer, R.; Rubin, L.; Hershkovitz, Y.; Kharouf, F. Autoimmune Phenomena Following SARS-CoV-2 Vaccination. Int. Immunopharmacol. 2021, 99, 107970. [Google Scholar] [CrossRef] [PubMed]
- Boshuizen, R.S.; Marsden, C.; Turkstra, J.; Rossant, C.J.; Slootstra, J.; Copley, C.; Schwamborn, K. A Combination of in Vitro Techniques for Efficient Discovery of Functional Monoclonal Antibodies against Human CXC Chemokine Receptor-2 (CXCR2). Mabs 2014, 6, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Ruffing, N.; Shi, X.; Newman, W.; Soler, D.; Mackay, C.R.; Qin, S. Discrete Steps in Binding and Signaling of Interleukin-8 with Its Receptor. J. Biol. Chem. 1996, 271, 31202–31209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.J.; Xie, L.; Ang, C.; Fahimi, F.; Willingham, S.B.; Kueh, A.J.; Herold, M.J.; Mackay, C.R.; Robert, R. Therapeutic Blockade of CXCR2 Rapidly Clears Inflammation in Arthritis and Atopic Dermatitis Models: Demonstration with Surrogate and Humanized Antibodies. Mabs 2020, 12, 1856460. [Google Scholar] [CrossRef]
- BD FACSAriaTM II & III Cell Sorter Training Manual Ver1.1; Nippon Becton Dickinson Co., Ltd.: Tokyo, Japan, 2016.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizutani, T. A Reciprocal Cross-Reactivity between Monoclonal Antibodies to SARS-CoV-2 Spike Glycoprotein S1 and Human CXCR2—An Implication of a Viral Mimic of Human CXCR2. COVID 2022, 2, 569-577. https://doi.org/10.3390/covid2050042
Mizutani T. A Reciprocal Cross-Reactivity between Monoclonal Antibodies to SARS-CoV-2 Spike Glycoprotein S1 and Human CXCR2—An Implication of a Viral Mimic of Human CXCR2. COVID. 2022; 2(5):569-577. https://doi.org/10.3390/covid2050042
Chicago/Turabian StyleMizutani, Tatsushi. 2022. "A Reciprocal Cross-Reactivity between Monoclonal Antibodies to SARS-CoV-2 Spike Glycoprotein S1 and Human CXCR2—An Implication of a Viral Mimic of Human CXCR2" COVID 2, no. 5: 569-577. https://doi.org/10.3390/covid2050042
APA StyleMizutani, T. (2022). A Reciprocal Cross-Reactivity between Monoclonal Antibodies to SARS-CoV-2 Spike Glycoprotein S1 and Human CXCR2—An Implication of a Viral Mimic of Human CXCR2. COVID, 2(5), 569-577. https://doi.org/10.3390/covid2050042