Seroprevalence of IgA and IgG against SARS-CoV-2 and Risk Factors in Workers from Public Markets of Guatemala
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Formative Research
2.3. Study Population
2.4. Serosurveys
2.5. Antibody Detection Using ELISA
2.6. Viral Detection Using RT-PCR
2.7. Data Preparation
2.8. Seroprevalence
2.9. Risk Factors Analysis
3. Results
3.1. Participants
3.2. Seroprevalence
3.3. Risk Factors for SARS-CoV-2 Exposure
3.3.1. Vendor Occupation
3.3.2. Preventive Behaviors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OPS. Recomendaciones Para Prevenir la Transmisión de la COVID-19 en Ferias y Mercados de Alimentos; Oranización Panamericana de la Salud: Washington, DC, USA, 2021. [Google Scholar]
- Marchiori, Teresa and Mariana Prandini Assis. The Impact of COVID-19 Laws on Street Vendors and Market Traders: Trends and Insights from Latin America; WIEGO Resource Document No. 21; WIEGO: Manchester, UK, 2021. [Google Scholar]
- Frieden, T.R.; Lee, C.T. Identifying and Interrupting Superspreading Events-Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Apestegui, B.V.; Parras-Garrido, E.; Tapia, V.; Paz-Aparicio, V.M.; Rojas, J.P.; Sanchez-Ccoyllo, O.R.; Gonzales, G.F. Association between air pollution in Lima and the high incidence of COVID-19: Findings from a post hoc analysis. BMC Public Health 2021, 21, 1161. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.Y.; Suharlim, C.; Kales, S.N.; Yang, J. Association between SARS-CoV-2 infection, exposure risk and mental health among a cohort of essential retail workers in the USA. Occup. Environ. Med. 2021, 78, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.Y.; Wei, C.F.; Hsu, Y.T.; Christiani, D.C.; Kales, S.N. Work-related COVID-19 transmission in six Asian countries/areas: A follow-up study. PLoS ONE 2020, 15, e0233588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Zhou, P.; Han, D.B.; Wang, W.C.; Cui, C.; Zhou, R.; Xu, K.X.; Liu, L.; Wang, X.H.; Bai, X.H.; et al. Investigation on a cluster epidemic of COVID-19 in a supermarket in Liaocheng, Shandong province. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 2024–2028. [Google Scholar] [CrossRef] [PubMed]
- Dooling, K.; Marin, M.; Wallace, M.; McClung, N.; Chamberland, M.; Lee, G.M.; Talbot, H.K.; Romero, J.R.; Bell, B.P.; Oliver, S.E. The Advisory Committee on Immunization Practices’ Updated Interim Recommendation for Allocation of COVID-19 Vaccine—United States, December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 69, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- MSPAS. Situación de COVID-19 en Guatemala. 2022. Available online: https://tablerocovid.mspas.gob.gt/ (accessed on 26 April 2022).
- INE. XII Censo Nacional de Población y VII de Vivienda. 2018. Available online: https://www.censopoblacion.gt/ (accessed on 26 April 2022).
- Agarwal, A.; Ranjan, P.; Rohilla, P.; Saikaustubh, Y.; Sahu, A.; Dwivedi, S.N.; Aakansha; Baitha, U.; Kumar, A. Development and validation of a questionnaire to assess preventive practices against COVID-19 pandemic in the general population. Prev. Med. Rep. 2021, 22, 101339. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- CDC. Stay Uo to Date with Your COVID-19 Vaccine. 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html?s_cid=11747:cdc%20fully%20vaccinated%20definition:sem.ga:p:RG:GM:gen:PTN:FY22 (accessed on 26 April 2022).
