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Abstract: The World Health Organization (WHO)-confirmed pandemic (March 2020) of the new
Coronavirus 2 severe acute respiratory syndrome infection (SARS-CoV-2) reported in Wuhan, China,
in December 2019 (first reported cases), then spread to Italy and successively around the world. The
objective of this study is to evaluate the effectiveness of the restrictions implemented by different
governments from a statistical point of view. We quantitatively evaluated how restrictions influenced
the temporal evolution of the distribution of the weekly number of hospitalized patients in the
intensive care unit (ICU) for different countries that applied different levels of restrictions, which
can be summarized with the average stringency index, a synthetic index that represents a metric for
quantifying the severity of the restrictions applied. We found that the stringency index is strongly
correlated with the distribution skewness, while standard deviation and kurtosis are poorly and
moderately influenced. Furthermore, we compared the values of the skewness of the distribution of
hospitalized patients during several pre-pandemic influenza outbreaks in Italy (data not available for
other countries). Analysis shows that for normal flu, there is a substantial difference in skewness
(as much as 70%) in the distribution with respect to the first COVID-19 pandemic outbreak, where
social restrictions were applied. This large difference highlights that the restrictions implemented
modify the symmetry of the peak of the distribution of the hospitalized patient in the ICU. Therefore,
skewness can be used as a valid indicator to assess whether restriction has any effect on pandemic
transmission and can be used as a support for decision makers.
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1. Introduction

The World Health Organization (WHO)-declared pandemic (March 2020) of the new
Coronavirus 2 severe acute respiratory syndrome infection (SARS-CoV-2) reported in
Wuhan, China, in December 2019 (first reported cases), then spread to Italy and succes-
sively around the world. Recent studies highlight how meteorological conditions and air
pollution influenced pandemic transmission in various parts of the world [1–8] in addition
to social and economic factors [9,10] or how quickly asymptomatic carriers are found [11].
Governments around the world have implemented various restrictions to curb the spread
of COVID-19. The effectiveness of these restrictions has been a topic of intense debate and
research. Recently, several studies have provided new information on the effectiveness of
these measures.

1.1. Global Impact and Effectiveness of COVID-19 Restrictions

The effectiveness of COVID-19 restrictions has been widely studied, and several
articles highlight the positive impact of such measures on reducing transmission rates and
alleviating the burden on healthcare systems. A comprehensive study by [12] indicated that
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lockdown measures implemented in 11 European countries led to a significant reduction in
virus reproduction number (R0), preventing an estimated 3.1 million infections. Similarly,
a systematic review by [13] involving 149 countries showed that stringent restrictions, such
as school and workplace closures, travel restrictions, and social distancing mandates, were
associated with a decrease in COVID-19 case growth rates. Another study by [14] found
that nonpharmaceutical interventions, including lockdowns, had a substantial effect on
reducing transmission in six countries, preventing an estimated 62 million confirmed cases.
Collectively, these findings suggest that the COVID-19 restrictions were vital to curbing the
spread of the virus and minimizing its impact on public health.

The effectiveness of COVID-19 restrictions has also been supported by region-specific
studies. In the United States, a study by [15] analyzed the impact of social distancing
measures and stay-at-home orders on the growth rate of COVID-19 cases, finding that such
policies significantly slowed the spread of the virus. In China, a modeling study by [16]
reported that the rapid implementation of control measures, including travel restrictions,
reduced the virus transmission rate by 44% within 20 days. Furthermore, a study conducted
in Brazil by [17] indicated that localized restrictions in the state of São Paulo successfully
reduced the effective reproduction number (Rt) of COVID-19 below 1, demonstrating the
effectiveness of such measures in curbing transmission.

However, the effectiveness of government interventions has not been uniform in all
countries. A study of the spread of the virus in countries with a higher population density
and a higher share of employment in the service sector was conducted [13].

