Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents
Abstract
:1. Introduction
2. Monoclonal Antibodies as Therapeutic Agents
3. Immunotherapy in the Treatment of COVID-19
4. Anti-SARS-CoV-2 Spike Protein Monoclonal Antibodies as COVID-19 Therapeutics
5. Efficacy of Neutralizing Monoclonal Antibodies against SARS-CoV-2 Variants of Concern
6. Anti-IL6 Monoclonal Antibodies as COVID-19 Therapeutics
7. Anti-CD6 Monoclonal Antibodies as COVID-19 Therapeutics
8. Challenges of Developing mAbs for Use in the Clinical Environment
9. Benefits and Risks of mAb Therapy for Potential Patients
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jahanshahlu, L.; Rezaei, N. Monoclonal Antibody as a Potential Anti-COVID-19. Biomed. Pharmacother. 2020, 129, 110337. [Google Scholar] [CrossRef]
- Warrington, R.; Watson, W.; Kim, H.L.; Antonetti, F.R. An Introduction to Immunology and Immunopathology. Allergy Asthma Clin. Immunol. 2011, 7, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.L.; Suscovich, T.J.; Fortune, S.M.; Alter, G. Beyond Binding: Antibody Effector Functions in Infectious Diseases. Nat. Rev. Immunol. 2017, 18, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Hedestam, G.B.K.; Fouchier, R.A.M.; Phogat, S.; Burton, D.R.; Sodroski, J.; Wyatt, R.T. The Challenges of Eliciting Neutralizing Antibodies to HIV-1 and to Influenza Virus. Nat. Rev. Genet. 2008, 6, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Pecetta, S.; Finco, O.; Seubert, A. Quantum Leap of Monoclonal Antibody (mAb) Discovery and Development in the COVID-19 Era. Semin. Immunol. 2020, 50, 101427. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.-A. The Convalescent Sera Option for Containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Janiaud, P.; Axfors, C.; Schmitt, A.M.; Gloy, V.; Ebrahimi, F.; Hepprich, M.; Smith, E.R.; Haber, N.A.; Khanna, N.; Moher, D.; et al. Association of Convalescent Plasma Treatment with Clinical Outcomes in Patients with COVID-19. JAMA 2021, 325, 1185–1195. [Google Scholar] [CrossRef]
- Simonovich, V.A.; Pratx, L.D.B.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.D.L.; et al. A Randomized Trial of Convalescent Plasma in COVID-19 Severe Pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef]
- Altuntas, F.; Ata, N.; Yigenoglu, T.N.; Basci, S.; Dal, M.S.; Korkmaz, S.; Namdaroglu, S.; Basturk, A.; Hacibekiroglu, T.; Dogu, M.H.; et al. Convalescent Plasma Therapy in Patients with COVID-19. Transfus. Apher. Sci. 2021, 60, 102955. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Convalescent Plasma in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised Controlled, Open-Label, Platform Trial. Lancet 2021, 397, 2049–2059. [Google Scholar] [CrossRef]
- Bégin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent Plasma for Hospitalized Patients with COVID-19: An Open-Label, Randomized Controlled Trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee for the REMAP-CAP Investigators. Effect of Convalescent Plasma on Organ Support–Free Days in Critically Ill Patients with COVID-19. JAMA 2021, 326, 1690. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. COVID-19 Treatment Guidelines; Anti-SARS-CoV-2 Antibody Products. 2022. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 17 January 2022).