- Sterlin, D.; Mathian, A.; Miyara, M.; Mohr, A.; Anna, F.; Claer, L.; Quentric, P.; Fadlallah, J.; Devilliers, H.; Ghillani, P.; et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 2021, 13, eadb2223. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, Y.; Omata, K.; Shimizu, Y.; Kinoshita-Iwamoto, N.; Terada, M.; Suzuki, T.; Morioka, S.; Uemura, Y.; Ohmagari, N.; Maeda, K.; et al. SARS-CoV-2-neutralizing humoral IgA response occurs earlier but modest and diminishes faster compared to IgG response. bioRxiv 2022, 10, e0271622. [Google Scholar] [CrossRef]
- Galipeau, Y.; Greig, M.; Liu, G.; Driedger, M.; Langlois, M.A. Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front. Immunol. 2020, 11, 610688. [Google Scholar] [CrossRef]
- Padoan, A.; Sciacovelli, L.; Basso, D.; Negrini, D.; Zuin, S.; Cosma, C.; Faggian, D.; Matricardi, P.; Plebani, M. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study. Clin. Chim. Acta 2020, 507, 164–166. [Google Scholar] [CrossRef]
- Tovar, M.; Peinado, J.; Palomino, S.; Llanos, F.; Ramirez, C.; Valderrama, G.; Calderon, R.I.; Williams, R.B.; Velasquez, G.E.; Mitnick, C.D.; et al. Prevalence of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies Among Market and City Bus Depot Workers in Lima, Peru. Clin. Infect. Dis. 2022, 74, 343–346. [Google Scholar] [CrossRef]
- MSPAS. Plan Nacional de Vacunación Contra la COVID-19. República de Guatemala; Ministerio de Salud Pública y Asistencia Social: Guatemala City, Guatemala, 2021. [Google Scholar]
- Baumgarth, N.; Nikolich-Zugich, J.; Lee, F.E.; Bhattacharya, D. Antibody Responses to SARS-CoV-2: Let’s Stick to Known Knowns. J. Immunol. 2020, 205, 2342–2350. [Google Scholar] [CrossRef]
- Krone, M.; Gutling, J.; Wagener, J.; Lam, T.T.; Schoen, C.; Vogel, U.; Stich, A.; Wedekink, F.; Wischhusen, J.; Kerkau, T.; et al. Performance of Three SARS-CoV-2 Immunoassays, Three Rapid Lateral Flow Tests, and a Novel Bead-Based Affinity Surrogate Test for the Detection of SARS-CoV-2 Antibodies in Human Serum. J. Clin. Microbiol. 2021, 59, e0031921. [Google Scholar] [CrossRef] [PubMed]
- Theel, E. SARS-CoV-2 Serologic Testing. In Clinical Microbiology Procedures Handbook; Humphries, R.M., Simner, P.J., Eds.; Wiley: Washington, DC, USA, 2021. [Google Scholar]
- Vachon, M.S.; Demmer, R.T.; Yendell, S.; Draeger, K.J.; Beebe, T.J.; Hedberg, C.W. SARS-CoV-2 Seroprevalence Survey in Grocery Store Workers-Minnesota, 2020–2021. Int. J. Environ. Res. Public Health 2022, 19, 3501. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Ngwa, C.; Morales Scheihing, D.A.; Al Mamun, A.; Ahnstedt, H.W.; Finger, C.E.; Colpo, G.D.; Sharmeen, R.; Kim, Y.; Choi, H.A.; et al. Sex differences in the immune response to acute COVID-19 respiratory tract infection. Biol. Sex Differ. 2021, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Aleksanyan, Y.; Weinman, J.P. Women, men and COVID-19. Soc. Sci. Med. 2022, 294, 114698. [Google Scholar] [CrossRef] [PubMed]