Other factors, such as the effectiveness of test and contact tracking programs, also play
a role in the effectiveness of government interventions. A study found that contact tracking
and testing programs were essential to control the virus spread and that the effectiveness
of these programs depended on factors such as case detection speed and resource avail-
ability [18]. Despite the positive impact of these restrictions, it is important to note that the
implementation and compliance with such measures can vary between different countries
and regions, which could affect the overall effectiveness of these policies [19]. Furthermore,
the economic and social costs of implementing strict COVID-19 restrictions must be consid-
ered, as prolonged lockdowns and other measures have had significant consequences on
mental health, employment, and economic growth [20]. In general, these studies suggest
that government interventions, particularly early and aggressive interventions, have been
effective in reducing the spread of COVID-19. However, the effectiveness of these measures
can vary depending on factors such as population density, employment patterns, and the
effectiveness of testing and contact tracing programs.

However, there is no full consensus on the efficacy of restriction measurements to stop
pandemic spread. Indeed, the criticism of lockdown policies, as measures to contrast the
spread of COVID-19, has generated significant controversy in both public and academic
discourses. A significant school of thought argues that the socioeconomic consequences
of these interventions often outweigh their public health benefits [21,22]. These critics
underscore that lockdowns can lead to severe economic recession, job losses, and increased
poverty [23]. Other researchers have pointed out that these measures could contribute
to the deterioration of mental health, increased domestic violence, and disruption of
health services and education [24,25]. Furthermore, studies suggest that the efficacy of
lockdowns can vary greatly depending on the timing, strictness, and public adherence,
which implies that a one-size-fits-all approach may not be feasible or effective [12,26].
Given the aforementioned complexities and the dynamic nature of COVID-19, it becomes
crucial to devise a robust and reliable metric to evaluate the effectiveness of restrictions.
Our research stands out due to its unique approach of creating a novel and fast metric
that quantifies the effects of restrictions on the temporal distribution of admissions to the
intensive care unit (ICU). This initiative is innovative in its attempt to address key questions
concerning the efficacy of nonpharmaceutical interventions during a pandemic. The novelty
of our research lies in its potential to offer rapid and comprehensive evaluations of trade-
offs between the risks and benefits associated with implementing these interventions.
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By systematically and empirically evaluating these effects, our research could become a
valid support for authorities that implement and evaluate public health measures, thus
paving the way for more informed, efficient, and effective strategies in response to future
public health crises.

1.2. Methodologies Used for Evaluating Nonpharmaceutical Interventions against COVID-19

Various methodologies have been used to assess the efficacy of nonpharmaceutical in-
terventions (NPIs) in curtailing the spread of COVID-19. Here are some of the key methods.

1.3. Proposed Research

In our analysis, we establish a correlation between various statistical parameters that
characterize the peak shape of the time series of patients admitted to the ICU weekly in
these countries and the average stringency index (SI) [19]. SI is a composite index repre-
senting the severity of the the restrictions applied, ranging from 0 (no restriction) to 100
(complete lockdown). We identify the shape parameter that exhibits the strongest correla-
tion with SI and test its significance, indicating its reliability as a proxy for the effectiveness
of implemented restrictions. To validate this hypothesis, we compare the statistical param-
eters of COVID-19 admissions with those of several pre-pandemic influenza outbreaks
in Spain.

Through statistical analysis, we establish a correlation between the shape of the peak
admissions and the stringency index of the implemented restrictions. This information is
valuable to policymakers in evaluating and adapting restrictions accordingly. Furthermore,
our study underscores the need for a more uniform implementation of restrictions in
European countries to improve their effectiveness. We also emphasize the importance
of balancing the effectiveness of restrictions with their economic impact, considering the
potential long-term consequences.

To ensure a more accurate assessment of the effective infection rate, we specifically
selected the number of hospitalized patients as our variable of choice from among all
available options. This is because this variable is considered to be more reliable compared
to others, such as the weekly number of people who tested positive, as highlighted in a
recent study [1]. The number of hospitalized patients is a reliable indicator as it is not
influenced by the number of people who were tested, which could include false positives.

