
Citation: Meregan, M.; Jafari, F.; Lotfi

Ghahroud, M.; Ghassemi Nejad, J.;

Janghorban Esfahani, I. Evaluating the

Impact of Climate and Early

Pandemic Policies on COVID-19

Transmission: A Case Study

Approach. COVID 2024, 4, 1599–1616.

https://doi.org/10.3390/

covid4100111

Academic Editor: Luigi Vimercati

Received: 13 August 2024

Revised: 6 September 2024

Accepted: 11 September 2024

Published: 29 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Evaluating the Impact of Climate and Early Pandemic Policies on
COVID-19 Transmission: A Case Study Approach
Mohammad Meregan 1, Frazad Jafari 2, Majid Lotfi Ghahroud 3, Jalil Ghassemi Nejad 4,5,*
and Iman Janghorban Esfahani 4,5,6,*

1 Employers Holdings, Inc. (EIG), Henderson, NV 89074, USA; mehregan.mj@gmail.com
2 Telfer School of Management, University of Ottawa, Ottawa, ON K1H 8M5, Canada; fjafa086@uottawa.ca
3 Department of Technology and Society, The State University of New York, Incheon 21985, Republic of Korea;

majid.lotfi@sunykorea.ac.kr
4 Department of Animal Science and Technology, Sanghuh College of Animal Life Sciences, Konkuk University,

Seoul 05029, Republic of Korea
5 Glopex Co., Ltd., R&D Center, GeumGang Penterium IX Tower A2801, Dongtancheomdansaneop 1-ro 27,

Hwaseong-si 18469, Gyeonggi-do, Republic of Korea
6 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology (IBST), Center of Stem

Cell Research, Konkuk University, Seoul 05029, Republic of Korea
* Correspondence: jalilgh@glopex.kr (J.G.N.); john@glopex.kr (I.J.E.)

Abstract: The COVID-19 pandemic has had profound impact, necessitating a deeper understanding
of factors influencing virus transmission. The negative impacts have weakened the economy and
changed billions of lives around the world. COVID-19 is a new virus, and a lot of studies have
tried to investigate its effect on, for example, the economy or environment. This research reveals
new approaches to recognizing and stopping the spread of this virus with its connection to weather
conditions and relevant parameters. By analyzing how temperature and humidity affect COVID-19
spread, alongside evaluating the effectiveness of initial public policies, this study addresses the
critical gap in research by investigating the interplay between climate conditions and government
regulations during the early stages of the pandemic in South Korea. This dual approach provides a
comprehensive framework for understanding how environmental and policy factors jointly influence
pandemic dynamics, offering valuable lessons for future global health crises. Although it focuses
only on the first phase of South Korea COVID-19 regulations, outcomes show that these regulations
were notably effective against the COVID-19 pandemic. The outcomes prove that higher temperature
and higher relative humidity lead to lower transmission. Hence, based on the results during winter,
the number of infections would be expected to speed up again.

Keywords: COVID-19; government regulation; global economy; virus spread; AIC; BIC

1. Introduction

The pandemic and its associated lockdown regulations worldwide substantially
shocked the global economy’s supply and demand, which most countries were not im-
mune to or ready for, as all economy sectors were affected by the pandemic. The tourism
industry is a good example, as it was banned by both government regulation and people’s
own demand [1,2]. The COVID-19 pandemic has transformed worldwide health and
economic landscapes, emphasizing the critical need for research into factors influencing
virus transmission. While much research has been conducted on the economic and social
consequences of the epidemic, the interaction between climate conditions and government
policies remains unexplored. Understanding how environment impacts the spread of respi-
ratory viruses such as COVID-19 can help public health officials respond more effectively
and prepare for future pandemics [2–4].

The effect of weather conditions on respiratory diseases is one of the most critical
factors indicated by researchers. Respiratory diseases are widespread globally and are the
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third cause of non-communicable mortality [5]. Many studies have confirmed positive
connections between public health and weather indicators, such as temperature, humidity,
or wind speed [6,7]. One crucial question during the COVID-19 pandemic is whether
there is a connection between weather conditions and the COVID-19 virus spread. This
study tries to answer that question. Determining this connection could help governments
make more informed policy decisions and become more prepared for the next waves and
next pandemics.

Some previous studies have shown that seasonal and geographic climatic change
could affect the spread of respiratory diseases, the concentrations of those studies were
mostly on influenza, SARS, and MERS-COV but not COVID-19, which is distinctive from
other recognized viruses in its spread and pathogenicity. From another angle, there are
several studies about government policy and its effects on controlling respiratory diseases.
A close relationship between government and society is not inevitable during abnormal
conditions like the COVID-19 pandemic. This study also tries to identify the effect of
government regulations on controlling COVID-19 transmissions.