- Liu, S.; Aberg, J. Convalescent Plasma in Patients Hospitalised with COVID-19. Lancet 2021, 397, 2024–2025. [Google Scholar] [CrossRef]
- Marovich, M.; Mascola, J.R.; Cohen, M.S. Monoclonal Antibodies for Prevention and Treatment of COVID-19. JAMA 2020, 324, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J. Passive Antibody Therapy in COVID-19. Nat. Rev. Immunol. 2020, 20, 401–403. [Google Scholar] [CrossRef]
- Sharun, K.; Tiwari, R.; Yatoo, M.I.; Patel, S.K.; Natesan, S.; Dhama, J.; Malik, Y.S.; Harapan, H.; Singh, R.K.; Dhama, K. Antibody-Based Immunotherapeutics and Use of Convalescent Plasma to Counter COVID-19: Advances and Prospects. Expert Opin. Biol. Ther. 2020, 20, 1033–1046. [Google Scholar] [CrossRef]
- Hamilton, F.W.; Lee, T.; Arnold, D.T.; Lilford, R.; Hemming, K. Is Convalescent Plasma Futile in COVID-19? A Bayesian Re-Analysis of the Recovery Randomized Controlled Trial. Int. J. Infect. Dis. 2021, 109, 114–117. [Google Scholar] [CrossRef]
- Kemp, S.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 Evolution during Treatment of Chronic Infection. Nature 2021, 592, 277–282. [Google Scholar] [CrossRef]
- Joyner, M.J.; Wright, R.S.; Fairweather, D.; Senefeld, J.W.; Bruno, K.A.; Klassen, S.A.; Carter, R.E.; Klompas, A.M.; Wiggins, C.C.; Shepherd, J.R.; et al. Early Safety Indicators of COVID-19 Convalescent Plasma in 5000 Patients. J. Clin. Investig. 2020, 130, 4791–4797. [Google Scholar] [CrossRef]
- Ucciferri, C.; Vecchiet, J.; Falasca, K. Role of Monoclonal Antibody Drugs in the Treatment of COVID-19. World J. Clin. Cases 2020, 8, 4280–4285. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; et al. Potent Binding of 2019 Novel Coronavirus Spike Protein by a SARS Coronavirus-Specific Human Monoclonal Antibody. Emerg. Microbes Infect. 2020, 9, 382–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, B.; Zhang, Q.; Ge, J.; Wang, R.; Sun, J.; Ge, X.; Yu, J.; Shan, S.; Zhou, B.; Song, S.; et al. Human Neutralizing Antibodies Elicited by SARS-CoV-2 Infection. Nature 2020, 584, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Park, Y.-J.; Beltramello, M.; Walls, A.C.; Tortorici, M.A.; Bianchi, S.; Jaconi, S.; Culap, K.; Zatta, F.; De Marco, A.; et al. Cross-Neutralization of SARS-CoV-2 by a Human Monoclonal SARS-CoV Antibody. Nature 2020, 583, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, W.; Chappell, J.D.; Joyce, M.G.; Zhang, Y.; Kanekiyo, M.; Becker, M.M.; van Doremalen, N.; Fischer, R.; Wang, N.; et al. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein to Avoid Neutralization Escape. J. Virol. 2018, 92, e02002–e02017. [Google Scholar] [CrossRef] [Green Version]
- Atyeo, C.; Slein, M.D.; Fischinger, S.; Burke, J.; Schäfer, A.; Leist, S.R.; Kuzmina, N.A.; Mire, C.; Honko, A.; Johnson, R.; et al. Dissecting Strategies to Tune the Therapeutic Potential of SARS-CoV-2–Specific Monoclonal Antibody CR3022. JCI Insight 2021, 6, e143129. [Google Scholar] [CrossRef]
- Amraei, R.; Xia, C.; Olejnik, J.; Rahimi, N. Extracellular Vimentin is an Attachment Factor that Facilitates SARS-CoV-2 Entry into Human Endothelial Cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2113874119. [Google Scholar] [CrossRef]
- Ter Meulen, J.; van den Brink, E.N.; Poon, L.L.M.; Marissen, W.E.; Leung, C.S.W.; Cox, F.; Cheung, C.Y.; Bakker, A.Q.; Bogaards, J.A.; van Deventer, E.; et al. Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants. PLoS Med. 2006, 3, e237. [Google Scholar] [CrossRef] [Green Version]
- Rappazzo, C.G.; Tse, L.V.; Kaku, C.I.; Wrapp, D.; Sakharkar, M.; Huang, D.; Deveau, L.M.; Yockachonis, T.J.; Herbert, A.S.; Battles, M.B.; et al. Broad and Potent Activity against SARS-like Viruses by an Engineered Human Monoclonal Antibody. Science 2021, 371, 823–829. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Evaluation of ADG20 for the Prevention of COVID-19. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04859517 (accessed on 7 February 2022).