2. Methodology

The objective of this study is to evaluate the effectiveness of restriction from a statistical
point of view. To this end, we quantitatively evaluated the differences in the evolution of the
number of patients hospitalized in time for seven western European countries that applied
different levels of restrictions that can be summarized with the stringency index (SI; [19]).

2.1. Stringency Index

The stringency index (SI; [19]) is a synthetic metric that quantifies the severity of
restrictions applied by governments during the COVID-19 pandemic. The index was
developed by the Oxford COVID-19 Government Response Tracker team in collaboration
with the Blavatnik School of Government at the University of Oxford. The SI ranges from
0 (no restrictions) to 100 (complete lockdown) and is based on eight indicators, including
school and workplace closures, restrictions on public gatherings, and international travel
controls. The index is calculated by aggregating the different restriction indexes for each
country and normalizing the value to the maximum score of 100. The SI has been widely
used to compare the response of different countries to the pandemic and to assess the
effectiveness of the implemented measures. Although SI does not directly measure the
impact of restrictions on public health outcomes, it provides a proxy for the severity of
the measures and can be used to compare the effectiveness of different policy responses
in countries. However, SI shows some limitations, including its lack of granularity and
sensitivity to different aspects of restrictions. Despite these limitations, the SI remains a
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useful tool for policy makers and researchers to evaluate and compare the stringency of the
measures implemented during the COVID-19 pandemic.

The SI index is based on the aggregation of eight closure policies and containment
indicators and one public information campaign indicator. Each restriction imposed leads
to an increase in SI for the related country. The eight closure policies and containment
indicators are listed in Table 1.

Table 1. Main indicators contributing to the stringency index value: 0 no restrictions, 100 full
lockdown.

Indicator

School Closing

Workplace Closing

Canceling Public Events

Restriction on gathering size

Close Public Transport

Stay at Home Requirements

Restrictions on Internal Movements

Restrictions on International Travels

The higher the SI, the greater the number of restrictions implemented. Data are freely
available from the University of Oxford https://www.bsg.ox.ac.uk/research/research-
projects/covid-19-government-response-tracker (accessed on 25 July 2023).

The SI values are available for each country on a daily basis, but, for our purposes and
to avoid the volatility of the index, we simply averaged the values along the first pandemic
wave (January–May 2020).

Although the stringency index (SI) provides a synthetic metric to quantify the severity
of restrictions imposed by governments during the pandemic, it cannot fully capture the
real effects of these measures in reducing cases of severe infection. This is because SI is a
highly aggregated measure that does not consider the actual enforcement of restrictions by
citizens. Even if a country implements the highest level of restrictions (SI = 100), there may
be instances where citizens only partially follow the imposed rules, leading to unexpected
results in mitigation. On the other hand, the daily number of infected people is a direct
measure of the effects of restrictions, but it is often an inaccurate metric due to the inability
to track asymptomatic cases or the reduced testing capacity during the early stages of the
pandemic. To address these limitations, we chose the number of hospitalized patients as
our metric of interest, following the recommendations of [1]. This variable is more reliable
than others because it is not affected by false positives and reflects the real burden of severe
infection in the healthcare system.

2.2. Temporal Distribution of Weekly ICU Admissions

The trend of the number of hospitalized patients in time can be considered to reflect
the effectiveness of restrictions imposed that are quantified by the SI. It should be noted
that the weekly admission temporal distributions for all countries are logically aligned, that
is, the first value in the sample space coincides with the day when the first cases have been
reported in each country, as shown in Figure 1a. In Figure 1b is represented the normalized
SI that highlights where restrictions were earlier implemented. Furthermore, it can be
observed that the first wave led to a rise in cases, reaching a peak, followed by a decrease.
Our working hypothesis is that the change in slope between the ascending and descending
segments is correlated with the restrictive laws imposed by the local authorities.