To answer the research questions, first, we tried to find the correct number of lag
variables by applying the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), as most previous studies about the relationship between respiratory diseases
and weather conditions have used lag variables [8–10].

Second, the generalized additive model (GAM) was applied to answer the research
question. The GAM was selected for this study because it can work with many distributions,
such as gamma, normal, and Poisson, and the distribution of dependent variables in this
study is Poisson.

This study, which focuses on South Korea’s initial regulation period, innovates by
merging climate data with an analysis of the consequences of public policy on COVID-19
transmission. Our work incorporates these components to give a comprehensive picture of
their combined impact on virus distribution, in contrast to other research that frequently
separates climate factors or policy effects. This study provides an improved method for
simulating COVID-19 transmission by utilizing the generalized additive model (GAM),
which takes into account a variety of distributions and incorporates nonlinear interactions.
Together with an analysis of South Korea’s early intervention tactics, this methodological
development offers fresh perspectives on the policy-driven and environmental aspects of
pandemic management. Compared to previous studies, this research uses more features
that can affect the spread of the COVID-19 virus. This study is different since it tries to
connect two different literature angles by applying climate indicators and government
regulation in the same regression as right-hand-side variables. The Infectious Disease Alert
level 4 (red) policy caused a decrease in mobility of more than 10% for the whole country;
this policy can help control the mobility effect in this study since the city-level mobility
data for South Korea are not available. Other contributions of this study include finding
reliable predictive models for daily COVID-19 positive cases in countries with the most
advanced health care systems and forecasting numbers of infections by applying the GAM.
By addressing the gap in understanding the interaction between climate and policy, this
study not only enhances current knowledge but also provides a framework applicable to
other pandemic scenarios, paving the way for more informed and effective public health
strategies globally.

1.1. Literature Review

Coronaviruses (CoVs) belong to the Coronaviridae family, a group of enveloped,
positive-sensed, single-stranded RNA viruses [11]. These types of viruses are named CoVs
due to their crown shape [12]. Coronaviruses are a widespread group of viruses that are
prevalent among animals. Zoonotic transmission, in which viruses travel from animals
to humans, has played a crucial role in recent pandemics, including COVID-19, which
was initially discovered on 31 December 2019, in Wuhan, China. According to research
conducted in China and South Korea, personal contact is the predominant mechanism of
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COVID-19 transmission. This highlights the need of understanding both environmental
and behavioral factors that influence disease spread [13].

Since 31 December 2019, when the first positive case of COVID-19 was detected in
Wuhan, China, people worldwide have struggled with this disease [14]. Based on recent
studies, COVID-19 transmission has been mostly happening through physical contact; for
example, a study in China reported that 41% of patient infections were due to person-to-
person hospital visits [15]. Furthermore, our results are consistent with this fact in the case
of South Korea during the timeline of this study (Figure 1).
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The literature has two strands: disease spread patterns and weather connection and
public policy. First, let us focus on the literature on the relationship between weather condi-
tions and respiratory disease. Epidemiological and laboratory research has recognized a
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connection between weather conditions and respiratory diseases [8,16]. Weather conditions
have an essential role in human health. A study was performed by Cheng et al. [17] in the
five most populated Australian cities (Sydney, Melbourne, Brisbane, Adelaide, and Perth)
from 2000 to 2009, which analyzed the relationship between mortality rate and temperature
variability. The results show that any significant temperature change can be associated
with a higher mortality rate.

The risk of transmission can differ based on weather conditions related to respiratory
diseases’ durability on various surfaces [18,19]. There is extensive literature about patterns
between weather conditions and virus mortality.

In 2003, Bi et al. [20] tried to estimate how weather conditions could change the
speed of spread by applying data for a daily number of positive SARS cases in Beijing
and Hong Kong during the 2003 pandemic. This study indicated that higher temperatures
could decrease infection; air pressure, however, was positively correlated with the number
of positive SARS cases. Likewise, a study in South Korea showed that the number of
positive influenza cases increased significantly on days with lower temperatures and
relative humidity [21].

