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Abstract: After first appearing in December 2019, coronavirus disease 2019 (COVID-19) spread
rapidly, leading to global effects and significant risks to health systems. The virus’s high replication
competence in the human lung accelerated the severity of lung pneumonia cases, resulting in a
catastrophic death rate. Variable observations in the clinical testing of virus-related and patient-
related cases across different populations led to ambiguous results. Medical and epidemiological
studies on the virus effectively use imaging and scanning devices to help explain the virus’s behavior
and its impact on the lungs. Varying equipment resources and a lack of uniformity in medical
imaging acquisition led to disorganized and widely dispersed data collection worldwide, while high
heterogeneity in datasets caused a poor understanding of the virus and related strains, consequently
leading to unstable results that could not be generalized. Hospitals and medical institutions, therefore,
urgently need to collaborate to share and extract useful knowledge from these COVID-19 datasets
while preserving the privacy of medical records. Researchers are turning to an emerging technology
that enhances the reliability and accessibility of information without sharing actual patient data.
Federated learning (FL) is a technique that learns distributed data locally, sharing only the weights
of each local model to compute a global model, and has the potential to improve the generalization
of diagnosis and treatment decisions. This study investigates the applicability of FL for COVID-19
under the impact of data heterogeneity, defining the lung imaging characteristics and identifying
the practical constraints of FL in medical fields. It describes the challenges of implementation from
a technical perspective, with reference to valuable research directions, and highlights the research
challenges that present opportunities for further efforts to overcome the pitfalls of distributed learning
performance. The primary objective of this literature review is to provide valuable insights that will
aid in the formulation of effective technical strategies to mitigate the impact of data heterogeneity
on the generalization of FL results, particularly in light of the ongoing and evolving COVID-19
pandemic.

Keywords: COVID-19 lung medical image; federated learning; data heterogenity; non-IID type;
generalization; personalization

1. Introduction

COVID-19 is a worldwide pandemic first reported in December 2019 and continues
to affect people all over the world, with the virus transforming into multiple strains [1].
The number of infected cases has increased exponentially, and the number of reported
deaths reached more than 7 million in 2024, according to the World Health Organization
(WHO) [2]. The pulmonary system serves as the principal target of infection for severe acute
respiratory syndrome (COVID-19), with profound hypoxemia identified as the leading
cause of mortality in the most severe instances.

COVID-19 exhibits extremely heterogeneous clinical manifestations regarding its
severity, clinical presentation, and, significantly, its worldwide prevalence [3]. While most
individuals diagnosed with this acute infection ultimately achieve recovery [4], a substantial
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number experience long-term complications that impact multiple organ systems, including
the lungs [5]. The precise pathobiological mechanisms underlying the pulmonary vascular
complications associated with COVID-19, particularly in both the acute and chronic phases
of the disease, remain inadequately elucidated and are not fully comprehended within
the current scientific literature [3]. The lack of reliable information about the behavior of
COVID-19 (e.g., how it is spread, variants of individual symptoms, and unstable responses
to treatment strategies) has created a need for effective collaboration to collect more data
about the virus.

Imaging equipment could be applied to understand the virus behaviors and help
diagnose lung damage in the initial phase of the infection, thus providing justifiable re-
lationships between different populations. In addition, screening for uncertain, risky
cases or reducing the time and complexity of manual reverse transcription–polymerase
chain reaction (RT-PCR) tests which reduced the misdiagnosis rate of manual RT-PCR
tests by 30% [6]. However, due to the continuous increase in the number of COVID-19
infections, many medical images have been produced, which leaves hospitals with two
challenges. First, interpreting medical images requires radiology experts for manual label-
ing, segmenting, and annotating, and the limited number of radiologists in hospitals creates
challenges for accumulating these data. There is, therefore, a need to assist radiologists
working alone to develop individual deep learning (DL) models locally as embedded
software in computer-aided diagnosis (CAD) systems to interpret these images promptly
for the diagnosis, treatment, and prognosis of COVID-19 during lung testing, as shown in
Figure 1a [7].
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Figure 1. Training techniques for distributed data: (a) individual training technique, (b) centralizing
technique, and (c) federated learning technique.