We employed the Bootstrap resampling method, which involves creating multiple
pseudo-samples by resampling the original dataset. These pseudo-samples are then used
to estimate the variability of sample statistics. By comparing the statistics of the original

https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
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sample with those obtained from the bootstrap samples, we assessed whether there was
any bias present.

In our study, we generated 1000 bootstrap samples. We implemented the bootstrap
resampling procedure using a for loop, where each iteration involved drawing a bootstrap
sample from the original dataset using the replacement datasample function. Subsequently,
we computed the mean for each bootstrap sample.

After generating the bootstrap samples, we calculated the standard error of the sample
mean using bootstrap resampling. This was accomplished by determining the standard
deviation of the bootstrap means. Additionally, we computed the standard error of the
original sample mean. In particular, we observed that the standard errors obtained from
both the original sample and the bootstrap samples were nearly identical. This close
similarity indicates that if the standard error of the sample mean obtained by bootstrap
resampling aligns with the standard error calculated from the original sample, the original
sample serves as a good representation of the population distribution.

Consequently, when the bootstrap standard error closely resembles the standard error
derived from the original data distribution, it suggests that the original sample is unbiased
and effectively represents the population distribution. Furthermore, the standard error
calculated from the original sample provides a reliable estimate of the variability of the
mean of the sample.

Figure 1. (a) Weekly ICU patient number time series for the seven analyzed western European coun-
tries normalized according to Equation (1) and arranged. (b) same as (a), but for the stringency index

2.3. Statistical Analysis

To quantify this assumed correlation, a systematic process is required capable of un-
ambiguously characterizing a bell-like temporal distribution with one number to quantify
this expected correlation. To this end, we can use the following trick. Let Xi be the i−th
component of the time series of length M. This can be thought of as an abstract discrete
probability distribution associated with discrete values i = 1, 2, . . . , M, that is,

Pi =
Xi

∑M
j=1 Xj

(1)

Then, by generating a large number of random deviations distributed according to
PDF (1) for each country, we can quantify changes in the shape of the time series by com-
puting the sample moments of the (artificial) distribution (1). In particular, the normalized
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third moment will provide the information sought on the asymmetry between the ascend-
ing and descending phases.

In order to generate random samples distributed according to PDF (1), we can proceed
as follows. Let Ci ∈ [0, 1] be the cumulative distribution corresponding to PDF (1). This can
be easily computed as the cumulative sum of the normalized time series Pi. Then, with z
as a random number from the uniform distribution of units of interval, take yi ≡ i where
i ∈ {1, 2, . . . , M} is the integer for which Ci−1 < z ≤ Ci. Repetition of this procedure a large
number of times N, the corresponding integers {yi1 , yi2 , . . . , yiN} will form a population of
random deviations extracted from the PDF (1).

Having characterized the distribution’s mean, median, and mode (gauging the number
of weeks elapsed between the onset of the wave and its apex), one conventionally character-
izes its “width” or “variability” around the mean. The most common is the variance, or the
related (its square root) standard deviation. For a random variable vector, Y made up of N
scalar observations, {yi}N

i=1, the sample standard deviation, σY, is defined as follows [27]:

σY =

√√√√ 1
N − 1

N

∑
i=1

(yi − µY)
2, (2)

where µY is the mean of Y, that is, ∑N
i=1 yi/N.

