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Abstract: In bioinformatics research, traditional machine-learning methods have demonstrated effi-
cacy in addressing Euclidean data. However, real-world data often encompass non-Euclidean forms,
such as graph data, which contain intricate structural patterns or high-order relationships that elude
conventional machine-learning approaches. Representation learning seeks to derive valuable data
representations from enhancing predictive or analytic tasks, capturing vital patterns and structures.
This method has proven particularly beneficial in bioinformatics and biomedicine, as it effectively
handles high-dimensional and sparse data, detects complex biological patterns, and optimizes predic-
tive performance. In recent years, graph representation learning has become a popular research topic.
It involves the embedding of graphs into a low-dimensional space while preserving the structural
and attribute information of the graph, enabling better feature extraction for downstream tasks. This
study extensively reviews representation learning advancements, particularly in the research of repre-
sentation methods since the emergence of COVID-19. We begin with an analysis and classification of
neural-network-based language model representation learning techniques as well as graph represen-
tation learning methods. Subsequently, we explore their methodological innovations in the context
of COVID-19, with a focus on the domains of drugs, public health, and healthcare. Furthermore,
we discuss the challenges and opportunities associated with graph representation learning. This
comprehensive review presents invaluable insights for researchers as it documents the development
of COVID-19 and offers experiential lessons to preempt future infectious diseases. Moreover, this
study provides guidance regarding future bioinformatics and biomedicine research methodologies.

Keywords: representation learning; graph embedding; graph neural network; deep learning; COVID-19;
healthcare

1. Introduction

Following the emergence of COVID-19 at the end of 2019, the virus went through an
11-month phase of relative evolutionary stagnation [1]. Since the end of 2020, COVID-19
has experienced approximately two mutations per month, causing the emergence of new
variants of concern (VOCs). Various organizations worldwide have sequenced the COVID-
19 genome, finding many mutant variants of the virus. The phylogenetic tree depicted in
Figure 1 [2] demonstrates the evolutionary relationships of COVID-19 in time and space.
Due to low vaccination rates in many countries, the classical herd immunization goal of
eradicating or eliminating COVID-19 has not been achieved [3]. While COVID-19 is unlikely
to cause death at present, elderly people with cancer or underlying metabolic illnesses are
at a higher risk of serious illness and death [4–6]. The mechanisms underlying this disease
still remain unknown. The virus is widely distributed in humans and other mammals [7],
as confirmed by a study utilizing machine learning unsupervised clustering methods [8].
Figure 2 demonstrates the structure of the SARS-CoV-2 [9]. A total of four significant
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structural proteins are encoded by the SARS-CoV-2 genome: spike (S) protein, envelope
(E) protein, membrane (M) glycoprotein, and nucleocapsid (N) protein, in addition to
16 nonstructural proteins and five to eight accessory proteins [10]. According to recent
research, the S protein has undergone notable mutations in its amino acid sequence since
2020, which have resulted in changes to its distinct functions [11]. The D614G mutation
(amino acid change from aspartate to glycine at position 614) has been found to increase
viral infectivity [12], while other mutations, such as K417N, G446S, E484A, Q493R, and
N440K, lead to immune escape [13]. In addition, N501Y enhances the binding of the S
protein to ACE2, N679K increases viral transmission, and P681H enhances the binding
affinity of the S protein [14]. Natural selection can drive the emergence of advantageous
mutations in COVID-19 that confer higher fitness benefits, such as pathogenicity, infectivity,
transmissibility, ACE2 binding affinity, and antigenicity [15]. Another variant of concern
in the ongoing evolution of COVID-19 is XBB, a mutant strain of BA.2 whose prevalence
is increasing globally [16]. The availability of publicly accessible and diverse COVID-19
genome sequence data is essential for analyzing the virus’s evolutionary trends, which, in
turn, can inform drug discovery, vaccine development, and treatment guidance.

Representation learning, a subfield of machine learning, has gained significant atten-
tion in various domains owing to its ability to extract meaningful high-level representations
from raw data. In the fields of bioinformatics and biomedicine, representation learning tech-
niques have been widely employed to address complex problems and uncover hidden pat-
terns in biological and biomedical data. In representation learning, neural-network-based
methods capture intricate relationships and hierarchical structures in data, performing
nonlinear transformations on high-dimensional data to solve classification and regression
problems [17]. Deep learning models are a prevalent neural network architecture for repre-
sentation learning, and have been successfully applied to tasks such as gene expression
analysis [18], drug discovery [19], and disease diagnosis [20]. Significant advancements in
representation learning have been observed in recent years, with its application in bioin-
formatics and biomedicine growing rapidly. Graph representation learning techniques,
in particular, have advanced rapidly and excel at handling unstructured data [21]. These
techniques have enabled breakthroughs in areas such as drug design [22], protein interac-
tion [23], and disease prediction [24]. Graphs are powerful structures for modeling complex
relationships between entities. In bioinformatics and biomedical research, biological net-
works such as gene regulatory networks and disease networks provide valuable insights
into the functionality of biological systems and the mechanisms of diseases [25]. Methods
based on graph representation offer effective means of utilizing this network information
for representation learning. Among them, graph embedding is a method of mapping
nodes, links, and subgraphs in a graph to low-dimensional representations that capture the
nodes’ topological structure and intrinsic properties [26]. When solving downstream graph
tasks like node classification, link prediction, and visualization, these low-dimensional
representations can be used as inputs [27]. However, graph neural networks (GNNs)
update the node representations using message aggregation and propagation, integrating
contextual information of the nodes. This is typically end-to-end and can directly learn
low-dimensional representations of nodes and links from the raw graph data without
relying on handcrafted features [28,29]. GNNs have emerged as a promising approach
for representation learning on graph-structured data. GNNs can capture the structural
and topological properties of biological networks, enabling them to learn representations
of both nodes and the entire graph. By propagating information along graph edges and
utilizing graph convolutional operations, GNNs can extract hidden features and patterns
from biological networks [30]. GNNs have a broad range of applications in bioinformatics
and biomedicine, including drug discovery [22], prediction of drug–target interactions [31],
prioritization of disease-associated genes [32], and prediction of molecular properties [33].
By integrating network information and leveraging the power of graph representation
learning, GNNs have demonstrated significant performance in these tasks, contributing to
the discovery of new biological insights and potential therapeutic targets.
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According to the World Health Organization, COVID-19 is no longer a public health
emergency of global significance [34]. However, experts maintain that it remains an ongoing
health threat. The COVID-19 pandemic has provided valuable insights and lessons for
humanity. In order to effectively mitigate the impact of potential future outbreaks, it
is crucial to make significant advancements in technological capabilities, bolster global
vaccine research and production capacities, and optimize the speed and efficiency of
our response to emerging viruses. Despite the urgent need for these developments, the
complexity and diversity of COVID-19 data make it challenging to handle. Furthermore,
the rapid progress of representation learning, particularly graph representation learning,
requires a comprehensive and systematic summary of its application in COVID-19.

In this work, a comprehensive review of the advancements in representation learning
methods is provided. Firstly, the related methods of neural-network-based language model
representation learning are introduced. This is followed by a detailed summary and discus-
sion of graph representation methods, particularly graph neural network-related methods.
The representative applications of representation learning in COVID-19 are also introduced.
Furthermore, the challenges and opportunities of graph representation methods in the
fields of bioinformatics and biomedicine are discussed. This work comprehensively reviews
the research on representation learning methods since the emergence of COVID-19 and
presents future applications in bioinformatics and biomedicine. It is worth noting that
the methods based on neural network models are specifically summarized in this article.
An overview of relevant techniques for graph representation learning is the main goal
of this article. Therefore, we only introduce a few traditional models in the section on
“Neural-network-based language model representation learning”. GNNs unquestionably
belong under the category of deep learning techniques, and irrespective of certain concepts
that overlap with other parts, we still include it individually for discussion.