The second challenge is the reported results of an individual training model of data
from single sources, which lack a diversity of infected cases and produce bias due to the
locality of the patient population. Hence, the generalization measure of that model will be
inefficient for out-of-sample testing of new data [8]. The alternative solution of collecting
and standardizing medical images at a single point may be effective for improving diversity
and generalization problems, as shown in Figure 1b. However, this requires a large storage
capacity, computational resources, communication bandwidth, and security management
for accessing and retrieving data at the central data point [9]. Furthermore, data governance
policies preserve patient privacy and prevent the sharing of medical data that may reveal
sensitive information about patients, even with anonymization technology, which limits
the efforts of medical and health institutions to benefit from DL systems [10].

Federated learning (FL) is a paradigm that enables distributed points to train their
data locally without the need to share the actual data, as shown in Figure 1c. It collects only
the weights (i.e., learning parameters/gradients) from different parties and computes the
global model from distributed training. FL techniques are successful for medical image
applications, such as disease diagnosis [11], segmentation [8], and treatments [12], and
they result in higher accuracy than centralized learning [13]. The distributed processing
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of sensitive information has motivated researchers to utilize FL to overcome the lack of
information about COVID-19 [14].

The actual implementation of an FL framework presents several open technical issues,
such as data and system heterogeneity and privacy and security challenges. This study
focuses on the issues relating to data heterogeneity and reviews the potential opportunities
for using FL on the available COVID-19 lung medical imaging data for different applications.
Additionally, it describes the open issues of FL, available solutions in the medical imaging
field, and other suitable solutions in medical applications. The significant contributions of
this study are the following:

• This study identifies the applicability and benefits of implementing FL to process
and train distributed COVID-19 lung data using various imaging modalities and
equipment, identifying the imaging types and modes available in distributed hospitals
and medical institutions.

• It provides an overview of the FL system and describes the variables of implementation
and the practical constraints in medical fields. It also investigates the progress made
in developing FL frameworks to train medical images and identifies areas that require
further effort to overcome the pitfalls of distributed learning performance.

• This article provides detailed descriptions of the data heterogeneity issue, identifies
the metrics that might be affected by that issue, and offers a mathematical description
of the problem for each type of skewness, along with valuable research directions to
mitigate the impact of data heterogeneity.

• It emphasizes other prevalent FL issues in a concise manner to offer a comprehensive
perspective for research on the FL environment.

• This study uses imaging data to outline potential avenues for future research to explore
how COVID-19 affects the lung and internal organs, referencing ongoing studies that
consider relevant factors from a medical and radiology standpoint.

The organizational structure of this manuscript is as follows: Section 2 describes the
methods that were used to collect published studies. Section 3 lists related works and
describes the main contributions of this review. Section 4 identifies the opportunities for
using the FL technique for COVID-19 images to overcome the current FL issues. Section 5
provides an overview of the FL technique and the available COVID-19 medical images.
Section 6 provides a comprehensive perspective of the data heterogeneity impact, skewness
types, bias resources, and directions of current solutions to fix them and where the research
has reached. Section 7 describes the current common issues of FL implementation for
medical imaging. Section 8 provides the results of this literature review and discusses the
investigations the results provided. Section 9 outlines the open directions and provides
recommendations to improve the performance of FL in the medical image field. Finally,
Section 10 includes a brief summary of this study.

2. Procedure

This review commenced with a comprehensive search across various scientific databases
in the English language, including Google Scholar, Wiley, MedRxiv, IEEE, Springer, and
other academic resources. The search utilized case-insensitive keywords such as “federated
learning”, “medical images”, “non-IID”, “data heterogeneity”, and “COVID-19”. The initial
search returned 28 papers. Subsequently, the search criteria were expanded to include
broader terms like “federated learning” and “medical data”, which resulted in 33 papers
and 11 surveys.