The higher the standard deviation, the greater the variability of the distribution around
its mean. The skewness, sY, instead, provides a non-dimensional measure for the degree of
asymmetry of a distribution around its mean. It is defined for the random variable Y as
follows [27]:

sY =
1

Nσ3
Y

N

∑
i=1

(yi − µY)
3, (3)

For a unimodal distribution, negative skewness indicates that the distribution is
skewed to the left of the mean, whereas positive skewness is the opposite. A zero value
means that the distribution is symmetric around the mean. For example, the normal
distribution has a skewness equal to zero. The kurtosis, kY, also a non-dimensional quantity,
is related to the fourth moment. Quantifies how peaked or flat a distribution is. The index
is defined for the random variable Y as follows [27]:

kY =
1

Nσ4
Y

N

∑
i=1

(yi − µY)
4, (4)

Typically, distributions are gauged with respect to their fourth moment relative to
the Gaussian distribution, for which kY = 3. A distribution with kurtosis greater than
3 is termed leptokurtic, and less than 3 is termed platykurtic. Leptokurtic distributions
have heavier (fatter) tails than the normal distribution. In contrast, the tails of platykurtic
distributions fall more rapidly than ∝ exp(−y2).

Next, we assess the correlation between the statistical indicators cited above and the SI
averaged during the first wave. Given S = {si}Nc

i=1 representing the set of SIs of SIs of the
average stringency indexes of Nc, where Nc indicates the total number of countries analyzed
and M = {mi}Nc

i=1 the related set of each synthetic index (moments, standard deviation,
skewness, or kurtosis), we take advantage of the multivariate regression framework, which
points out the possible linear correlation between S and M. Therefore, Pearson’s correlation
coefficient, ρS,M, is calculated to measure the linear correlation between S and M. It is
defined as follows:

ρS,M =
σS,M

σSσM
, (5)
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where σS and σM are the two standard deviations for the two vectors Nc S and M calculated
as in Equation (2), and σS,M is the sample covariance:

σS,M =
1

Nc − 1

Nc

∑
i=1

(si − µS)(mi − µM), (6)

with µS and µM being the two sample means. The quantity ρ·,· is a normalized measure of
covariance, so it always has a value between 1 and 1. It should be noted that this measure
can only reflect a linear correlation of variables, ignoring other types of relationships.
A value of 1 implies that there exists a linear equation that describes the relationship
between S and M, with all data points along this line. The correlation sign is determined
by the regression slope: a value of + 1 implies that all data points lie on a line for which M
increases as S increases (that is, S and M are perfectly positively correlated), while for 1 S
and M they are perfectly negatively correlated. A value of 0 implies that there is no linear
dependency between the two variables. The different steps are depicted in Figure 2.

Figure 2. Flowchart of the proposed algorithm. For each country, the Probability Density Function
is retrieved. Then, through the Roulette Wheel algorithm, we resampled the ICU temporal distri-
bution. Then, the statistical parameters are computed and the linear correlations vs. the stringency
index are tested.

After identifying the indicators with a strong correlation with SI, we evaluate the
significance level of these selected indicators. Specifically, while skewness may serve as a
proxy for measuring the effectiveness of imposed restrictions, we need to determine the
threshold value at which this index accurately indicates substantial effectiveness beyond the
no-restrictions scenario. To address this concern, we examine the consistency of indicators
showing a strong correlation with SI by analyzing pre-flu outbreaks. These outbreaks
represent similar instances of respiratory virus spread in a country without restrictions.
By assuming that SARS-CoV-2 affects the peak shape similarly to seasonal flu, we can
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compare the divergence in the selected indicators computed for both pre-pandemic flu
outbreaks and the initial wave of the SARS-CoV-2 outbreak in a given country. This analysis
enables us to determine whether the imposed restrictions yielded a significantly different
effect compared to the no-restrictions scenario. In our study, we conducted this analysis
for Italy using pre-pandemic flu outbreaks in the following years: 2014–2015, 2016–2017,
2017–2018 and 2018–2019.

3. Results

Before performing the statistical analysis, the normalized time series Pi of hospitaliza-
tions for each country computed according to Equation (1) are shown in Figure 1. In Table 2,
we report the values of the main associated shape indicators, that is, skewness, kurtosis,
and standard deviation, and the stringency index for the countries under investigation.

Table 2. Statistical parameters and SI.