Figure 1. Modified on a phylogenetic tree built on Nextstarin (27 March 2023) [2], consisting of
2775 SARS-CoV-2 genomes from the GISAID database evolving in chronological order, with bright
colors representing the most noteworthy variants of the moment, such as red dots.
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Figure 2. SARS-CoV-2 Structure [9].

2. Representation Learning

Representation learning has facilitated many discoveries in the fields of bioinformatics
and biomedicine, ranging from disease interactions to drug discovery. Traditional feature
engineering methods require manually preset features to be input into machine learning
models, and crafting optimal predictive features for complex networks is a daunting task.
In contrast, representation learning learns network features in an automated manner. For
instance, network embedding is a common representation learning method that maps
nodes or edges in the network to a low-dimensional vector space, capturing the topo-
logical structure and node relationships of the network. This method does not require
predetermined features, but generates features by learning the structural information of
the network.

In addition, deep learning has provided new possibilities for representation learning.
The emergence of graph representation learning has laid the foundation for processing and
understanding graphical data. It generates useful features by automatically learning hidden
patterns in the structure of graphs, thereby being able to directly handle complex graphical
data. GNNs have become a leading method for graph representation learning. They
can automatically learn complex patterns in networks and generate high-quality feature
representations. When dealing with biological data, such as gene expression networks and
protein interaction networks, GNNs can capture complex relationships, automatically learn
useful features, and eliminate the need for laborious manual feature engineering.

In the aforementioned methods, we can utilize some basic concepts of graph theory.
For instance, biological networks can be viewed as a graph G = (V, E), where V is the set
of nodes representing genes or proteins, and E is the set of edges representing interactions
between genes or proteins. These networks are typically heterogeneous as they contain
multiple types of nodes and edges, each type representing different information. For
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example, nodes can represent genes, edges can represent interactions between genes, and
attributes of nodes and edges can represent gene expression levels or interaction strengths.
They can handle graphs with multiple types of nodes and edges, enabling them to capture
rich information in the network. Furthermore, GNNs can also handle dynamic graphs,
where nodes and edges can be added, deleted, or modified over time. This is particularly
useful for handling biological networks that change over time, such as time-varying gene
expression networks.

GNNs work by applying neural networks on the nodes of the graph to learn the
vector representation of the nodes. These representations can capture the characteristics
of the nodes (through the feature vector xi of the nodes), as well as the position of the
nodes in the graph (through the adjacency matrix A). In this way, GNNs can learn higher-
order neighborhood information of the nodes, which is achieved by considering both
the direct neighbors (first-order neighborhood) and more distant neighbors (higher-order
neighborhoods) of the nodes. This can be represented by the higher-order adjacency
matrix M = Ê + Ê2 + · · · + Êt, where Ê is the weight matrix of the edges, and t is the
maximum order of the neighborhood considered. Furthermore, GNNs can also utilize
meta-paths to capture complex relationships between different types of nodes and edges
in heterogeneous graphs. A meta-path is a tool that can describe complex relationships
between nodes, revealing relationships between different types of nodes in biological
systems, thereby providing a deeper understanding of the complexity of biological systems.

A meta-path can be represented as P = v(1)1
e1−→ v(1)2

e2−→ v(2)3
e3−→ ...

el−1−−→ v(k−1)
l

el−→ v(k)l+1,

where v(t)i ∈ Vt indicates that the ith node belongs to the tth type of node, and ei ∈ E
represents the ith type of edge. When learning node representations, GNNs consider not
only the topological structure of the graph but also the semantic similarity of the nodes. This
is achieved by measuring the similarity or correlation of the node vector representations in
a low-dimensional vector space. This semantic similarity can be measured based on the
labels of the nodes, the edges between the nodes, or other characteristics.

In precision medicine, the application of GNNs has also undergone significant progress.
For instance, the study in [35] was the first to use GNNs to explore drug response prediction
based on gene constraint multi-omics integration. Another study [36], utilized deep feature
fusion graph convolutional neural network for cerebral arteriovenous malformations.
These studies demonstrate that GNNs have tremendous potential in handling complex
biological networks, predicting new gene functions, discovering potential drug targets,
and understanding disease mechanisms. Although deep learning models are often viewed
as “black boxes”, the design of GNNs allows us to understand how the model works. For
example, we can understand how the model comprehends the characteristics and positions
of nodes by examining the vector representations of nodes. This is particularly important
for precision medicine research, as it can help us understand the complexity of biological
systems and provide powerful tools for the prevention and treatment of diseases.

3. Overview of Representation Learning Methods

In this section, we provide a brief overview of representation learning methods. Repre-
sentation learning aims to uncover the underlying representations of raw data and project
high-dimensional data onto a lower-dimensional space. This space captures the fundamen-
tal characteristics of the raw data while retaining the important information that better
supports downstream tasks [37,38]. Representation learning can aid researchers in extract-
ing meaningful information and features to attain a more comprehensive representation of
biological data. On this basis, we provided a summary of neural-network-based language
model representation learning methods and graph representation learning methods and
extended other techniques. All the methods reviewed in this section are summarized in
Figure 3.
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Figure 3. Comprehensive summary of the classification and representation methods of representation
learning.

3.1. Neural-Network-Based Language Model Representation Learning

Neural-network-based language model representation learning methods use dis-
tributed word vector representations learned through neural networks, especially context-
dependent word vectors, which can effectively encode the semantic and syntactic infor-
mation of words, providing useful language understanding capabilities for downstream
natural language processing (NLP) tasks. In this section, we categorize all methods into
three major categories: word embedding methods, long short-term memory (LSTM)-based
methods and attention mechanism-based methods.

Word embedding methods. A neural network-based method called word2vec [39] is
used for natural language processing tasks such as sentiment analysis, language modeling,
and text classification. Word2vec uses a neural network to learn a high-dimensional vector
representation of each word in the corpus, with similar vectors used to represent words
with similar meanings. The method uses a neural network architecture that consists of two
learning models: a continuous bag-of-words (CBOW) model that predicts target words
using contextual words and a skip-gram model that predicts target words using target
words. As a word2vec extension, doc2vec [40] can take sentences of various lengths as
training samples. Distributed memory (DM) and distributed bag-of-words are the two
models that doc2vec uses to learn paragraph and document embeddings. The DM model
predicts words by using vectors associated with passages as well as contextual words. The
DBOW model ignores contextual words and predicts words in paragraphs directly using
vectors associated with paragraphs. Global vectors for word representation (GloVe) [41] is
a word representation tool based on global word frequency statistics that aims to capture
semantic relationships between words through global word-word co-occurrence statistics
information. The algorithm first creates a word–word co-occurrence matrix from the corpus,
which is used to record the number of times each word appears in the context of other
words. The matrix is then decomposed to obtain a low-dimensional representation of
the words while retaining the co-occurrence statistics information. GloVe is similar to
word2vec in that they both learn word embeddings from co-occurrence statistics, but it
employs a different approach to capture word meaning. FastText [42] is used to learn vector
representations of words and phrases. Unlike word2vec, which operates at the word level,
FastText operates at the character n-gram level. By providing embeddings, FastText can
represent words outside the vocabulary as the sum of their character n-grams. This enables
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FastText to perform better when dealing with uncommon or unknown words. Furthermore,
FastText can infer the meaning of unseen words from their subwords.

The ability of word2vec to capture semantic features represents a significant advance-
ment in the field of representation learning, although it is unable to represent the semantic
polysemy of words. In biological sequences, the position of a word in a sentence is equiva-
lent to a specific amino acid or a string containing k bases divided by k-mer. For instance,
the same amino acid can be encoded by various codons in a DNA sequence, and the same
amino acid residue can have different interpretations depending on the context. Therefore,
polysemy in biological sequences is significant. Here, we have introduced two methods
to deal with contextual associations: one method makes use of LSTM [43], and the other
method does so by using the attentional mechanism.