First Serosurvey N = 109 n (%) | Second Serosurvey N = 87 n (%) | p-Value | |
---|---|---|---|
Occupational characteristics | |||
Type of activities | 0.86 | ||
Vendor occupation | 88 (81) | 72 (83) | |
Non-vendor occupation | 21 (19) | 15 (17) | |
Days per week working at the market | 1 | ||
1–5 | 29 (27) | 23 (26) | |
6–7 | 80 (73) | 64 (74) | |
Vaccination status | |||
SARS-CoV-2 vaccination b | <0.00 | ||
Fully vaccinated | 2 (2) | 30 (34) | |
Partially vaccinated | 10 (9) | 42 (48) | |
Not vaccinated | 97 (89) | 15 (17) | |
Influenza vaccine within the last year | 4 (4) | 2 (2) | 0.7 |
Adherence to preventive practices while in the market during the last month | |||
Always kept ≥ 1.5 m distance while eating | 68 (62) | 80 (92) | <0.00 |
Always used mask completely covering the mouth and nose | 91 (83) | 77 (89) | 0.43 |
Always cleaned hands ≥ 20 s | 49 (45) | 53 (61) | 0.04 |
Never attended social gatherings in-person | 75 (69) | 58 (67) | 0.87 |
Never shook hands | 89 (82) | 74 (85) | 0.66 |
SARS-CoV-2 positive tests | |||
History of a positive SARS-CoV-2 test c | 15 (14) | 4 (5) | 0.06 |
PCR positive nasopharyngeal swab d | 14 (13) | 1 (1) | 0 |
IgA Anti-Spike c | IgG Anti-Spike c | IgG Anti-Nucleocapsid d | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1st Serosurvey | 2nd Serosurvey | 1st Serosurvey | 2nd Serosurvey | 1st Serosurvey | 2nd Serosurvey | |||||||
N = 109 | N = 87 | N = 109 | N = 87 | N = 109 | N = 87 | |||||||
n | % (95% CI) | N | % (95% CI) | N | % (95% CI) | n | % (95% CI) | n | % (95% CI) | n | % (95% CI) | |
Overall | 67 | 61 (52, 71) | 77 | 89 (80, 94) | 58 | 53 (43, 63) | 79 | 91 (83, 96) | 24 | 22 (15, 31) | 25 | 29 (20, 39) |
Overall standardized a | 67 | 65 (48, 86) | 77 | 91 (69, 100) | 58 | 54 (39, 73) | 79 | 93 (71, 100) | 24 | 25 (16, 40) | 25 | 32 (20, 50) |
By vaccination status b | ||||||||||||
Not vaccinated | 56 | 58 (47, 68) | 13 | 87 (60, 98) | 46 | 47 (37, 58) | 9 | 60 (32, 84) | 20 | 21 (13, 30) | 6 | 40 (16, 68) |
Partially vaccinated | 9 | 90 (55, 100) | 35 | 83 (69, 93) | 10 | 100 (69, 100) | 40 | 95 (84, 99) | 3 | 30 (7, 65) | 9 | 21 (10, 37) |
Fully vaccinated | 2 | 100 (16, 100) | 29 | 97 (83, 100) | 2 | 100 (16, 100) | 30 | 100 (88, 100) | 1 | 50 (1, 99) | 10 | 33 (17, 53) |
By sociodemographic subgroup | ||||||||||||
Sex | ||||||||||||
Female | 53 | 63 (52, 73) | 58 | 89 (79, 96) | 50 | 60 (48, 70) | 61 | 94 (85, 98) | 20 | 24 (15, 34) | 19 | 29 (19, 42) |
Male | 14 | 56 (35, 76) | 19 | 86 (65, 97) | 8 | 32 (15, 54) | 18 | 82 (60, 95) | 4 | 16 (5, 36) | 6 | 27 (11, 50) |
Age group (years) | ||||||||||||
18–30 | 29 | 60 (45, 74) | 32 | 86 (71, 95) | 23 | 48 (33, 63) | 31 | 84 (68, 94) | 9 | 19 (9, 33) | 9 | 24 (12, 41) |
31–40 | 14 | 64 (41, 83) | 17 | 89 (67, 99) | 10 | 45 (24, 68) | 18 | 95 (74, 100) | 7 | 32 (14, 55) | 6 | 32 (13, 57) |