Country Skewness Kurtosis Std. Dev. SI

Belgium 1.29 5.14 3.22 52.40

Finland 0.30 2.92 2.89 41.45

France 1.17 3.70 4.34 58.02

Germany 1.12 3.87 4.00 59.14

Italy 1.34 5.20 3.25 67.06

Sweden 0.62 3.03 4.92 49.40

The Netherlands 0.93 4.16 2.96 53.88

Figures 3–5 show the multivariate regression of the statistical parameters computed
through Equations (2)–(4) versus the stringency index. For the standard deviation, no
significant correlation is found (R2 = 0.1).

Figure 3. Correlation Std. deviation vs. SI. The multivariate regression between the stringency index
and the standard deviation.
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Instead, the multivariate regression between kurtosis and the stringency index shows
a certain degree of positive correlation, although it is rather weak (R2 = 0.67).

Figure 4. Correlation kurtosis vs. SI. The multivariate regression between the stringency index and
the kurtosis.

As shown in Figure 5, skewness refers to a distortion or asymmetry that deviates from
the perfect symmetric bell-shaped trend and displays a higher degree of correlation with
the SI index.

Figure 5. Correlation skewness vs. SI. The multivariate regression between the stringency index and
the skewness.



COVID 2023, 3 1088

In this case, the multivariate regression indicates a high linear correlation between the
skewness and the stringency index, with R2 = 0.87. This result implies that the stringency
index accounts almost for 90% of the variability of the skewness. For this reason, this
moment appears to be the most appropriate to assess the effects of restrictions on the
pandemic outbreak. However, as stated previously, a correlation with SI does not prove
that the statistical index can be considered a valid proxy for the restrictions implemented.

To test the consistency of skewness, we calculated the values of this moment for the
time course related to non-pandemic flu outbreaks during 2014–2015, 2016–2017, 2017–2018,
and 2018–2019 in Italy where no restrictions were applied, as shown in Figure 6.

The results (Table 3) highlight that the skewness values for the non-pandemic flu
outbreaks are substantially different from those measured during the COVID-19 pan-
demic outbreak.

Figure 6. Time series for normal flu versus COVID-19. Time course of patients for normal flu
(2014–2015, 2016–2017, 2017–2018, 2018–2019) and for the first COVID-19 outbreak.

Table 3. Skewness of the peak for normal flu and COVID-19 outbreaks. COVID-19 skewness is
highlighted, as it shows a much higher value with respect to the normal flu values.

Year Skewness

2014–2015 0.53

2016–2017 0.58

2017–2018 0.77

2018–2019 0.39

COVID-19 2020 1.35

4. Discussion

In this article, we assess the efficacy of various governmental restrictions imposed
across different nations in response to the recent outbreak of the COVID-19 pandemic.
The assessment is based on a series of rigorous statistical computations that help to validate
the usefulness of the strategic measures implemented.
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A crucial aspect of our analysis is the choice of the variable temporal series used to
depict the intensity and progression of the COVID-19 pandemic. To this end, we have
chosen the weekly count of patients admitted to the Intensive Care Unit (ICU). The salience
of this variable has previously been validated through numerous studies that have used it
as an effective metric to capture the nuances of the COVID-19 outbreak [1]. This approach
is different from previous studies which have based their analyses on variables or indices
heavily influenced by policy decisions or test models [28].

We proceeded to normalize the time series of case numbers from various countries,
implementing a temporal shift to ensure coincidence of ICU peaks (Figure 1). The metric
used to evaluate the implemented restrictions is through a synthetic index, known as
the stringency index (SI; [19]). The SI ranges from 0, indicative of no restrictions, to 100,
signifying a complete lockdown. The preliminary step of our analytical framework involved
examining the correlation between the fundamental statistical parameters that define the
shape of the peak, skewness, kurtosis, and standard deviation, and the mean SI values
during the initial outbreak of COVID-19 (January–May 2020). This phase was free of
any influence of the vaccination campaigns. We discovered a significant correlation with
skewness (R2 = 0.87), while standard deviation and kurtosis demonstrated a weaker
(R2 = 0.1) and moderate (R2 = 0.67) correlation with SI, respectively.