- Jones, B.E.; Brown-Augsburger, P.L.; Corbett, K.S.; Westendorf, K.; Davies, J.; Cujec, T.P.; Wiethoff, C.M.; Blackbourne, J.L.; Heinz, B.A.; Foster, D.; et al. LY-CoV555, a Rapidly Isolated Potent Neutralizing Antibody, Provides Protection in a Non-Human Primate Model of SARS-CoV-2 Infection. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shi, R.; Shan, C.; Duan, X.; Chen, Z.; Liu, P.; Song, J.; Song, T.; Bi, X.; Han, C.; Wu, L.; et al. A Human Neutralizing Antibody Targets the Receptor-Binding Site of SARS-CoV-2. Nature 2020, 584, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. Effect of Bamlanivimab as Monotherapy or in Combination with Etesevimab on Viral Load in Patients with Mild to Moderate COVID-19. JAMA 2021, 325, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Lilly Investors. Lilly to Supply 614,000 Additional Doses of Bamlanivimab and Etesevimab to the U.S. Government for the Treatment or Post-Exposure Prevention of COVID-19. Eli Lilly and Company. 2022. Available online: https://investor.lilly.com/news-releases/news-release-details/lilly-supply-614000-additional-doses-bamlanivimab-and-etesevimab (accessed on 15 April 2022).
- Kritz, F. FDA Scales Back Use of 2 Monoclonal Antibody Treatments for COVID-19. Verywell Health. 2022. Available online: https://www.verywellhealth.com/fda-limits-monoclonal-antibody-treatments-for-omicron-5217677 (accessed on 7 February 2022).
- Hansen, J.; Baum, A.; Pascal, K.E.; Russo, V.; Giordano, S.; Wloga, E.; Fulton, B.O.; Yan, Y.; Koon, K.; Patel, K.; et al. Studies in Humanized Mice and Convalescent Humans Yield a SARS-CoV-2 Antibody Cocktail. Science 2020, 369, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Sherchan, R.; Cannady, P. Casirivimab; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ema.europa.eu. Regeneron Ireland DAC Use of Casirivimab and Imdevimab for the Treatment of COVID-19. 2022. Available online: https://www.ema.europa.eu/en/documents/referral/regn-cov2-antibody-combination-casirivimab/imdevimab-covid19-article-53-procedure-assessment-report_en.pdf (accessed on 15 April 2022).
- Copin, R.; Baum, A.; Wloga, E.; Pascal, K.E.; Giordano, S.; Fulton, B.O.; Zhou, A.; Negron, N.; Lanza, K.; Chan, N.; et al. The Monoclonal Antibody Combination REGEN-COV Protects against SARS-CoV-2 Mutational Escape in Preclinical and Human Studies. Cell 2021, 184, 3949–3961. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef]
- Deeks, E.D. Casirivimab/Imdevimab: First Approval. Drugs 2021, 81, 2047–2055. [Google Scholar] [CrossRef]
- Regeneron Pharmaceuticals Inc. Regeneron Announces New U.S. Government Agreement to Purchase Additional Doses of REGEN-COV™ (casirivimab and imdevimab) Antibody Cocktail. Regeneron Pharmaceuticals Inc. 2022. Available online: https://investor.regeneron.com/news-releases/news-release-details/regeneron-announces-new-us-government-agreement-purchase (accessed on 15 April 2022).
- Cavazzoni, P. Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal Antibodies to Treat COVID-19 Due to the Omicron Variant. U.S. Food and Drug Administration. 2022. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron (accessed on 15 April 2022).
- Kantsteiner, F. GSK and Vir, Navigating Early Antibody Pitfalls, Tout Delta Variant-Busting Data for Latecomer Sotrovimab. Fierce Pharma. 2022. Available online: https://www.fiercepharma.com/pharma/gsk-and-vir-tune-their-sotrovimab-pitch-heels-delta-busting-variant-data (accessed on 15 April 2022).