In 2020, Bashir [22] conducted a study to analyze the relationship between weather
indicators and the COVID-19 mortality rate in New York City. The weather condition
variables in this study included average temperature, minimum temperature, maximum
temperature, rainfall, average humidity, wind speed, and air quality. The outcome indi-
cated that average temperature, minimum temperature, and air quality were significantly
associated with the COVID-19 pandemic. Existing literature reveals a complex relationship
between weather conditions and respiratory diseases. Research, such as that by Cheng
et al. [17], has shown that temperature variability can influence mortality rates. How-
ever, studies specifically connecting weather conditions to COVID-19 transmission are still
emerging. For example, Bashir [22] explored the impact of various weather indicators on
COVID-19 mortality in New York City, while Hossain et al. [23] examined similar factors
across South Asia, highlighting the role of climate indicators like rainfall and air pollution.
These studies point to a significant association between climate factors and the spread of
respiratory diseases, yet the precise mechanisms remain unclear. This research aims to
bridge this gap by investigating how climate conditions interact with social behaviors to
affect COVID-19 transmission.

In 2021, Hossain et al. [23] aimed to investigate the effect of weather-condition factors
on the number of COVID-19 infected cases in South Asian countries—India, Afghanistan,
Pakistan, Bangladesh, and Sri Lanka—from the day of the first infection case to 31 August
2020 in each country. The climate indicators in this study included aggregate rainfall, rela-
tive humidity, surface pressure, maximum and minimum temperature (in ◦C), maximum
air pollutants, and maximum wind velocity (m/s). The autoregressive integrated moving
average with explanatory variables (ARIMAX) model was applied as an estimator model.
The outcomes show that aggregated rainfall, air pollution, and maximum wind velocity
play an essential role in spreading coronavirus in these countries.

In 2021, Zhang et al. [24] tried to estimate the effect of temperature and humidity on
COVID-19 infection numbers for 1236 areas worldwide. The weather data were collected
from a large-scale satellite, and the results indicate that temperature and relative humidity
have a negative relationship with the global spread of COVID-19.

Most previous research in this section has indicated that temperature and humid-
ity negatively affect respiratory disease infections [25,26]. The mucus produced in cold
weather, however, is especially concentrated and dense, which can lead to obstructions
in the respiratory system and raise the likelihood of catching a cold or other respiratory
diseases [2].

There is another relevant strand of respiratory disease literature. There are several
studies on government policy and its effects on controlling respiratory diseases [27,28].
For example, Nidhi and Jayaraman [29] tried to estimate the effect of Indian government
regulations on the amount of carbon dioxide released by factories. They used the informa-
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tion of people who had been hospitalized for respiratory illnesses in seven Delhi hospitals
between 1998 and 2004. For the patient population, they applied the Poisson regression
model. Their results indicate that the regulations caused a notable reduction in the monthly
average density of sulfur dioxide; the monthly average density of nitrogen dioxide, how-
ever, increased by 2%. These changes in air quality reduced the number of respiratory
patients significantly, by about 12%.

A study in Vietnam examined the effectiveness of government policy during the
coronavirus pandemic. The study’s timeline was divided into four periods based on
four principal government regulations: emergency responses, border and entry control
measures, social isolation, and financial support. The findings show that the Vietnamese
policy system responded quickly, proactively, and virtually at multiple authority levels [30].
Another research by Wielechowski et al. [31] in 2020 tried to determine how government
lockdown regulations in Poland affected mobility and the spread of COVID-19 between
2 March and 19 July 2020. The results indicated that lockdown decreased the number of
positive COVID-19 cases in Poland but that social distance regulations were more effective
than lockdown. In addition to environmental factors, government policies and social
behaviors play crucial roles in disease spread. Research on government regulations, such as
those by Nidhi and Jayaraman [29] and Wielechowski et al. [31], demonstrates the impact
of policy interventions on respiratory diseases and COVID-19. However, the interaction
between these policies and environmental factors, particularly in the context of a pandemic,
requires further exploration.

This study seeks to integrate these diverse strands of research by examining how
climate variables, social activities, and public policies interact to influence COVID-19
transmission. By focusing on both climatic conditions and social behaviors and employing
advanced statistical methods like the Generalized Additive Model (GAM), this research
aims to provide a comprehensive understanding of the factors affecting pandemic dynamics.
This approach addresses gaps in current literature and offers actionable insights for future
public health strategies.

1.2. Data Set Description

The data set includes 11,000 observations, including all the confirmed positive coro-
navirus cases. The South Korean data set is a reliable source because of the country’s
aggressive testing protocol and sizable testing capacity. During this study’s timeline,
around 500,000 individuals were tested—1% of South Korea’s population. Sub-national
level data and spatial variation in weather within the country were used. We collected daily
COVID-19 confirmed case data from the official website of the KCDC (the Korea Centers
for Disease Control and Prevention, which is South Korea’s main public health agency
responsible for managing disease outbreaks and collecting health data) and daily weather
data from NASA’s website. City-level panel data analysis was used for this research. The
data covered the information of nine provinces as well as 95 cities in South Korea (Figure 2).