LSTM-based methods. Bidirectional long and short-term memory (Bi-LSTM) [44] is
made up of two independent LSTM modules, one of which handles forward sequences and
the other reverse sequences. The parameters of the two LSTM modules are independent of
one another, and they only share the word embeddings of the input sequences. Bi-LSTM
can capture long-term dependencies between elements in a sequence and is frequently
used to model contextual information. In Bi-LSTM, the hidden state of the subsequent
time step is also a factor that affects the output of each time step in addition to the current
time step and the hidden state of the previous time step. This makes it possible to take
into account how the forward and reverse information in the sequence depend on one
another and better capture contextual information within the sequence. Embeddings from
language models (ELMo) [45] is a pre-trained language model for creating word vectors
that add a dynamic weight of the pre-trained language model to the output of Bi-LSTM.
When using its word vector for a word, the entire text should be input, and the word
vector is dynamically generated based on the entirety of contextual information, resulting
in different word vector values for the same word in various contexts. To obtain richer
feature information, ELMo uses not only the contextual information in Bi-LSTM but also
the contextual information in the pre-trained language model.

Attention-mechanism-based methods. The attention mechanism quantifies the de-
gree of dependency between words and obtains a weighted representation by calculat-
ing the weights of each input position and weighting the inputs to sum [46,47]. The
forward-propagation-based model has a strong representation learning capability, which
can naturally introduce attention weights into the model, dynamically calculate the at-
tention weights, and apply the weights to various parts of the input to obtain a more
accurate representation. Instead of relying on traditional context-aware architectures when
processing sequence data, Transformer [48] achieves a significant improvement in model
performance by implementing the attention mechanism and positional encoding [49] via
key-value memory neural networks [50,51]. Bidirectional Encoder Representations from
Transformers (BERT) [52] is a model with multiple stacks of transformers. The transformer
model is further enhanced by the introduction of two new mechanisms, masked language
modeling (MLM) and next sentence prediction (NSP). In the pre-training of BERT, [CLS]
and [SEP] tokens are added to the start and end of each input sentence, respectively, and
then long sequences are spliced together. In the MLM mechanism, some words are masked
at random, and the model is asked to predict the words that have been masked to train the
model’s capacity to model contextual information. In the NSP mechanism, BERT takes two
sentences as input and asks the model to determine whether two sentences are adjacent
to each other to train the model’s ability to model sentence relationships. BERT is more
effective at capturing distal word associations than conventional recursive models such as
RNN and LSTM [46,53]. Due to the implicit layer state of each word in the recursive model
being determined solely by the implicit layer state of neighboring words, the contribution
of other words distant from the word diminishes or disappears. By contrast, the attentional
mechanism is effective for such problems. For different tasks, the architecture of the BERT
pre-trained model can be solved directly without complex retraining or modification of the
model architecture. This significantly simplifies the process of migration learning, allowing
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the model to be applied to new tasks more quickly. From a bioinformatics point of view,
the advantages of BERT are clear, as distal interactions are significant for DNA sequence
classification, gene expression prediction, and other tasks.

3.2. Graph Representation Learning

Graph representation learning is a technique that aims to learn low-dimensional vector
representations of nodes and edges in graph data. Its overarching objective is to encode
the structural and semantic information of graph data in a compact form that can be used
for various downstream tasks. In this section, we introduce graph embedding methods
and graph neural network methods. In the end, some other methods are introduced and
expanded upon.

3.2.1. Graph Embedding

The objective of graph embedding is to find a low-dimensional vector representation
of a high-dimensional graph while preserving the connectivity and interactions between
nodes in the graph, which typically retains some key information about the nodes in the
original graph. We categorize these graph embedding methods into four major types:
matrix-factorization-based methods, manifold-learning-based methods, random-walk-
based methods and deep-learning-based methods.

Matrix-factorization-based methods. A common graph embedding method is matrix
factorization, which learns the low-dimensional representation of nodes by dissecting the
adjacency matrix or laplacian matrix of the graph. The graph factorization (GF) [54] learns
the low-dimensional representation of nodes in a graph by decomposing the graph’s adja-
cency matrix or Laplacian matrix. While maintaining the advantages of unsupervised text
embedding, Predictive Text Embedding (PTE) [55] learns features from labeled data while
using both labeled and unlabeled data for representation learning. Matrix factorization is
used by both GraRep [56] and High-Order Proximity preserved Embedding (HOPE) [57]
to extract the higher-order neighborhood information from the graph. However, GraRep
constructs the higher-order proximity matrix by concatenating k-hop transition probability
matrices, while HOPE constructs the higher-order proximity matrix by measuring the
pairwise similarity between nodes in subgraphs of varying sizes and orders. By generating
edge representations and learning heterogeneous metrics, Heterogeneous Information
Network Embedding via Edge Representations (HEER) [58] decomposes the network into
low-dimensional embeddings and captures both structural and semantic information. A
joint embedding matrix can be constructed by HERec [59] using meta-path-guided sam-
pling to capture semantic and structural similarities between nodes of different types,
which can then be factorized into low-dimensional embeddings.

Manifold-learning-based methods. In high-dimensional spaces, the sparsity and
noise of graph data can pose challenges for model training and lead to overfitting. Mani-
fold learning methods address this issue by mapping high-dimensional graph data to a
lower-dimensional manifold space, which preserves the local properties and structural in-
formation of the original data while reducing its dimensionality. The main idea of isometric
mapping (IsoMap) [60] is to preserve the shortest path between data points to maintain
the manifold structure. Both locally linear embedding (LLE) [61] and local tangent space
alignment (LTSA) [62] are local information manifold learning methods. A local linear
reconstruction is carried out in the neighborhood of each data point by LLE to maintain the
flow structure. LTSA preserves the manifold structure by aligning the data in each point’s
local tangent space. Laplacian eigenmaps (LE) [63] and Hessian eigenmaps (HE) [64] are
both manifold learning methods based on spectral analysis. Specifically, LE utilizes the
Laplacian matrix to perform local weight assignment on the data’s neighborhood for pre-
serving the manifold structure, while HE models the curvature and geometry of the data by
leveraging the Hessian matrix. t-Distributed stochastic neighbor embedding (t-SNE) [65]
uses a probabilistic approach to model the similarity between points in high-dimensional
space and maps them to low-dimensional space while preserving pairwise similarities. Both
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uniform manifold approximation and projection (UMAP) [66] and t-SNE use graph layout
algorithms to arrange data in low-dimensional space, which makes them very similar. The
distinction is that UMAP builds a low-dimensional representation using an optimization
technique based on the nearest neighbor graph.

Random-walk-based methods. Inspired by the word vector model in the field of NLP,
the researchers consider that the nodes on the graph can be analogized to words and the
node sequences to sentences, and then the node sequences can be generated by random
walk sampling on the graph to learn the representation vectors of the nodes using the
Skip-gram model. DeepWalk [67] is the origin of the random walk approach, employing a
simple, unbiased random walk followed by skip-gram representation learning of the walk
sequences. Similarly, node2vec [68] is a biased random walk that introduces two parameters
to regulate the search strategy of random walks, aiming to achieve a better balance between
capturing graph structural features and node similarity features and improving the quality
of node representations. By maximizing the likelihood functions of first-order proximity
and second-order proximity, large-scale information network embedding (LINE) [69] learns
the embedding of nodes. Additionally, LINE employs negative sampling strategies to
boost training effectiveness. Walklets [70], which concentrates on higher-order structural
information, splits joint random walk sequences of various lengths to obtain structural
data on nodes at various scales. The similarity of the structural roles of nodes in the
network is taken into account by struct2vec [71], not just the probability of contribution
between nodes. Traditional node embedding techniques typically employ a co-occurrence
probability-based methodology, which makes it difficult to adequately capture the semantic
and structural information between nodes in heterogeneous information networks. By
limiting the direction of random walk, meta-paths direct the generation of node sequences
related to particular meta-paths, thereby capturing semantic and structural information
between nodes. Metapath2vec [72] uses skip-gram to learn node embeddings after defining
meta-paths to describe the semantic relationships between nodes and create heterogeneous
neighborhoods of nodes. Using the defined meta-paths, HIN2vec [73] also creates diverse
node neighborhoods. The crucial distinction is that it reconstructs the neighborhood
using a self-encoder model and learns the embedding vector of the nodes by minimizing
the reconstruction error. GATNE [74] combines the ideas of graph attention network
(GAN) and neighborhood aggregation embedding (NAE). It employs the GAT model for
node representation learning in heterogeneous graphs and the NAE method for node
neighborhood aggregation. Setting the proper number of walks and walk lengths is crucial
when learning node embedding in various heterogeneous networks.