- Fda.gov. Fact Sheet for Healthcare Providers Emergency Use Authorization (EUA) OF SOTROVIMAB. 2022. Available online: https://www.fda.gov/media/149534/download (accessed on 15 April 2022).
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: UK Approves Monoclonal Antibody Sotrovimab for over 12s at High Risk. BMJ 2021, 375, n2990. [Google Scholar] [CrossRef]
- Secure.medicalletter.org. An EUA for Sotrovimab for Treatment of COVID-19. The Medical Letter, Inc. 2022. Available online: https://secure.medicalletter.org/w1627a#refsot (accessed on 15 April 2022).
- Du, S.; Cao, Y.; Zhu, Q.; Yu, P.; Qi, F.; Wang, G.; Du, X.; Bao, L.; Deng, W.; Zhu, H.; et al. Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell 2020, 183, 1013–1023. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, M.-M.; Zhang, S.; Qian, K.; Wang, C.; Fu, W.; Lei, C.; Hu, S. Therapeutic Antibodies under Development for SARS-CoV-2. VIEW 2021, 3, 20200178. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Neutralizing Antibody BGB-DXP593 in Participants with Mild-to-Moderate Coronavirus Disease 2019 (COVID-19) ClinicalTrials.gov. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04551898 (accessed on 15 April 2022).
- Ema.europa.eu. Regikrona Product Information. 2022. Available online: https://www.ema.europa.eu/en/documents/product-information/regkirona-epar-product-information_en.pdf (accessed on 15 April 2022).
- Tuccori, M.; Ferraro, S.; Convertino, I.; Cappello, E.; Valdiserra, G.; Blandizii, C.; Maggi, F.; Focosi, D. Anti-SARS-CoV-2 Neutralizing Monoclonal Antibodies: Clinical Pipeline. mAbs 2020, 12, 1854149. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ryu, D.-K.; Lee, J.; Kim, Y.-I.; Seo, J.-M.; Kim, Y.-G.; Jeong, J.-H.; Kim, M.; Kim, J.-I.; Kim, P.; et al. A Therapeutic Neutralizing Antibody Targeting Receptor Binding Domain of SARS-CoV-2 Spike Protein. Nat. Commun. 2021, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.-K.; Kang, B.; Noh, H.; Woo, S.-J.; Lee, M.-H.; Nuijten, P.M.; Kim, J.-I.; Seo, J.-M.; Kim, C.; Kim, M.; et al. The In Vitro and In Vivo Efficacy of CT-P59 against Gamma, Delta and its Associated Variants of SARS-CoV-2. Biochem. Biophys. Res. Commun. 2021, 578, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Clinicaltrials.gov. To Evaluate the Safety and Efficacy of CT-P59 in Patients with Mild to Moderate Syptoms of Severe Acute Respiratory Syndrome COVID-19—Full Text View—ClinicalTrials.gov. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04602000 (accessed on 15 April 2022).
- European Medicines Agency. Regkirona. 2022. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/regkirona (accessed on 9 February 2022).
- Wang, C.; Li, W.; Drabek, D.; Okba, N.M.A.; van Haperen, R.; Osterhaus, A.D.M.E.; van Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B.-J. A Human Monoclonal Antibody Blocking SARS-CoV-2 Infection. Nat. Commun. 2020, 11, 2251. [Google Scholar] [CrossRef]
- European Pharmaceutical Review. NEWS AbbVie initiates Phase I trial to study SARS-CoV-2 Neutralising Antibody. 2021. Available online: https://www.europeanpharmaceuticalreview.com/news/136937/abbvie-initiates-phase-i-trial-to-study-sars-cov-2-neutralising-antibody/ (accessed on 18 June 2021).
- Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dan, K.-M.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; et al. SARS-CoV-2 Neutralizing Antibody Structures Inform Therapeutic Strategies. Nature 2020, 588, 682–687. [Google Scholar] [CrossRef]
- Tortorici, M.; Beltramello, M.; Lempp, F.A.; Pinto, D.; Dang, H.V.; Rosen, L.E.; McCallum, M.; Bowen, J.; Minola, A.; Jaconi, S.; et al. Ultrapotent Human Antibodies Protect against SARS-CoV-2 Challenge via Multiple Mechanisms. Science 2020, 370, 950–957. [Google Scholar] [CrossRef]
- Fedry, J.; Hurdiss, D.L.; Wang, C.; Li, W.; Obal, G.; Drulyte, I.; Du, W.; Howes, S.C.; van Kuppeveld, F.J.M.; Förster, F.; et al. Structural Insights into the Cross-Neutralization of SARS-CoV and SARS-CoV-2 by the Human Monoclonal Antibody 47D11. Sci. Adv. 2021, 7, eabf5632. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Shen, C.; Peng, W.; Li, D.; Zhao, C.; Li, Z.; Li, S.; Bi, Y.; Yang, Y.; et al. A Noncompeting Pair of Human Neutralizing Antibodies Block COVID-19 Virus Binding to Its Receptor ACE2. Science 2020, 368, 1274–1278. [Google Scholar] [CrossRef]
- Dong, J.; Zost, S.J.; Greaney, A.J.; Starr, T.N.; Dingens, A.S.; Chen, E.C.; Brett Case, J.; Sutton, R.E.; Gilchuk, P.; Rodriguez, J.; et al. Genetic and Structural Basis for Recognition of SARS-CoV-2 Spike Protein by a Two-Antibody Cocktail. bioRxiv 2021. [Google Scholar] [CrossRef]
- Fda.gov. Fact Sheet for Healthcare Providers: Emergency Use Authorization for EVUSHELD™ (tixagevimab co-packaged with cilgavimab). 2022. Available online: https://www.fda.gov/media/154701/download (accessed on 15 April 2022).
- Astrazeneca.com. Evusheld (formerly AZD7442) Long-Acting Antibody Combination Authorised for Emergency Use in the US for Pre-Exposure Prophylaxis (Prevention) of COVID-19. 2022. Available online: https://www.astrazeneca.com/media-centre/press-releases/2021/evusheld-long-acting-antibody-combination-authorised-for-emergency-use-in-the-us-for-pre-exposure-prophylaxis-prevention-of-covid-19.html (accessed on 15 April 2022).
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.-H.; Porrot, F.; Starpoli, I.; Lemoine, F.; et al. Considerable Escape of SARS-CoV-2 Omicron to Antibody Neutralization. Nature 2021, 602, 671–675. [Google Scholar] [CrossRef]
- Astrazeneca-us.com. AstraZeneca to Supply the US Government with an Additional One Million Doses of EVUSHELD Long-Acting Antibody Combination for the Prevention of COVID-19. 2022. Available online: https://www.astrazeneca-us.com/media/statements/2022/astrazeneca-to-supply-the-US-government-with-an-additional-one-million-doses-of-evusheld-long-acting-antibody-combination-for-the-prevention-of-covid-19.html (accessed on 15 April 2022).
- European Medicines Agency. Evusheld—European Medicines Agency. 2022. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/evusheld (accessed on 15 April 2022).