The COVID-19 data set consists of the following three categories: patient data, policy
data, and local data. The patient data category includes per-patient symptom onset date,
confirmed date, and state deceased. The symptom onset date is when each patient first
displayed symptoms of COVID-19, and the confirmed date is the date that the patient was
diagnosed. An age-specific number of patients was also indicated in this category. As
shown in Figure 3, people in their twenties have the highest infection rate, but the lowest
rate belongs to infants and kids.

The second category is regional data, which includes number of screening centers,
land size, and population of each province. It also includes 178 cities in 17 South Korean
provinces (126.30–129.47◦ east longitude and 33.45–38.19◦ north latitude).

Among these 15 provinces, Gyeongsangbuk-do had the highest COVID-19 spread rate
(35.2% of all cases detected during that study period), and the first COVID-19 case was
seen in this province. Figure 4 shows more details about this.
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Lastly, policy data include descriptions and the start and end dates of eight preventa-
tive policies enacted by the Korean government [28]. These eight policies include a broad
range of policies, such as social, educational, and immigration policies. To help understand
the policies’ effectiveness, the cumulative number of confirmed patients is appended as
part of the data set.

The timeline of this study is 20 January to 28 June 2020; during the timeline of this
study, from 19 May to 12 June 2020, South Korea faced the highest number of infections in
almost all provinces, as shown in Figure 5.
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The model also controlled for population density, the number of hospitals per 1000 people,
the elderly population ratio, social distance order, the day of the week, and the young
population ratio. Table 1 shows summary statistics of selected variables in this study.

Table 1. Descriptive statistics of newly confirmed cases.

Variable Mean Min Max

Confirmed cases 0.36 0 92
Humidity 73.6 49.1 100
Min-temperature 0.85 −16.89 14.71
Min-wind 2.3 0.01 12.15
Pressure 100.11 94.05 103.28

Although other weather condition variables applied in the regression are useful
for explaining the relationship between weather conditions and the number of positive
coronavirus cases, the minimum temperature is the variable of interest for this study for the
following reasons. Firstly, among all explanatory variables, it has the highest correlation
with the independent variable.

Secondly, there is a strong correlation between temperature and health, as critical
temperatures can jeopardize health conditions by affecting the body’s ability to control
its internal temperature [25,26]. There are also strong relationships between extreme
temperature and cardiovascular disease, respiratory disease, cerebrovascular disease, and
diabetes-related conditions [32].

Lastly, since temperature varies by season, it is more predictable than other climate
variables [25,26]. Hence, governments can be more prepared and face an issue more
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effectively based on temperature data. Furthermore, this study’s dependent variable is
count data, which is reflected in the number of occurrences of behavior in a fixed period,
such as the number of positive COVID-19 cases [33]. A proper model, then, is required to
work with this type of data, which will be explained in more detail in the Section 2.3.1.

This research innovatively combines weather conditions with COVID-19 transmission
dynamics to analyze the impact of temperature and humidity on virus spread. It highlights
how higher temperatures and humidity can reduce transmission and examines the effec-
tiveness of South Korea’s initial regulatory measures. This dual-focus approach enhances
our understanding of both environmental factors and policy responses in managing the
pandemic [27,28].

2. Methods

The study was conducted in accordance with the ethical standards of journals, and
informed consent was obtained from all participants, ensuring that they were aware of
the study’s objectives and procedures and their right to withdraw at any time without
consequence. The data collected were anonymized to protect participants’ privacy and
confidentiality. This section discusses selecting an optimal number of lags for some selected
variables and addressing the multi-collinearity issue.

2.1. Lag Variables

According to WHO [34], COVID-19 symptoms appear on average 5–6 days after
infection. To accommodate the disease onset and detection lag, we used The Akaike
information criterion (AIC) and Bayesian information criterion (BIC) to determine the
appropriate number of lags to include in the model. In addition, most previous studies
on the relationship between respiratory diseases and weather conditions have used lag
variables. One study tried to estimate the relationship between weather conditions and
varicella (chickenpox) cases using lag variables between seven and 21 days in Guangzhou
(South China). The results showed positive relationships between aggregate rainfall, air
pressure, sunshine hours, and the number of positive varicella cases [35]. In this research,
the cumulative lag effects (lag0_2, lag0_3, lag0_4, lag0_5, lag0_6, lag0_7, lag0_8, lag0_9, and
lag0_10) were examined, and seven-day lags were the best fit based on AIC and BIC.