In an extension of our analysis, we compared the skewness value of Italy during
the COVID-19 period with the skewness values recorded for regular flu outbreaks before
2020 when no restrictions were in place. This comparison provided us with a quantifiable
measure to determine whether skewness is a significant parameter genuinely impacted
by the implemented restrictions. Interestingly, our findings revealed that for a typical flu,
skewness was significantly lower, up to 70%, compared to the first wave of the COVID-19
outbreak, where societal restrictions were in place.

This discovery, particularly for Italy, implies that assuming that COVID-19 and normal
flu outbreaks have similar patterns, the restrictions implemented considerably influenced
the temporal trend of the distribution, thus altering the skewness around the peak. This
correlation is a key insight that could help to formulate and adjust future policy decisions
as the pandemic evolves.

5. Conclusions

The proposed research, different from analysis through epidemiological models that
require assumptions about parameters (e.g., transmission rates), that uses actual data on
COVID-19 cases and weekly ICU hospitalizations in different countries, which can provide
more direct evidence of the impact of restrictions. Then, by examining the correlation
between the statistical parameters of the weekly ICU time series and the stringency in-
dex, it is possible to infer the impact of government-imposed restrictions. Specifically,
the proposed methodology focuses on scrutinizing the consequences of government-level
interventions, distinguishing them from more general statistical investigations that explore
a wide array of influences on COVID-19 outcomes. Therefore, this research provides a
focused lens on the precise effect of policy decisions, providing valuable information on
their efficacy. Analysis of the distribution during COVID-19 in Italy revealed that the left
tail of the distribution appeared shorter compared to previous years. This discrepancy
suggests the existence of a temporal delay of approximately 10 weeks in comparison to the
preceding years. The shorter left tail implies a delay in the onset or accumulation of ICU
cases during the COVID-19 period, relative to previous years. This finding highlights a
distinctive pattern in the temporal dynamics of ICU cases, potentially attributable to the
unique characteristics and impact of the COVID-19 pandemic. While we recognize that
skewness alone may not directly indicate pandemic transmission, our analysis revealed a
noteworthy correlation between skewness and the SI index, suggesting that implemented
restrictions have influenced the asymmetry of the ICU admission time series. To strengthen
this finding, we compared the skewness values of normal flu outbreaks, further highlight-
ing the association between skewness and SI. These results provide valuable information
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on the impact of restrictions on the shape of the admission time series from the ICU. We
acknowledge that more research is needed to fully understand the relationship between
statistical parameters, pandemic transmission, and the efficacy of government interventions.
However, our findings provide valuable evidence to assess the effects of restrictions on
healthcare outcomes during the COVID-19 pandemic.

More research is also needed to elucidate the underlying factors that contribute to this
observed delay and explore its implications for public health preparedness and interven-
tion strategies. Understanding and interpreting these temporal changes in distribution
can provide valuable information on the progression and severity of infectious disease
outbreaks and inform timely decision-making processes to effectively mitigate their impact.

As a final statement, we can say that restrictions produced a measurable effect on the
temporal trend of admissions to the ICU, but the effects are impossible to estimate in terms
of reducing infection and saving lives. As stated above, a limitation of this study lies in the
assumption that the normal flu and the COVID-19 pandemic have similar trends.

We again emphasize that the findings presented here, even if promising, are prelimi-
nary. A more comprehensive and nuanced analysis is essential to determine the extent of
these observations. Specifically, it is imperative to investigate whether similar patterns and
results can be observed not only in Europe but across different regions and contexts globally.
It would be beneficial to validate these outcomes in various environmental, geographical,
and socioeconomic settings to ensure that the conclusions drawn are universally applicable
and not merely region specific.
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