Deep-learning-based methods. Traditional machine learning techniques rely heavily
on manually created feature representations, which have a priori knowledge restrictions
and limit the expressiveness of the models. Deep learning techniques can enhance data
representation by learning multi-level feature representations and reducing the need for
manual features. To encode and decode the nodes and obtain the details of the graph
structure, SDNE [75] employs a deep self-encoder architecture. First- and second-order
proximity are simultaneously optimized, and overfitting is prevented by sparse regular-
ization. The advantage of SDNE is that it learns the relationships between the nodes
while retaining the graph’s structural information, improving the graph’s representation.
DNGR [76] directly obtains graph structural information using a random walk model
and learns node representations using stacked denoising autoencoders. The nonlinear
features of the graph can be learned using these two techniques, but they do not per-
form well on non-Euclidean graphs. To encode the text, HNE [77] employs recursive
neural networks, which can model the hierarchical structure of the text. Both image and
text encoders are optimized using a joint training approach to learn better matching. A
deep-aligned autoencoder-based embedding method for heterogeneous graphs was intro-
duced by BL-MNE [78] to embed different types of nodes into the same low-dimensional
space. TADW [79] learns low-dimensional embedding representations of network nodes
using DeepWalk and latent Dirichlet allocation (LDA) methods, and introduces the at-
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tention mechanism to weigh the nodes’ textual information. Three different attention
mechanisms—node attention, attribute attention, and neighbor attention—are introduced
by the LANE [80] method, which adaptively adjusts the weights on different embedding
layers to better capture the similarities and differences between nodes and improve the
quality of embedding. ASNE [81] creates supernodes by combining the structural and
attribute information of the nodes, employs an attention-based framework to regulate the
weights between the different supernodes in the embedding space, and employs adaptive
sparse methods to learn the representation of the nodes. DANE [82] can simultaneously
capture highly nonlinear node attributes and topological relationships while preserving
their proximity. The expressiveness and generalization performance of the node represen-
tation are improved by ANRL [83], which uses adaptive neighborhood regularization to
dynamically adjust the weights of each node’s neighbors using the relationships between
neighboring nodes.

3.2.2. Graph Neural Network-Based Methods

Currently, GNNs are prominent in the field of graph representation learning, particu-
larly for non-Euclidean data. Their ability to model node and edge interactions sets them
apart from traditional neural networks, making them highly effective for tasks involving
graph-structured data analysis and prediction. Drawing upon prior research [84,85], we
present a taxonomy of graph neural networks in this section, organized into five distinct cat-
egories based on their architectural design and unique approaches to processing structured
graph data: GCNs, GATs, GAEs, GGANs, and GPNs.

GCNs. GCNs define a convolution operation on a graph that aggregates the features
of a node’s neighboring nodes and the node itself to generate a new node feature. Graph
convolution methods can be classified into spectral methods and spatial methods. In
graph data, the relationships between nodes are irregular. GCN [86] introduces learnable
convolutional parameters to extract and learn features from graph data. By stacking multi-
ple graph convolutional layers, GCN obtains more abundant and complex node feature
representations. DGCN [87] employs distinct graph convolution operations on the primal
and dual graphs to obtain node representations on both graphs. To address the issue of
traditional graph neural networks requiring the definition of static adjacency matrices in
advance, AGCN [88] introduces adaptive adjacency matrices and gate mechanisms, avoid-
ing the computational burden brought by multiple convolutional operations. LGCN [89]
utilizes a learnable graph convolutional layer (LGCL) and a subgraph training technique
for handling large-scale graph data, thereby circumventing the computational limitations
of traditional graph convolutional operations that necessitate computing the entire graph.
In addition, FastGCN [90] was proposed to address the issue of high computational and
memory overheads in traditional graph convolutional methods by introducing importance
sampling and mini-batch training. The GraphSAGE [91] approach is considered a signifi-
cant milestone in the field of graph neural networks. It uses a sampler to randomly sample
subgraphs from the graph data that contain the target node, enabling inductive represen-
tation learning and prediction on unseen nodes. GIN [92] incorporates a global sorted
pooling operation in its aggregation process, endowing the GIN method with a certain
degree of graph isomorphism invariance, thereby avoiding the mapping of isomorphic
graphs to different vector representations. APPNP [93] uses the personalized PageRank
algorithm to achieve personalized propagation and prediction of nodes and utilizes a larger
receptive field for node classification tasks.

GATs. To address the issue of information aggregation in traditional graph neural
networks, GATs introduced attention mechanisms [48] that enable different weighting of
neighboring nodes around each node, thus better capturing the relationships between
nodes. The attention mechanism in GAT [94] adaptively calculates the weights between
nodes and further incorporates multi-head attention mechanisms to better capture the
structural information of graphs and effectively handle large-scale graph data. AGNN [95]
utilizes an attention mechanism to dynamically learn the relationships between each node
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and its neighboring nodes, thereby enhancing the model’s performance. DySAT [96] com-
putes node representations through joint self-attention along the two dimensions of the
structural neighborhood and temporal dynamics, more effectively capturing the relation-
ships and features in dynamic graph data. GaAN [97] introduced an adaptive receptive
field mechanism to dynamically adjust the neighborhood size of each node, enabling the re-
ceptive field size to adaptively fit the density and distribution of its surrounding nodes, thus
enhancing the model’s flexibility and adaptability to different graph structures. HAN [98]
utilizes distinct attention mechanisms to model different types of nodes and edges, learning
complex relationships between nodes and the structural information of heterogeneous
graphs by adaptively computing weights and representations of nodes. MAGNA [99]
adopts a multi-hop attention mechanism that utilizes diffusive priors on attention values
to consider all paths between non-connected node pairs, enabling the dynamic capture of
complex relationships between nodes. High-order attention mechanisms and adversarial
regularization constraints are employed by GCAN [100] to fully utilize both low-order and
high-order information of nodes for representation learning.

GAEs. The encoder–decoder architecture has also been widely applied in graph gen-
eration and reconstruction tasks. Graph auto-encoder (GAE) [101] initially employs this
architecture by utilizing an encoder to compress the raw graph data into low-dimensional
vectors and a decoder to decode these low-dimensional vectors back into the original graph.
The structures of both the encoder and decoder are composed of multiple layers of GCN.
Variational graph auto-encoder (VGAE) [101] is an extension of GAE that introduces a
variational inference method on top of GAE, enabling VGAE to learn more robust and in-
terpretable low-dimensional representations. GraphVAE [102] adopts a similar structure to
VAE, where the encoder transforms the graph information into a vector that approximates
a normal distribution, and the decoder then transforms this vector back into a new graph.
Graphite [103] utilizes graph neural networks to parameterize a variational autoencoder
and employs a novel iterative graph refinement strategy for decoding. Graph2Gauss [104]
builds upon VGAE by modeling node representations using Gaussian distributions and
improving the distance metric to better capture complex category structures. In addition,
DNVE [105] introduces deep generative models into graph autoencoders, embedding the
network through deep encoders and decoders. Contrastive learning has also been applied
to graph embedding methods. For example, DGI [106] uses a mutual information maxi-
mization method to learn node representations, which can learn high-order relationships
between nodes without reconstructing the input graph. Another approach, InfoGraph [107],
learns graph-level representations by maximizing the mutual information between the
graph-level representation and representations of substructures at different scales within
the graph. There is also a novel approach called MaskGAE [108], which combines the
Masked Graph Model (MGM) with the graph autoencoder to achieve self-supervised graph
representation learning and capture node features and structural information in the graph.