AIC [36] and BIC [37] are valuable methods for estimating a predicted model’s like-
lihood or estimating anticipated values (Table 2). Among model selection methods for
this second class of competing models, AIC statistic and its variants [36,38] are one of the
most popular. Schwarz [37] proposed the BIC to assist as an asymptotic approximation to a
modification of the Bayesian posterior expectation of an applicant model. It is one of the
most studied and extensively used tools in statistical model selection. For model selection
criteria, minimum BIC and AIC were applied. The most suitable model is a model with the
minimum AIC and BIC [39].

Table 2. Results of AIC and BIC tests.

Number of Lags AIC BIC

MA (0–2) 20,571.99 21,056.61
MA (0–3) 20,442.46 20,919.61
MA (0–4) 20,410.02 20,886.82
MA (0–5) 20,332.09 20,809.71
MA (0–6) 20,297.28 20,774.08
MA (0–7) 20,089.09 20,565.89
MA (0–8) 20,186.12 20,721.02
MA (0–9) 20,198.24 20,831.02
MA (0–10) 21,187.04 20,941.15
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2.2. Variable Selection

To avoid multiclonality, only one variable among minimum, maximum, and average
temperature was selected for the regression. Choosing the variable with the highest
correlation with the dependent variable (the number of COVID-19 confirmed cases) can
solve this problem and increase the predictive power of the model [40]. The same logic
was applied for the wind speed variables. The daily minimum temperature and minimum
wind speed were selected since they have a higher correlation with COVID-19 infection
rate than the mean or maximum temperature and wind speed in the data set. Table 3 shows
the summary statistics of these variables.

Table 3. Variable selection based on covariance between the variables.

Confirmed Cases Avg_Temp Max_Temp Min_Temp Avg_Wind Max_Wind Min_Wind

Confirmed Cases 1 −0.04 −0.04 −0.05 −0.03 −0.03 −0.04

Avg_Temp −0.04 1 0.92 0.91 0.03 0.57 0.51

Max_Temp −0.04 0.92 1 0.72 −0.09 −0.05 −0.1

Min_Temp −0.05 0.91 0.72 1 0.15 0.12 0.14

Avg_Wind −0.03 0.03 −0.09 0.15 1 0.94 0.83

Max_Wind −0.03 0.57 −0.05 0.12 0.94 1 0.68

Min_Wind −0.04 0.51 −0.1 0.14 0.83 0.68 1

2.3. Estimation Models
2.3.1. Model Selection

The counted number of occurrences is the dependent variable of this study (number of
COVID-19 infections). This class of data set is known as count data, which is non-negative
and discrete. Ordinary linear regression models cannot fully explain this type of model
for the following reasons. First, there is a high chance that the model provides negative
predicted values, and these results are impossible in theory.

Second, this type of data is skewed positively since many non-negative or zero values
are in the data set. Thus, the data set distribution will be far from the normal distribution
because of the zero values [41]. Count data define how often an event occurs; frequently,
Poisson distribution is applied for this kind of data [42]. It is done the opposite way of the
normal distribution of data [43]. Figure 4 shows the distribution of the number of positive
COVID-19 cases in South Korea.

For the following reasons, the GAM was applied for this study. First, GAM implements
a great fit for nonlinear and linear relations since it is easily adaptable. Second, GAMs
can work with many distributions, such as gamma, normal, and Poisson. Lastly, it is very
prevalent in epidemiology, air quality, and medicine [44] The main models applied in
environmental epidemiology are GAM and GLM, especially when the dependent variable
is the count data (Figure 6). Moreover, in these models, Poisson distribution is usually
preferred with the logarithmic responding variable [45].
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2.3.2. Regression Analysis

The GAM with Poisson distribution was applied in this regression based on earlier
studies [46,47]. The following regression was applied in this study:

LogE(yit) = α0 + Humidityit_7 + Pressureit_7 + Min_Temperatureit_7 + Min_Windit_7 +
IDA_REDi + dayt + cityi + city × time + Σit

GLM stands for the general linear model.
In this model, the dependent variable (E(yit)) is the expected number of new daily

infections on day t for city i. To control population density for each city, we divided the
dependent variable by the population. The GAM model uses the logarithmic dependent
variable to fix the residuals’ non-normality [48,49]. Since there are several days in the data
set with zero number of infections, and logarithm zero is undefined, the dependent variable
was increased by one to solve the algorithm zero issue [50].