41–50 | 8 | 42 (20, 67) | 11 | 79 (49, 95) | 8 | 42 (20, 67) | 14 | 100 (77, 100) | 2 | 11 (1, 33) | 3 | 21 (5, 51) |
≥51 | 16 | 80 (56, 94) | 17 | 100 (80, 100) | 17 | 85 (62, 97) | 16 | 94 (71, 100) | 6 | 30 (12, 54) | 7 | 41 (18, 67) |
Last education level | ||||||||||||
Primary or less | 21 | 70 (51, 85) | 23 | 100 (85, 100) | 22 | 73 (54, 88) | 22 | 96 (78, 99) | 9 | 30 (15, 49) | 8 | 35 (16, 57) |
Any secondary | 42 | 63 (50, 74) | 45 | 85 (72, 93) | 33 | 49 (37, 62) | 47 | 89 (77, 96) | 13 | 19 (11, 31) | 14 | 26 (15, 40) |
More than secondary | 4 | 33 (10, 65) | 9 | 82 (48, 98) | 3 | 25 (5, 57) | 10 | 91 (59, 100) | 2 | 17 (2, 48) | 3 | 27 (6, 61) |
Wealth tertiles | ||||||||||||
Low | 25 | 68 (50, 82) | 26 | 93 (76, 99) | 22 | 59 (42, 75) | 24 | 86 (67, 96) | 10 | 27 (14, 44) | 10 | 36 (19, 56) |
Middle | 34 | 62 (48, 75) | 40 | 85 (72, 94) | 30 | 55 (41, 68) | 43 | 91 (80, 98) | 11 | 20 (10, 33) | 10 | 21 (11, 36) |
High | 8 | 47 (23, 72) | 11 | 92 (62, 100) | 6 | 35 (14, 62) | 12 | 100 (74, 100) | 3 | 18 (4, 43) | 5 | 42 (15, 72) |
By occupational subgroup | ||||||||||||
Market | ||||||||||||
Market A | 30 | 64 (49, 77) | 30 | 94 (79, 99) | 25 | 53 (38, 68) | 31 | 97 (84, 100) | 14 | 30 (17, 45) | 13 | 41 (24, 59) |
Market B | 37 | 60 (46, 72) | 47 | 85 (73, 94) | 33 | 53 (40, 66) | 48 | 87 (76, 95) | 10 | 16 (8, 28) | 12 | 22 (12, 35) |
Type of activity | ||||||||||||
Vendor occupation | 55 | 62 (52, 73) | 64 | 89 (79, 95) | 48 | 55 (44, 65) | 66 | 92 (83, 97) | 19 | 22 (14, 32) | 21 | 29 (19, 41) |
Non-vendor occupation | 12 | 57 (34, 78) | 13 | 87 (60, 98) | 10 | 48 (26, 70) | 13 | 87 (60, 98) | 5 | 24 (8, 47) | 4 | 27 (8, 55) |
Days per week at the market | ||||||||||||
1–5 | 21 | 72 (53, 87) | 21 | 91 (72, 99) | 17 | 59 (39, 76) | 22 | 96 (78, 100) | 7 | 24 (10, 44) | 6 | 26 (10, 48) |
6–7 | 46 | 58 (46, 68) | 56 | 88 (77, 94) | 41 | 51 (40, 63) | 57 | 89 (79, 95) | 17 | 21 (13, 32) | 19 | 30 (19, 42) |
Months since at the market | ||||||||||||
1–6 | 14 | 64 (41, 83) | 15 | 83 (59, 96) | 11 | 50 (28, 72) | 14 | 78 (52, 94) | 7 | 32 (14, 55) | 5 | 28 (10, 53) |
7–12 | 36 | 67 (53, 79) | 37 | 88 (74, 96) | 32 | 59 (45, 72) | 39 | 93 (81, 99) | 12 | 22 (12, 36) | 11 | 26 (14, 42) |
>12 | 17 | 52 (34, 69) | 25 | 93 (76, 99) | 15 | 45 (28, 64) | 26 | 96 (81, 100) | 5 | 15 (5, 32) | 9 | 33 (17, 54) |
IgA Anti-Spike b Adjusted OR (95% CI) | IgG Anti-Spike b Adjusted OR (95% CI) | IgG Anti-Nucleocapsid a,c Adjusted OR (95% CI) | |
---|---|---|---|
Vendor occupation | 12.4 (2.7, 56.3) | 13.2 (2.1, 81.8) | 1.4 (0.5, 3.7) |
Female | 8.0 (1.7, 37.8) | 40.6 (5.7, 290.6) | 1.5 (0.6, 3.6) |
Vendor occupation * Female d | 0.1 (0.0, 0.4) | 0.0 (0.0, 0.3) | - |
Age group (years) | |||
18–30 | Reference | Reference | Reference |
31–40 | 1.7 (0.6, 4.9) | 1.3 (0.5, 3.8) | 1.6 (0.7, 4.1) |
41–50 | 0.3 (0.1, 1.0) | 0.5 (0.1, 1.6) | 0.4 (0.1, 1.5) |
≥51 | 1.1 (0.3, 4.3) | 1.7 (0.3, 9.2) | 1.8 (0.5, 6.4) |