GGANs. GGANs are a type of generative model based on adversarial training that
extends conventional generative adversarial networks (GANs) [109] and can be used for
generating and learning embedded representations of graph data. The generator network
can generate realistic graph data, while the discriminator network can evaluate the quality
of the generated graph data. Through adversarial training between the two networks,
GGANs can continuously optimize their ability to generate and learn graph data. An
earlier method, GraphGAN [110], uses GAN to learn graph embedding representations
and employs a loss function based on pairwise similarity to preserve the continuity of
the embedding space. ARVGA [111] uses adversarial regularization to regularize node
embeddings in the embedding space, thereby improving the continuity and robustness of
embedding representations. By introducing an additional regularization term in adversarial
training, ANE [112] enhances existing graph embedding methods by treating the prior
distribution as real data and embedding vectors as generated samples. NetRA [113] is a
network representation learning method based on an encoder–decoder framework and
adversarial training. It encodes and decodes random walks on nodes, utilizes adversarial



COVID 2023, 3 1400

training to regularize embeddings, and introduces a prior distribution to improve the
model’s generalization performance. In addition, there is an implicit generative model
called NetGAN [114], which is used to simulate real-world networks. It uses GAN to train
a generator and utilizes random walk loss in the graph to learn node-level representations.
MolGAN [115] is an implicit generative model used for generating small molecule graphs.
It combines GAN and policy gradient reinforcement learning methods to improve the
quality and diversity of generated molecular graphs.

GPNs. GPNs use two operations, graph pooling and graph convolution, to process
input graph data, with the main goal of reducing the graph data size and extracting global
features. A general differentiable pooling operation called DiffPool [116] has been proposed,
which can optimize node representations and pooling matrices through backpropagation to
better capture the hierarchical structure of graph data. Zhang et al. [117] proposed a novel
SortPooling operation that sorts each node’s feature vector along with the node’s degree
and then uses the sorted result as the pooling result to better capture the global features
of graph data. A method different from other graph pooling methods is SAGPool [118],
which dynamically selects a subset of nodes using self-attention scores without the need
to specify a fixed-size node subset. This approach enables more accurate learned graph
representations that can adapt to different graph structures. Diehl et al. [119] proposed
a pooling method called EdgePool, which relies on the edge contraction concept to learn
localized and sparse hard pooling transformations. This method calculates importance
scores for each edge to select representative edges and compress them together to form
new nodes.

In addition, research on embedding methods for non-Euclidean spaces, contrastive
learning for graph neural networks, and feature processing is worth noting. Corso et al. [120]
proposed a neural distance embedding model, NeuroSEED, which embeds biological se-
quences into hyperbolic space for improved capture of hierarchical structure. A simple
graph contrastive learning framework called SimGRACE [121] was proposed, which does
not require data augmentation and enhances the robustness of graph contrastive learning
using an adversarial scheme. Tang et al. [122] proposed a novel unsupervised feature
selection method, MGF²WL, which combines multiple image fusion and feature weight
learning to address poor-quality similarity graphs and designed an effective feature recon-
struction model. Sun et al. [123] proposed a feature-expanded graph neural network model,
FE-GNN, that utilizes feature subspace flattening and structural principal components to
expand the feature space and improve model performance.

We also summarize the representation learning method implementations reviewed in
this paper in Table 1, most of which are official implementations.

Table 1. Summary of Representation Learning Methods (accessed on 18 June 2023).

Category Method Name Code Link

Neural network-based
language model
representation learning

Word2vec [39] https://code.google.com/archive/p/word2vec/

Doc2vec [40] https://nbviewer.org/github/danielfrg/word2vec/blob/main/exa
mples/doc2vec.ipynb

GloVe [41] https://nlp.stanford.edu/projects/glove/
FastText [42] https://github.com/facebookresearch/fastText
Bi-LSTM [44] -
ELMo [45] https://allenai.org/allennlp/software/elmo
Transformer [48] https://github.com/tensorflow/tensorflow
BERT [52] https://github.com/google-research/bert

https://code.google.com/archive/p/word2vec/
https://nbviewer.org/github/danielfrg/word2vec/blob/main/examples/doc2vec.ipynb
https://nbviewer.org/github/danielfrg/word2vec/blob/main/examples/doc2vec.ipynb
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText
https://allenai.org/allennlp/software/elmo
https://github.com/tensorflow/tensorflow
https://github.com/google-research/bert
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Table 1. Cont.

Category Method Name Code Link

Graph representation
learning
Graph embedding GF [54] -

PTE [55] https://github.com/mnqu/PTE
GraRep [56] https://github.com/ShelsonCao/GraRep
HOPE [57] http://git.thumedia.org/embedding/HOPE
HEER [58] https://github.com/GentleZhu/HEER
HERec [59] https://github.com/librahu/HERec

IsoMap [60] https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/m
anifold/_isomap.py

LLE [61] -
LTSA [62] -
LE [63] -
HE [64] -
t-SNE [65] https://lvdmaaten.github.io/tsne/
UMAP [66] https://github.com/lmcinnes/umap
DeepWalk [67] https://github.com/phanein/deepwalk
node2vec [68] https://github.com/aditya-grover/node2vec
LINE [69] https://github.com/tangjianpku/LINE
Walklets [70] https://github.com/benedekrozemberczki/walklets
struct2vec [71] https://github.com/leoribeiro/struc2vec
Metapath2vec [72] https://ericdongyx.github.io/metapath2vec/m2v.html
HIN2vec [73] https://github.com/csiesheep/hin2vec
GATNE [74] https://github.com/THUDM/GATNE
SDNE [75] https://github.com/suanrong/SDNE
DNGR [76] https://github.com/ShelsonCao/DNGR
HNE [77] -
BL-MNE [78] -
TADW [79] https://github.com/thunlp/tadw
LANE [80] https://github.com/xhuang31/LANE
ASNE [81] https://github.com/lizi-git/ASNE
DANE [82] https://github.com/gaoghc/DANE
ANRL [83] https://github.com/cszhangzhen/ANRL

Graph neural network GCN [86] https://github.com/tkipf/gcn
DGCN [87] https://github.com/ZhuangCY/DGCN
AGCN [88] https://github.com/yimutianyang/AGCN
LGCN [89] https://github.com/divelab/lgcn
FastGCN [90] https://github.com/matenure/FastGCN
GraphSAGE [91] https://github.com/williamleif/GraphSAGE
GIN [92] https://github.com/weihua916/powerful-gnns
APPNP [93] https://github.com/gasteigerjo/ppnp
GAT [94] https://github.com/PetarV-/GAT
AGNN [95] -
DySAT [96] https://github.com/aravindsankar28/DySAT
GaAN [97] https://github.com/jennyzhang0215/GaAN
HAN [98] https://github.com/Jhy1993/HAN
MAGNA [99] https://github.com/xjtuwgt/GNN-MAGNA
GCAN [100] -
GAE [101] https://github.com/tkipf/gae
VGAE [101] https://github.com/tkipf/gae