The intercept of the model is α_0, and IDA_RED is a dummy variable; it is zero from
20 January 2020 to 23 February 2020 and otherwise is one. In this study, we focused on
the COVID-19 pandemic from the perspective of weather conditions, but other essential
factors, like mobility, can affect the COVID-19 epidemic. We could not use these data in our
model since the mobility data is not provided at the city level for South Korea by Google or
Apple. Both companies solely present country-level data for South Korea. So, instead of
using Google or Apple mobility data, the IDA_RED is a dummy variable used to control
mobility. IDA stands for Contagious Disease Alert, level 4 (red), which the government
announced on 23 February 2020 for the whole country. It is zero from 20 January 2020 to
23 February 2020 and otherwise is one. Based on the KCDC, it caused a more than 10%
decrease in mobility for the whole country on average after the government implemented
this regulation, even taking into account that South Korea never expected strict limitations
or lockdowns like in Germany, Italy, and other countries.

At Infectious Disease Alert, level 4 (red), the government can restrict foreigners from
entering the country and force all schools, universities, restaurants, bars, and public facilities
to cease operating. It also gives the government the ability to control public activities. The
last time alert level 4 was announced was in 2009, to control influenza A (H1N1) [51].
Finally, to control for day and city fixed effects, dayt and Cityi are added to the model [52].

3. Results

The results indicate a negative relationship between minimum daily temperature
and the daily number of COVID-19 confirmed cases, and the same pattern exists between
the dependent variable and humidity. Most previous studies support the results about
the negative relationship between temperature and respiratory diseases [15,53], although
there is no agreement about the effect of humidity. Some studies show that low humidity
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aggravates asthma and allergic rhinitis [54,55], and others indicate that high humidity can
increase the chance of infection by influenza and respiratory syncytial virus (RSV) [56,57].

The reason behind these results relates to the survival of respiratory viruses (e.g.,
influenza, flu) in cold weather with very low humidity being close to 24 h, whereas in high
humidity and temperatures, it survives for less than one hour [58]. Moreover, as shown in
Table 4, a 1 ◦C rise in minimum daily temperature (lag0–7) led to a 0.88% decrease in the
daily number of COVID-19 confirmed cases. For example, when the temperature decreased
by 1 ◦C in a city with a population of 1 million, 880 people could get infected.

Table 4. The main regression results.

Model (1) Model (2) Model (3)

Variables Coef
Min_Temp −0.68 * −0.81 ** −0.88 ***
Humidity −1.02 *** −1.12 ***
Min_Wind 1.31 ** 1.49 ***
IDA_RED −0.51 −0.69 *** −0.78 ***
Pressure 2.2 ***
R-sq.(adj) 0.57 0.64 0.68
Observations 18,334 18,334 18,334

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.

However, the statement suggesting a general pattern of lower infection rates in colder,
low-humidity environments may not universally apply. For instance, Mediterranean
climates have experienced significant COVID-19 cases despite their relatively mild condi-
tions, which could be attributed to other factors such as population density, public health
responses, and healthcare infrastructure.

Furthermore, one should note that putting into effect the Infectious Disease Alert,
level 4 (red) policy decreased the number of infections by 0.78%. Other studies confirm that
government regulations lead to fewer infections worldwide, especially some implemented
rules to decrease mobility, such as a lockdown. For example, in 2020, Méndez-Arriaga
showed that a Mexican lockdown phase 1 reduced the number of COVID-19 infections
by more than 36%. Moreover, in 2020, Yilmazkuday [59] implied that less mobility led to
fewer COVID-19 disease cases and deaths in 130 countries.

Other findings show a negative relationship between relative humidity and the number
of COVID-19 infections: a 1 ◦C increase in humidity caused a 1.12% decrease in risk of
getting the disease. This phenomenon happened because the virus, which stays in the
air, fades more quickly when the humidity is higher. In environments with faster virus
reduction, fewer virus elements survive in the air, a condition associated with a decreased
risk of infection [15].

The results confirm that one-inch mercury (inHg) increases in pressure lead to a 2.2%
higher chance of COVID-19 infection. The outcomes further show a positive relationship
between minimum wind speed (km/h) and positive coronavirus cases. With a 1 km/h
upsurge in wind speed, COVID-19 infection risk rises by 1.49%. Other studies confirmed
these results in other parts of the world [18,60].