- Benotmane, I.; Velay, A.; Thaunat, O.; Gautier Vergas, G.; Olagne, J.; Fafi-Kremer, S.; Caillard, S. Pre-Exposure Prophylaxis with Evusheld™ Elicits Limited Neutralizing Activity against the Omicron Bariant in Kidney Transplant Patients. medRxiv 2022. [Google Scholar] [CrossRef]
- Westendorf, K.; Žentelis, S.; Wang, L.; Foster, D.; Vaillancourt, P.; Wiggin, M.; Lovett, E.; van der Lee, R.; Hendle, J.; Pustlinik, A.; et al. LY-CoV1404 (Bebtelovimab) Potently Neutralizes SARS-CoV-2 Variants. Cell Rep. 2021, 2022, 110812. [Google Scholar] [CrossRef]
- Dougan, M.; Azizad, M.; Chen, P.; Feldman, B.; Frieman, M.; Igbinadolor, A.; Kumar, P.; Morris, J.; Potts, J.; Baracco, L.; et al. Bebtelovimab, Alone or Together with Bamlanivimab and Etesevimab, as a Broadly Neutralizing Monoclonal Antibody Treatment for Mild to Moderate, Ambulatory COVID-19. medRxiv 2022. [Google Scholar] [CrossRef]
- Lilly Investors. Lilly Will Supply up to 600,000 Doses of Bebtelovimab to U.S. Government in Ongoing Effort to Provide COVID-19 Treatment Options. Eli Lilly and Company. 2022. Available online: https://investor.lilly.com/news-releases/news-release-details/lilly-will-supply-600000-doses-bebtelovimab-us-government (accessed on 15 April 2022).
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; De Marco, A.; di Iulio, J.; et al. Broadly Neutralizing Antibodies Overcome SARS-CoV-2 Omicron Antigenic Shift. Nature 2022, 602, 664–670. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kockanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine Release Syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; et al. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. Proc. Natl. Acad. Sci. USA 2020, 117, 10970–10975. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, K.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, M.; Laskou, F.; Stapleton, P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccines Immunother. 2017, 13, 1972–1988. [Google Scholar] [CrossRef] [Green Version]
- Ema.europa.eu. ASSESSMENT REPORT FOR RoActemra. 2009. Available online: https://www.ema.europa.eu/en/documents/assessment-report/roactemra-epar-public-assessment-report_en.pdf (accessed on 15 April 2022).
- Zhang, C.; Wu, Z.; Li, J.-W.; Zhao, H.; Wang, G.-Q. The Cytokine Release Syndrome (CRS) of Severe COVID-19 and Interleukin-6 Receptor (IL-6R) Antagonist Tocilizumab may be the Key to Reduce the Mortality. Int. J. Antimicrob. Agents 2020, 55, 105954. [Google Scholar] [CrossRef]
- Gupta, S.; Wang, W.; Hayek, S.S.; Chen, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.Y.; Radbel, J.; et al. Association Between Early Treatment with Tocilizumab and Mortality Among Critically Ill Patients with COVID-19. JAMA Intern. Med. 2021, 181, 41. [Google Scholar] [CrossRef] [PubMed]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Haghbin, H.; Sitta, E.A.; Nawras, Y.; Fatima, R.; Sharma, S.; Lee-Smith, W.; Duggan, J.; Kammeyer, J.A.; Assaly, R. Efficacy of tocilizumab in COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2020, 93, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. RoActemra—European Medicines Agency. 2022. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/roactemra (accessed on 15 April 2022).
- Reliefweb. Tocilizumab, Second Drug ever Recommended by WHO for COVID-19, Will Remain Unaffordable and Inaccessible for Most of the World. 2022. Available online: https://reliefweb.int/report/world/tocilizumab-second-drug-ever-recommended-who-covid-19-will-remain-unaffordable-and (accessed on 15 April 2022).