GraphVAE [102] https://github.com/snap-stanford/GraphRNN/tree/master/baseli
nes/graphvae

Graphite [103] https://github.com/ermongroup/graphite
Graph2Gauss [104] https://github.com/abojchevski/graph2gauss
DNVE [105] -
DGI [106] https://github.com/PetarV-/DGI

https://github.com/mnqu/PTE
https://github.com/ShelsonCao/GraRep
http://git.thumedia.org/embedding/HOPE
https://github.com/GentleZhu/HEER
https://github.com/librahu/HERec
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/manifold/_isomap.py
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/manifold/_isomap.py
https://lvdmaaten.github.io/tsne/
https://github.com/lmcinnes/umap
https://github.com/phanein/deepwalk
https://github.com/aditya-grover/node2vec
https://github.com/tangjianpku/LINE
https://github.com/benedekrozemberczki/walklets
https://github.com/leoribeiro/struc2vec
https://ericdongyx.github.io/metapath2vec/m2v.html
https://github.com/csiesheep/hin2vec
https://github.com/THUDM/GATNE
https://github.com/suanrong/SDNE
https://github.com/ShelsonCao/DNGR
https://github.com/thunlp/tadw
https://github.com/xhuang31/LANE
https://github.com/lizi-git/ASNE
https://github.com/gaoghc/DANE
https://github.com/cszhangzhen/ANRL
https://github.com/tkipf/gcn
https://github.com/ZhuangCY/DGCN
https://github.com/yimutianyang/AGCN
https://github.com/divelab/lgcn
https://github.com/matenure/FastGCN
https://github.com/williamleif/GraphSAGE
https://github.com/weihua916/powerful-gnns
https://github.com/gasteigerjo/ppnp
https://github.com/PetarV-/GAT
https://github.com/aravindsankar28/DySAT
https://github.com/jennyzhang0215/GaAN
https://github.com/Jhy1993/HAN
https://github.com/xjtuwgt/GNN-MAGNA
https://github.com/tkipf/gae
https://github.com/tkipf/gae
https://github.com/snap-stanford/GraphRNN/tree/master/baselines/graphvae
https://github.com/snap-stanford/GraphRNN/tree/master/baselines/graphvae
https://github.com/ermongroup/graphite
https://github.com/abojchevski/graph2gauss
https://github.com/PetarV-/DGI
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Table 1. Cont.

Category Method Name Code Link

InfoGraph [107] https://github.com/fanyun-sun/InfoGraph
MaskGAE [108] https://github.com/EdisonLeeeee/MaskGAE
GraphGAN [110] https://github.com/hwwang55/GraphGAN
ARVGA [111] -
ANE [112] -
NetRA [113] https://github.com/chengw07/NetRA
NetGAN [114] https://github.com/danielzuegner/netgan
MolGAN [115] https://github.com/nicola-decao/MolGAN
DiffPool [116] https://github.com/RexYing/diffpool
SortPooling [117] https://github.com/muhanzhang/DGCNN
SAGPool [118] https://github.com/inyeoplee77/SAGPool
EdgePool [119] -

Others
NeuroSEED [120] https://github.com/gcorso/NeuroSEED
SimGRACE [121] https://github.com/mpanpan/SimGRACE
MGF²WL [122] -

FE-GNN [123] https:
//github.com/sajqavril/Feature-Extension-Graph-Neural-Networks

4. Representation Learning Methods for COVID-19

From drug omics to clinical outcomes, representation learning has been widely applied
for the representation and modeling of multimodal biological and medical systems. This
section summarizes a series of representative methods in the field of representation learning
for COVID-19-related domains such as pharmaceuticals, public health, and healthcare, as
shown in Figure 4.

Figure 4. An overview of graphs used in COVID-19 applications. From pharmaceuticals to healthcare,
graphs exist in all aspects and influence each other. Drug discovery, repurposing, targets, microbes,
and their interactions constitute the pharmaceutical graph. Propagation, cases, electronic health
records, and electronic medical records constitute the healthcare knowledge graph. Pharmaceuticals
can gain feedback on the effectiveness of drugs through clinical trials, and healthcare can guide drug
development by analyzing the obtained virus RNA or drug molecular structure. These multi-modal
graphs are interconnected and need to be understood as a whole.

https://github.com/fanyun-sun/InfoGraph
https://github.com/EdisonLeeeee/MaskGAE
https://github.com/hwwang55/GraphGAN
https://github.com/chengw07/NetRA
https://github.com/danielzuegner/netgan
https://github.com/nicola-decao/MolGAN
https://github.com/RexYing/diffpool
https://github.com/muhanzhang/DGCNN
https://github.com/inyeoplee77/SAGPool
https://github.com/gcorso/NeuroSEED
https://github.com/mpanpan/SimGRACE
https://github.com/sajqavril/Feature-Extension-Graph-Neural-Networks
https://github.com/sajqavril/Feature-Extension-Graph-Neural-Networks


COVID 2023, 3 1403

4.1. Pharmaceutical

Traditional drug development is not only characterized by lengthy cycles and exorbi-
tant costs but also by low success rates. Artificial intelligence methods offer advantages
such as large-scale data processing, end-to-end learning, handling complex molecular
structures, and adaptive learning, which have accelerated drug discovery and drug re-
purposing. On the other hand, graph representation methods are better suited to handle
high-dimensional, non-linear data structures and intuitively display the structural features
of drug molecules, making it easier to understand and interpret prediction results.

4.1.1. Drug Discovery

Ton et al. [124] utilized a deep learning platform called Deep Docking to screen over
1.3 billion compounds for inhibitors targeting the SARS-CoV-2 main protease, providing
candidate drugs for drug development. Saravanan et al. [125] employed deep learning
to predictively screen known compounds, enabling rapid and accurate identification of
potential antiviral drugs.

Zhou et al. [126] proposed a nonlinear end-to-end method for predicting interactions
between compounds and COVID-19 based on GCN and attention mechanisms in heteroge-
neous graph representation learning, accelerating drug development. To predict molecular
properties and identify new drugs, Wang et al. [127] developed a machine learning tool
called AdvProp. AdvProp consists of four modules, including two graph-based and two
sequence-based methods. Li et al. [128] integrated chemical, biological, and physical infor-
mation to propose a multi-physics molecular graph representation and characterization
method that can more accurately describe the interactions between drug molecules and
proteins, making it better suited for COVID-19 drug discovery. Pi et al. [129] integrated
node attention mechanisms and edge attention mechanisms into GCN for predicting the
activity of microbial drugs and successfully predicted two drugs related to SARS-CoV-2.

4.1.2. Drug Repurposing

Ge et al. [130] developed a data-driven drug repurposing machine learning and sta-
tistical analysis framework to discover potential drug candidates against SARS-CoV-2.
Mall et al. [131] proposed a data-driven drug repurposing strategy that successfully
screened potential therapeutic drugs against COVID-19. Hooshmand et al. [132] used
a multimodal restricted Boltzmann machine approach to connect multimodal information
for drug repurposing to treat COVID-19. Anwaar et al. proposed a drug repurposing
approach based on deep learning and molecular docking simulations.