In summary, the finding is to some extent consistent with the previous outcomes of
studies on influenza [61,62] and SARS [8].

3.1. Robustness Check

For a robustness check, we ran the same regression on different country locations
based on population density. Among all cities, the highest population density was in
Yangcheon-gu in Seoul, with a population density of 26,553.00/km2, and the lowest was in
Bonghwa-gun in Gyeongsangbuk-do, with 27.02/km2, as shown in Figure 7.
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The whole data set is divided into four even groups based on population density. The
first quantile (0–25%) has the lowest population density, and the last quantile (75–100%) has
the highest one. The results of these regressions are indicated in Table 5. The results show
a negative relationship between the dependent variable and humidity in all four groups,
with the lowest in the first quantile (0–25%). The strongest relationship, however, belongs
to the last quantile (75–100%), with the highest population density.

Table 5. Four different quantiles regression results based on population density.

Variables The Main
Regression 0–25% 25–50% 50–75% 75–100%

Humidity −1.12 *** −0.99 *** −1.02 ** −1.15 *** −1.20 ***
Pressure 2.2 *** 4.19 *** 3.12 *** 4.88 * 2.64
Min_Temp −0.88 *** −0.53 *** −0.48 *** −0.83 * −0.90 **
Min_Wind 1.49 *** 1.52 *** 0.11 ** 1.07 * 0.98 *
IDA_RED −0.78 *** −0.41 * −0.48 *** −0.7 * −0.96 ***
R-sq.(adj) 0.67 0.58 0.58 0.67 0.49
Observations 18,334 4532 4632 4635 4532

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.

Weather pressure and the number of positive COVID-19 cases have a positive rela-
tionship in all groups, but it is not statistically significant for the last quantile. The results
regarding the relationship between minimum temperature with a seven-day lag and the
dependent variable support our findings, which indicate that a lower temperature causes
a higher number of infections. Higher wind speed also increases the number of positive
cases for all four groups, like the results of the main regression indicate.

The same regression was applied for maximum and average temperature instead of
minimum temperature to check the accuracy of the main regression. Similar processes
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for maximum and average wind speed were employed instead of for minimum wind
speed. The results are shown in Table 6. Thus, four regressions were executed for the
first model, and maximum temperature was adopted instead of minimum temperature.
The results are the same for all variables when compared to the main regression. The
maximum temperature has a negative relationship with the dependent variable, as does
the minimum temperature.

Table 6. Regression results for the robustness check.

Variables Model_1
(Max_Temp)

Model_2
(Avg_Temp)

Model_3
(Max_Wind)

Model_4
(Avg_Wind)

Humidity −0.11 *** −0.02 ** −0.11 *** −1.10 ***
Pressure 2.18 *** 1.98 *** 2.11 * 2.30 ***
Min_Temp N/A N/A −0.45 ** −0.45 **
Max_Temp −0.52 *** N/A N/A N/A
Avg_Temp N/A −0.19 ** N/A N/A
Min_Wind 1.48 *** 1.48 ** N/A N/A
Max_Wind N/A N/A 0.16 ** N/A
Ave_Wind N/A N/A N/A −0.96 *
IDA_RED −0.84 ** −0.59 ** −0.65 * −0.74 *
R-sq.(adj) 0.63 0.61 0.59 0.54
Observations 4532 4632 4635 4532

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1.

Model 2 employed average temperature in the regression rather than minimum tem-
perature, and the results for all other variables were nearly the same compared to the main
regression. The relationship between the number of infections and the average temperature
was negative.

In Model 3, maximum wind speed was replaced with minimum wind speed and
applied in the regression. The results for all other variables are almost the same compared
to the main regression. The relationship between the number of positive COVID-19 cases
and the maximum wind speed is positive, as is the relationship between minimum wind
speed and the number of infections.

In the last regression, average wind speed was applied instead of minimum wind
speed. We got almost the same results for this regression compared to the main regression,
and based on these results, it can be concluded that higher average wind speed can increase
the number of infections. Hence, all four models support the main results and show
high-grade accuracy for this study.

3.2. Prediction

To check the accuracy of the model, the province of Gyeongsangbuk-do in South Korea
was selected to predict the number of infections between 2 May and 9 May 2020, and to
compare the results with the actual number of positive COVID-19 cases during the same
timeline for this province. According to Table 7, the model accuracy is around 70%.

Table 7. Gyeongsangbuk-do predicted number of COVID-19 positive cases.