Last education level | |||
Primary or less | Reference | Reference | Reference |
Any secondary | 0.5 (0.2, 1.3) | 0.4 (0.1, 1.2) | 0.7 (0.2, 1.9) |
More than secondary | 0.2 (0.0, 0.7) | 0.2 (0.0, 0.9) | 1.0 (0.2, 4.2) |
Wealth tertiles | |||
Low | Reference | Reference | Reference |
Middle | 0.4 (0.2, 1.2) | 0.5 (0.2, 1.5) | 0.3 (0.1, 0.9) |
High | 0.2 (0.0, 0.7) | 0.2 (0.1, 0.8) | 0.4 (0.1, 1.4) |
Number of household members | 0.9 (0.8, 1.1) | 1.0 (0.8, 1.2) | 1.0 (0.9, 1.2) |
Market | |||
Market A | Reference | Reference | Reference |
Market B | 0.3 (0.1, 0.7) | 0.4 (0.2, 1.1) | 0.2 (0.1, 0.4) |
Days per week at the market | |||
1–5 | Reference | Reference | Reference |
6–7 | 0.7 (0.3, 1.8) | 0.7 (0.3, 1.9) | 1.3 (0.6, 2.9) |
Months since at the market | |||
1–6 | Reference | Reference | Reference |
7–12 | 1.7 (0.5, 5.4) | 2.8 (0.9, 9.1) | 1.0 (0.3, 2.9) |
>12 | 0.7 (0.2, 2.2) | 1.3 (0.3, 4.9) | 0.4 (0.1, 1.4) |
≥1 vaccine dose | 7.6 (2.9, 19.6) | 98.8 (18.3, 532.4) | 1.4 (0.7, 2.9) |
IgA Anti-Spike a Adjusted Model OR (95% CI) | IgG Anti-Spike a Adjusted Model OR (95% CI) | IgG Anti-Nucleocapsid b Adjusted Model OR (95% CI) | |
---|---|---|---|
Always kept ≥1.5 m distance while eating | 1.3 (0.5, 3.4) | 1.9 (0.7, 5.3) | 0.7 (0.3, 1.7) |
Always used mask completely covering the mouth and nose | 0.2 (0.1, 0.9) | 0.2 (0.0, 0.7) | 0.4 (0.2, 1.0) |
Always cleaned hands ≥20 s | 0.8 (0.3, 1.7) | 1.3 (0.5, 3.0) | 0.5 (0.2, 1.1) |
Never attended social gatherings in-person | 0.6 (0.2, 1.6) | 0.5 (0.2, 1.4) | 0.8 (0.4, 1.8) |
Never shook hands | 1.3 (0.5, 3.6) | 0.5 (0.2, 1.3) | 0.9 (0.3, 2.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grajeda, L.M.; Mendizábal-Cabrera, R.; Romero, J.C.; López, M.R.; Morales, E.; López, B.; Zielinski, E.; Cordón-Rosales, C. Seroprevalence of IgA and IgG against SARS-CoV-2 and Risk Factors in Workers from Public Markets of Guatemala. COVID 2023, 3, 1416-1428. https://doi.org/10.3390/covid3090097
Grajeda LM, Mendizábal-Cabrera R, Romero JC, López MR, Morales E, López B, Zielinski E, Cordón-Rosales C. Seroprevalence of IgA and IgG against SARS-CoV-2 and Risk Factors in Workers from Public Markets of Guatemala. COVID. 2023; 3(9):1416-1428. https://doi.org/10.3390/covid3090097
Chicago/Turabian StyleGrajeda, Laura M., Renata Mendizábal-Cabrera, Juan Carlos Romero, María Reneé López, Evelyn Morales, Beatriz López, Emily Zielinski, and Celia Cordón-Rosales. 2023. "Seroprevalence of IgA and IgG against SARS-CoV-2 and Risk Factors in Workers from Public Markets of Guatemala" COVID 3, no. 9: 1416-1428. https://doi.org/10.3390/covid3090097
APA StyleGrajeda, L. M., Mendizábal-Cabrera, R., Romero, J. C., López, M. R., Morales, E., López, B., Zielinski, E., & Cordón-Rosales, C. (2023). Seroprevalence of IgA and IgG against SARS-CoV-2 and Risk Factors in Workers from Public Markets of Guatemala. COVID, 3(9), 1416-1428. https://doi.org/10.3390/covid3090097