Aghdam et al. [133] repurposed existing drugs to treat COVID-19 by utilizing bi-
ological network graphs and key proteins to propose multiple informative features for
finding potential candidate drugs for COVID-19 treatment. Hsieh et al. [134] constructed
a drug repurposing method based on a SARS-CoV-2 knowledge graph and used deep
graph neural networks to determine the priority of repurposable drugs. Pham et al. [135]
proposed a drug screening method utilizing graph neural networks and multi-head at-
tention mechanisms for high-throughput mechanism-based phenotypic screening and
applied it to COVID-19 drug repurposing. By integrating multiple lines of evidence to
infer potential COVID-19 treatments, Hsieh et al. [136] used a graph neural network-based
model to predict the potential therapeutic effects of existing compounds. Doshi et al. [137]
proposed an end-to-end model based on graph neural networks for drug repurposing.
The cold-start problem of unverified virus-drug associations (VDAs) for novel viruses is
also an urgent issue in need of a solution. Su et al. [138] proposed a drug repositioning
model that integrates sequence features and network topology features, providing a viable
computational approach for the rapid discovery of potential antiviral drugs against novel
viruses. Additionally, they introduced a deep learning model based on constrained multi-
view non-negative matrix factorization and graph convolutional networks [139], offering a
new perspective on drug repurposing for SARS-CoV-2.
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4.1.3. Drug–Target Interaction Prediction

Beck et al. [140] proposed a deep-learning-based drug–target interaction model that
can predict the interactions between drugs and specific protein targets for the discovery
of commercially available antiviral drugs that can treat SARS-CoV-2. Saha et al. [141]
employed a machine-learning-based approach to predict the interactions between the
COVID-19 virus and human proteins, identifying key proteins and metabolic pathways
relevant to COVID-19 as well as potential drug targets and drug combinations.

To predict the affinity between COVID-19 ion channel targets and drugs, Wang et al. [142]
proposed a hybrid graph network model that uses an attention mechanism and GCN to
connect drugs and targets. Zhang et al. [143] incorporated multi-layer graph information
into transformer networks to explore the molecular structure of drug compounds in drug-
target interaction prediction. To alleviate the sparsity of bipartite graphs and obtain
better node representations, Li et al. [144] proposed a novel prediction model based on a
variational graph autoencoder combined with a dual Wasserstein generative adversarial
network gradient penalty strategy according to the prior knowledge graph. This enhances
the representation of edge information for better drug–target interaction.

4.1.4. Drug–Drug Interaction Prediction

Tang et al. [145] introduced domain-invariant learning to address the issue of domain
shift between different datasets. They improved the generalization performance of drug–
drug interaction prediction methods by minimizing the distributional discrepancy between
the source and target domains. Sefidgarhoseini et al. [146] effectively improved the accuracy
and robustness of drug-drug interaction extraction by combining multiple pre-trained
Transformer models, entity tagging strategies, and a voting-based ensemble strategy.

Ren et al. [147] proposed a drug–drug interaction prediction method based on a
biomedical knowledge graph, which utilizes a combination of local and global features to
enhance predictive performance. Chen et al. [148] designed a multi-scale feature fusion
approach and a bi-level cross strategy to optimize the feature fusion method, thereby
enhancing the performance of drug–drug interaction prediction. This method also fully
utilizes the features extracted from drug molecular structure graphs and biomedical knowl-
edge graphs and can be applied to different types of DDI prediction tasks. Pan et al. [149]
integrated the self-attention mechanism, cross-attention mechanism, and graph attention
network to construct a multi-source feature fusion network, which enables the model to
better capture drug–drug interaction information and further predict drug-drug interaction-
related events. Li et al. [150] proposed a novel multi-view substructure learning method
that fuses multiple views, such as chemical structures, pharmacophores, and targets, to
learn key substructure information for drug-drug interaction. An improved and more
precise model for predicting drug–drug interactions was proposed by Ma et al. [151] us-
ing a dual graph neural network model that takes into account both molecular-level and
substructure-level data.

4.1.5. Bio-Drug Interaction Prediction

Dey et al. [152] constructed a dataset with rich sequence features and utilized machine
learning techniques to predict virus–host interactions between SARS-CoV-2 and human
proteins. To predict virus–host interactions at the protein and organism levels using
machine learning techniques, Du et al. [153] constructed a complex network with rich
biological information.

Yang et al. [154] proposed a graph convolutional network-based method to uncover
potential associations between human microbiota and drugs. The method employed a
multi-kernel fusion strategy to integrate biological information from different sources,
thereby enhancing prediction capability. Das et al. [155] proposed an innovative geometric
deep learning model that effectively predicts and displays potential drug–virus interactions
against SARS-CoV-2 by utilizing message passing neural networks (MPNN) and graph-
structured features.
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4.2. Public Health and Healthcare

Representation learning has also been applied to case prediction, propagation predic-
tion, and analysis of multi-modal medical system data, such as electronic health records
(EHRs) and electronic medical records (EMRs). The first two are important for predicting
epidemic trends and guiding public health decisions, while EHRs and EMRs are crucial for
improving clinical decision-making and optimizing medical resources.

4.2.1. Case Prediction

Shahid et al. [156] evaluated multiple predictive models and demonstrated the superior
performance of the Bi-LSTM model in COVID-19 case forecasting. Abbasimehr et al. [157]
employed a combination of multi-head attention, LSTM, and CNN, along with the Bayesian
optimization algorithm, to forecast the number of confirmed COVID-19 cases soon.
Sinha et al. [158] compared the performance of multiple deep learning models for an-
alyzing and forecasting confirmed cases of COVID-19 and investigated the impact of data
preprocessing and model tuning on predictive performance.

Gao et al. [159] proposed a spatiotemporal attention network based on real-world
evidence for predicting the number of cases in a fixed number of days in the future.
They also designed a dynamic loss term to enhance long-term forecasting. To effectively
capture potential information about virus transmission and capture the linearity and non-
linearity present in time series, Ntemi et al. [160] proposed a hybrid model composed
of a GCN, an LSTM, and an autoregressive filter to more accurately predict the number
of cases. Li et al. [161] proposed a prediction model that combines the lioness optimiza-
tion algorithm with the graph convolutional network, which can capture spatiotemporal
information from feature data to achieve accurate predictions of COVID-19 case num-
bers. Skianis et al. [162] developed a multi-scale graph model utilizing demographic data,
medical facilities, socio-economic indicators, and other related information to improve
the prediction accuracy of COVID-19 positive cases and hospitalizations. The model is
capable of automatically learning the interrelationships between different features, thereby
enhancing its predictive capability.

4.2.2. Propagation Prediction

Malki et al. [163] utilized multiple machine learning models, including random forest,
support vector machine, and artificial neural network, to predict COVID-19 transmission
trends. Liu et al. [164] employed the Deep Neural Network (DNN) to predict the impact of
social distancing on the transmission of COVID-19. They developed the Improved Particle
Swarm Optimization (IPSO) algorithm, which introduced a generalized opposition-based
learning strategy and an adaptive strategy to optimize the hyperparameters of the DNN.
Ayris et al. [165] proposed a deep sequential prediction model and a machine-learning-
based nonparametric regression model to predict the transmission of COVID-19.

La et al. [166] proposed an epidemiological model based on graph neural networks that
effectively predicted and analyzed the transmission of the COVID-19 epidemic using dy-
namic graph-structured data. Hy et al. [167] proposed a method that captures multiscale pat-
terns in spatiotemporal data and combines multiscale neighborhood aggregation, temporal
convolutions, and multi-task learning to efficiently predict the transmission of COVID-19.
To detect spatiotemporal patterns in the transmission of COVID-19, Geng et al. [168] intro-
duced the spectral graph wavelet transform (SGWT) to deeply mine the characteristics of
infection data and process COVID-19 data on dynamic graphs. Shan et al. [169] introduced
graph neural networks and topological data analysis to propose a Graph Topology Learning
method that effectively solves the prediction problem of virus transmission on spatial and
temporal scales.
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4.2.3. Analysis of EHRs and EMRs

The examination of EHRs and EMRs is integral to the healthcare industry and scientific
community, as it enables a comprehensive comprehension of patients’ medical conditions
and healthcare service utilization. In turn, this facilitates the optimization of medical
resources, an enhancement in healthcare service quality, a support system for clinical
decision-making, and a catalyst for medical research and innovation. To investigate the
clinical characteristics and prognostic factors of COVID-19 patients, Izquierdo et al. [170]
employed natural language processing techniques to extract clinical information from
patients’ EHRs and utilized machine learning methods for modeling. Landi et al. [171] used
deep learning techniques for feature extraction from EHRs, enabling effective stratification
and classification of patient data, thereby providing robust support for precision medicine
and treatment plan development. Wagner et al. [172] proposed an effective method for
analyzing clinical records in large-scale EHR systems using deep neural networks, enabling
early disease diagnosis based on EHR data. Wanyan et al. [173] developed a deep learning
model based on contrastive loss to predict critical events such as severe illness, mortality,
and intubation that demonstrates promising performance on imbalanced EHR data. They
further proposed a unique EHR data heterogeneous feature design training algorithm and
combined it with contrastive positive sampling to predict COVID-19 patient mortality [174].
To better perform prognostic analysis on COVID-19 patients, Ma et al. [175] proposed a
distillation transfer learning framework that extracts knowledge from publicly available
online EMR data through knowledge distillation.