Date Min-Temp Humidity Min-Wind Pressure Predicted
Number

Actual
Number Error Accuracy

02/05/2020 10.4 75.43 0.67 97.78 976 1266 290 77%
03/05/2020 9.04 81.3 0.39 98.2 982 1360 378 72%
04/05/2020 88.0 66.31 1.37 98.35 923 1350 427 68%
05/05/2020 6.0 60.72 2.89 98.85 918 1261 343 73%
06/05/2020 7.32 60.08 2.27 98.56 932 1192 260 78%
07/05/2020 13.82 90.24 3.02 97.7 901 1336 435 67%
08/05/2020 10.06 77.72 2.8 97.55 912 1366 454 67%
09/05/2020 8.78 61.49 2.78 97.75 981 1266 285 77%
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Additionally, to help governments make better decisions and become more efficient
in responding to the pandemic, two cities with nearly the same population were selected:
Detroit, Michigan, with 670,031 people in the midwestern United States, and El Paso, Texas,
with 681,728 people in the southern United States (Figure 8). The respective numbers of
COVID-19 cases in the fall of 2020 were forecasted based on weather information from 1, 2,
and 3 November 2019. Based on the results, the pandemic should be more challenging for
Detroit than El Paso.
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The results indicated that a 1 ◦C decrease in minimum daily temperature led to a
higher chance of infections for Detroit; therefore, this kind of climate and geographical
information can be used by governments to prioritize locations and make more effective
decisions regarding contributing resources.

4. Conclusions

To help governments fight the COVID-19 pandemic, this study tried to identify how
different weather conditions affected the number of confirmed COVID-19 cases in South
Korea. The GAM was applied as the estimation model.

The analysis started by finding the correct number of lags for weather condition
variables, since there is a delay between infection and symptoms. The right variables
had to be selected to avoid multi-collinearity. The outcomes prove that higher minimum
temperature and higher relative humidity lead to a lower transmission rate.

Thus, based on the results, during winter, the number of infections should be expected
to speed up again. Therefore, governments need to be prepared and pass regulations to
reduce the COVID-19 infection rate. Moreover, minimum wind speed and atmospheric
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pressure have a negative relationship with the dependent variable. There are some limita-
tions to this study, which are mentioned in the following section.

First, controlling city-level mobility can make results more accurate and help predict
previous outcomes [63], but data on this are not available. Secondly, the results are deter-
mined based on the specific period in South Korea, which means that the outcomes were
estimated under the assumption of no COVID-19 vaccine availability.

Finally, our results are described on statistical patterns, but random control experi-
ments or epidemiological analyses are required to explore more accurate outcomes.

This study’s results are aligned with previous studies on the transmission of SARS
and other respiratory illnesses based on climate conditions [16,21,64,65].

This research provides valuable results for decision-makers to efficiently combat the
COVID-19 pandemic. The outcomes can be applied to increase general awareness and
recognize critical factors that affect the transmission of COVID-19. Furthermore, it is
desirable to extend social distancing and lockdowns until the vaccine becomes available or
the temperature increases, which can reduce infection numbers.

Weather conditions are not the main determining factor in the spread of the COVID-19
virus. Government regulations and public awareness could all contribute to controlling
the transmission speed. As temperature decreases in the fall and winter, the spread will
probably speed up. Therefore, governments can control the COVID-19 pandemic with a
dynamic policy.

Moreover, in light of recent research, it is clear that while weather conditions such as
temperature and humidity play a role in influencing COVID-19 transmission rates, they
are not the sole determinants. Studies confirm that higher temperatures and humidity can
reduce transmission rates, but these effects are moderated by factors like air pollution and
social behaviors. Thus, while the data suggest that warmer and more humid conditions
could slow the spread, the overall impact of weather is less significant compared to public
health measures and policy interventions. Governments should thus focus on dynamic
and responsive strategies, including social distancing, travel restrictions, and vaccination
campaigns, rather than relying solely on weather-based predictions to manage COVID-19
effectively. Continued adaptation of policies based on emerging data and comprehensive
epidemiological models will be crucial in combating the pandemic.

Finally, to address the future direction of this study, it is crucial to extend the research
to include various geographical regions and seasonal variations to validate the findings
across different climates. Future studies should incorporate real-time data on city-level
mobility and behavioral changes, as these factors significantly impact transmission dynam-
ics. Additionally, integrating vaccine coverage and its interaction with weather conditions
will provide a more comprehensive understanding of how combined factors influence the
pandemic. Further research should also explore the role of emerging variants and their
potential interactions with environmental factors to enhance predictive models and inform
adaptive public health strategies.
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