- Loganathan, S.; Athalye, S.N.; Joshi, S.R. Itolizumab, an Anti-CD6 Monoclonal Antibody, as a Potential Treatment for COVID-19 Complications. Expert Opin. Biol. Ther. 2020, 20, 1025–1031. [Google Scholar] [CrossRef]
- Nair, P.; Melarkode, R.; Rajkumar, D.; Montero, E. CD6 Synergistic Co-stimulation Promoting Proinflammatory Response Is Modulated without Interfering with the Activated Leucocyte Cell Adhesion Molecule Interaction. Clin. Exp. Immunol. 2010, 162, 116–130. [Google Scholar] [CrossRef]
- Anand, A.; Assudani, D.; Nair, P.; Krishnamurthy, S.; Deodhar, S.; Arumugam, M.; Iyer, H.; Melarkode, R. Safety, Efficacy and Pharmacokinetics of T1h, a Humanized Anti-CD6 Monoclonal Antibody, in Moderate to Severe Chronic Plaque Psoriasis—Results from a Randomized Phase II Trial. (96.13). J. Immunol. 2010, 184, 96.13. [Google Scholar]
- Saavedra, D.; Añé-Kourí, A.L.; Sánchez, N.; Filgueira, L.M.; Betancourt, J.; Herrera, C.; Manso, L.; Chávez, E.; Caballero, A.; Hidalgo, C.; et al. An Anti-CD6 Monoclonal Antibody (Itolizumab) Reduces Circulating IL-6 in Severe COVID-19 Elderly Patients. Immun. Ageing 2020, 17, 34. [Google Scholar] [CrossRef]
- Biocon.com. Biocon Presented Insights into Clinical Study That Enabled DCGI Approval of Itolizumab for COVID-19. 2021. Available online: https://www.biocon.com/biocon-presented-insights-into-clinical-study-that-enabled-dcgi-approval-of-itolizumab-for-covid19/ (accessed on 18 June 2021).
- Atal, S.; Fatima, Z.; Balakrishnan, S. Approval of Itolizumab for COVID-19: A Premature Decision or Need of The Hour? BioDrugs 2020, 34, 705–711. [Google Scholar] [CrossRef]
- Feltes, T.F.; Sondheimer, H.M.; Tulloh, R.; Harris, B.S.; Jensen, K.M.; Losonsky, G.A.; Griffin, M.P. A Randomized Controlled Trial of Motavizumab Versus Palivizumab for the Prophylaxis of Serious Respiratory Syncytial Virus Disease in Children with Hemodynamically Significant Congenital Heart Disease. Pediatr. Res. 2011, 70, 186–191. [Google Scholar] [CrossRef]
- Lai, S.K.; McSweeney, M.D.; Pickles, R.J. Learning from past Failures: Challenges with Monoclonal Antibody Therapies for COVID-19. J. Control. Release 2021, 329, 87–95. [Google Scholar] [CrossRef]
- Zhu, Q.; Lu, B.; McTamney, P.; Palaszynski, S.; Diallo, S.; Ren, K.; Ulbrandt, N.D.; Kallewaard, N.; Wang, W.; Fernandes, F.; et al. Prevalence and Significance of Substitutions in the Fusion Protein of Respiratory Syncytial Virus Resulting in Neutralization Escape from Antibody MEDI8897. J. Infect. Dis. 2018, 218, 572–580. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Liang, Z.; Li, T.; Liu, S.; Cui, Q.; Nie, K.; Wu, Q.; Qu, X.; Huang, W.; et al. The Significant Immune Escape of Pseudotyped SARS-CoV-2 Variant Omicron. Emerg. Microbes Infect. 2021, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.; Greaney, A.; Dingens, A.; Bloom, J. Complete Map of SARS-CoV-2 RBD Mutations that Escape the Monoclonal Antibody LY-CoV555 and Its Cocktail with LY-CoV016. Cell Rep. Med. 2021, 2, 100255. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Maggi, F.; Franchini, M.; McConnell, S.; Casadevall, A. Analysis of Immune Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review. Int. J. Mol. Sci. 2021, 23, 29. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Tuccori, M.; Baj, A.; Maggi, F. SARS-CoV-2 Variants: A Synopsis of In Vitro Efficacy Data of Convalescent Plasma, Currently Marketed Vaccines, and Monoclonal Antibodies. Viruses 2021, 13, 1211. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Lu, H. Opportunities and Challenges to the Use of Neutralizing Monoclonal Antibody Therapies for COVID-19. Biosci. Trends 2021, 15, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Stokes, E.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; El Burai Felix, S.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, January 22–May 30, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef]
- Brobst, B.; Borger, J. Benefits and Risks of Administering Monoclonal Antibody Therapy for Coronavirus (COVID-19); StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The Safety and Side Effects of Monoclonal Antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef]
- Cohen, J. Designer Antibodies Could Battle COVID-19 before Vaccines Arrive. Science. AAAS. 2020. Available online: https://www.sciencemag.org/news/2020/08/designer-antibodies-could-battle-covid-19-vaccines-arrive (accessed on 18 June 2021).