Wanyan et al. [176] proposed a relationship learning framework based on heteroge-
neous graph models to predict the mortality rate of COVID-19 patients in intensive care
units over different time windows. To address the challenges posed by data heterogeneity
and semantic inconsistencies when integrating and analyzing electronic medical record
data across institutions, Zhou et al. [177] proposed an integration method based on a multi-
view incomplete knowledge graph, which takes into account the relationships between
multiple data sources and the connecting information within each view. Gao et al. [178]
proposed a new machine learning framework that uses electronic health records to pre-
dict hospitalization status and severity of illness in children and fuses clinical domain
knowledge via graph neural networks, outperforming data-driven methods in terms of
predictability and interpretability.

In Table 2, we summarize the public datasets from the previous application section.

Table 2. Existing Public COVID-19 Datasets (accessed on 8 September 2023).

Dataset Dataset Type Available Online

COVID-19db Drug and target data http://www.biomedical-web.com/covid19db/home
DrugBank Drug data https://go.drugbank.com/
Ensembl SARS-CoV-2 genomic data https://COVID-19.ensembl.org/index.html
ESC SARS-CoV-2 immune escape variants http://clingen.igib.res.in/esc

GISAID Genetic sequence; Clinical and
epidemiological data https://gisaid.org/

NCBI COVID-19 virus sequence https://www.ncbi.nlm.nih.gov/datasets/taxonomy/2697049/
Our World In Data COVID-19 cases https://ourworldindata.org/covid-cases
PDB Protein Data https://www.rcsb.org/
RCoV19 COVID-19 information integration https://ngdc.cncb.ac.cn/ncov/?lang=en

SCoV2-MD Molecular dynamics of SARS-CoV-2
proteins https://submission.gpcrmd.org/covid19/

SCovid Single cell transcriptomics http://bio-annotation.cn/scovid
T-cell COVID-19 Atlas CD8 and CD4 T-cell epitopes https://t-cov.hse.ru
VarEPS SARS-CoV-2 variations evaluation https://nmdc.cn/ncovn
World Health Organization COVID-19 situation reports https://www.who.int/emergencies/diseases/novel-coronavirus-2019

http://www.biomedical-web.com/covid19db/home
https://go.drugbank.com/
https://COVID-19.ensembl.org/index.html
http://clingen.igib.res.in/esc
https://gisaid.org/
https://www.ncbi.nlm.nih.gov/datasets/taxono my/2697049/
https://ourworldindata.org/covid-cases
https://www.rcsb.org/
https://ngdc.cncb.ac.cn/ncov/?lang=en
https://submission.gpcrmd.org/covid19/
http://bio-annotation.cn/scovid
https://t-cov.hse.ru
https://nmdc.cn/ncovn
https://www.who.int/emergencies/diseases/novel-coronavirus-2019


COVID 2023, 3 1407

5. Challenges and Prospects

The graph representation method has demonstrated excellent outcomes in various
bioinformatics tasks, indicating huge potential for processing biological data. It can convert
biological data into low-dimensional embeddings before using them for downstream tasks.
However, there are challenges associated with the process of broadly employing graph
representation methods on real-world data. Because graph data are non-Euclidean, its
structure is highly irregular in general. In this regard, there exist both opportunities
and uncertainties in future developments.

5.1. Data Quality

As researchers delve deeper into the field of GNNs, the quality of graph data emerges
as a critical factor that significantly influences the performance and reliability of our
models. However, ensuring high-quality graph data is a challenging task due to the
potential presence of redundant, erroneous, or missing features and connections, which
can adversely impact the performance of GNNs [179]. In bioinformatics and biomedical
research, graph data often represent intricate biological entities and their interactions, such
as gene regulatory networks, protein–protein interaction networks, and patient similarity
networks. The quality of the graph data is of paramount importance, as it directly impacts
the accuracy and reliability of downstream analyses and predictions. The variability in
the quality of gene sequence data produced by high-throughput sequencing can lead to
noise in the sequencing data, causing GNNs to learn incorrect patterns. The sequencing of
data for COVID-19 is facing such issues. Several studies have employed training strategies
such as decoupled training, joint training, and two-level optimization to address the
challenges of graph data augmentation. Therefore, developing reliable methods for graph
data representation presents a challenging problem. Furthermore, it is crucial to establish
benchmarks and metrics for assessing the quality of biological graph data, which can guide
the development and evaluation of methods aimed at improving data quality. For instance,
the expert-annotated consultation dialogue dataset established by [180] may provide some
assistance in the treatment of COVID-19.

5.2. Hyperparameters and Labels

When employing graph representation models on large datasets, numerous hyperpa-
rameters need to be adjusted, and data must be accurately labeled prior to training. The
quality of labels and uncertainties in biological data can influence the outcomes of training
graph embedding models [181]. In most cases, the quality of labels generated directly by
the model is inferior to those manually annotated. In many practical applications, manual
label creation remains an indispensable method, albeit time-consuming and requiring some
prior knowledge of model hyperparameter settings. Particularly for COVID-19 genomic
data, as COVID-19 continues to mutate and produce new variants, it undergoes insertions,
deletions, and base substitutions in the genomic sequence, making it challenging to discern
patterns and manually create labels. An intriguing topic of research centers around identi-
fying approaches that can enable models in unsupervised learning to generate labels by
automatically extracting features of nodes and edges in graph data.

5.3. Interpretability and Extensibility

Although the graph neural network approach has developed quickly, it does not come
without some limitations. Graph neural networks are still a “black box” with limited
interpretability, but many real-world tasks require higher interpretability and scalability
of the model. Interpretability is essential in bioinformatics, where there is a desire to
better understand the mechanisms underlying biological processes, to provide accurate
guidance for downstream analysis, and to then apply them in bioinformatics [182,183]. It
has also proven difficult to develop a highly scalable and generic framework for different
biological sequence data in order to handle larger and more complex data, adapt to various
application scenarios, and better meet practical needs.



COVID 2023, 3 1408

6. Conclusions

Representation learning, especially graph representation learning, provides the ability
to handle complex data, integrate multi-modal data, and process large-scale datasets in
bioinformatics and biomedical research. It has been successfully applied to identifying gene
mutations for complex traits, assisting in disease diagnosis and treatment, and developing
safe and effective drugs. In this work, we conducted a comprehensive survey of the
applications of representation learning in bioinformatics and biomedicine. We summarized
neural-network-based language model representation learning and graph representation
learning, and discussed the relevant graph neural network methods in detail. Additionally,
we introduced applications in pharmaceuticals, public health, and healthcare for COVID-19
based on these two approaches. Finally, we summarized the challenges faced by those in
the popular research field of graph representation learning. It is anticipated that this work
could promote the research of graph representation learning in the fields of bioinformatics
and biomedicine, provide guidance for researchers in reviewing the entire development
process of COVID-19, and prepare preventive measures for potential highly contagious
epidemics in the future.
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