- Finn, J.A.; Dong, J.; Sevy, A.M.; Parrish, E.; Gilchuk, I.; Nargi, R.; Scarlett-Jones, M.; Reichard, W.; Bombardi, R.; Voss, T.G.; et al. Identification of Structurally Related Antibodies in Antibody Sequence Databases Using Rosetta-Derived Position-Specific Scoring. Structure 2020, 28, 1124–1130.e5. [Google Scholar] [CrossRef]
- Enayatkhani, M.; Hasaniazad, M.; Faezi, S.; Gouklani, H.; Davoodian, P.; Ahmadi, N.; Einakian, M.A.; Karmostaji, A.; Ahmadi, K. Reverse Vaccinology Approach to Design a Novel Multi-Epitope Vaccine Candidate against COVID-19: An In Silico Study. J. Biomol. Struct. Dyn. 2020, 39, 2857–2872. [Google Scholar] [CrossRef] [Green Version]
Antibody | Cohort Size | Cohort Type | Observation Period | Primary Endpoints | Results | References |
---|---|---|---|---|---|---|
ADG20 | 6412 | Adults at high risk of SARS-CoV-2 infection | 4 days to 6 months, dependent on endpoint measured | Proportion of patients with RT-qPCR-confirmed SARS-CoV-2 infection, treatment emergent adverse effects and injection site reactions | No results posted yet | [31] |
CR3022 | 10 mice, 15 hamsters | Balb/c mice, Syrian golden hamsters | Mice: 2 days;hamsters: 3 days. | Viral lung titre and weight loss. | Mice: viral load reduction alongside an increase in weight loss with mAb-treated mice;hamsters: increase in both viral load and weight loss upon mAb treatment | [23] |
BGB-DXP593 | 181 | Adult outpatients with severe COVID-19 symptoms | 8 days for primary outcome, up to 85 days overall | Changes from baseline to day 8 in viral load as measured by RT-qPCR testing | No results posted yet | [51] |
H4 and B38 | 16, 4 per group | hACE2 transgenic mice | 3 days | Viral lung titer and weight loss | Significant reduction in weight loss and viral RNA copies in combination treatment group | [64] |
Tocilizumab | 4485 | Hospitalized patients with critical COVID-19 symptoms | 30 days | 30-day mortality | Significant reduction in in-hospital mortality in patients who received tocilizumab within 2 days of ICU admission | [83] |
Itolizumab | 24 | Hospitalized patients with moderate to critical COVID-19 symptoms | 48 h | Serum IL-6 levels | IL-6 levels decreased or did not increase in the majority of patients | [91] |
Evusheld | 5197 | Adults ≥ 60 years of age or with pre-specified comorbidities | 183 days | Incidence of SARS-CoV-2 RT-PCR-positive symptomatic illness | 77% reduction in incidence of symptomatic COVID-19 in patients treated with Evusheld | [66] |
Bebtelovimab | 714 | Patients with mild-to-moderate COVID-19 within 3 days of positive test results | 7 days | Proportion of patients with persistently high viral load on day 7, time to sustained symptom resolution | Statistically significant reductions in viral load and time of symptom resolution in patients treated with bebtelovimab | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plichta, J.; Kuna, P.; Panek, M. Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents. COVID 2022, 2, 599-620. https://doi.org/10.3390/covid2050045
Plichta J, Kuna P, Panek M. Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents. COVID. 2022; 2(5):599-620. https://doi.org/10.3390/covid2050045
Chicago/Turabian StylePlichta, Jacek, Piotr Kuna, and Michał Panek. 2022. "Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents" COVID 2, no. 5: 599-620. https://doi.org/10.3390/covid2050045
APA StylePlichta, J., Kuna, P., & Panek, M. (2022). Monoclonal Antibodies as Potential COVID-19 Therapeutic Agents. COVID, 2(5), 599-620. https://doi.org/10.3390/covid2050045