After reviewing the technical challenges associated with federated learning (FL) in
medical imaging, we conducted individual searches for each issue to provide both high-
level and detailed insights into the proposed solutions. Keywords such as “federated
learning”, “distributed learning”, “data issues”, “non-IID”, “data heterogeneity”, “domain
shift image”, “lung imaging”, “FL bias”, “medical data”, and “COVID-19” were used. This
search returned 101 research papers, including both journal articles and conference papers,
and 27 review papers.
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These were excluded after full-text review due to failure to meet five quality criteria:
clarity of research objectives, focus on human medical images, use of machine learning
models in a federated learning environment, sufficient methodological details, and technical
value to the medical imaging field. After reviewing these papers, only those proposing
solutions to data heterogeneity in lung imaging data were included, resulting in 41 research
papers and 8 reviews.

3. Related Works

Creating data silos for medical imaging achieves high generalizability and valuable
observations as part of the Enhancing Neuro Imaging Genetics through Meta-analysis
(ENIGMA) project. By integrating medical image data from 70 distributed sites, ENIGMA
discovered factors related to brain disease that individual sites could not reach [15]. How-
ever, the process necessitated a high level of computations and a security budget to guaran-
tee processing safety and generate generalizable models. Additionally, this violates privacy
rules found in most governance data, which focus on preventing the disclosure of patient
information.

Federated learning provides a framework for researchers in the medical field using
large-scale data while eliminating the risks and costs of data centralization. This encourages
hospitals and clinical institutions to develop or utilize available FL software. There are few
studies that have reviewed FL frameworks using COVID-19 medical images, which relates
to the results of guaranteed privacy-preserving methods in distributed training, which
have recently been provided [10], which ensures that hospitals maintain patient privacy,
as required by governance privacy laws. This article, therefore, delves into studies that
examine the concept, design, and challenges of implementing federated learning (FL) on
COVID-19 medical images, medical imaging, and the broader medical field.

We categorized the related works into three review study perspectives: technical,
privacy-preserving and security, and FL for COVID-19 data. Technical-perspective-related
work began with the work of by Ricke et al., one of the most cited reviews about FL in
the medical field [16]. They described the applicability of FL for the digital health sector
and discussed the benefits of FL software for medical stockholders and patients. They
also expressed belief in a promising future for FL in the medical field by overcoming
the technical issues referred to in their study. Erfan et al. conducted a two-part review
study [17,18] that identified various types of FL algorithms in the health domain, particu-
larly for medical image processing. They also reviewed the technical challenges associated
with data heterogeneity, model bias, lack of standardization, privacy and security, and
system architecture.

Xu et al. [19] conducted a similar review and described a set of proposed solutions for
three types of technical implementation issues in the field of general medicine: statistical,
communications, and privacy. However, they surveyed solutions from different fields
outside of the medical area, handling different types of data that may have lower sensitivity
to privacy and security. Hun Yoo et al. [20] conducted a technical survey discussing FL
issues in medical data and provided detailed approaches toward resolving them. They
provided an overview of the specific challenges in both medical data and FL scenarios to
identify technical and security issues.

From a privacy-preserving and security perspective, Kaissis et al. [10] categorized FL
attacks into two types: model and data. Due to the availability of medical image-sharing
protocols in a standard Digital Imaging and Communication in Medicine (DICOM) format,
their study utilized medical images, providing a comprehensive review of the FL scenarios
and privacy-preserving and security methods applicable to medical images. However, they
did not consider the overhead costs of the FL framework when implementing multiple
security methods against the attacks they mentioned.

The research that reviewed methods using a COVID-19 dataset are more relevant
to this study. Peifer-Smadja et al. [21] strongly advocated for collaborative efforts and
the use of medical data related to COVID-19 to expedite the advancement of prognosis,
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diagnosis, and treatment applications. Shuja et al. [22] also provided a comprehensive
review of COVID-19 open-source datasets and their AI applications. Both studies highly
recommend taking advantage of FL to mitigate the limitations of COVID-19 data. In
depth, Mondal et al. [23] reviewed various datasets on medical imaging, including X-rays,
computed tomography (CT) scans, and ultrasound images, considering the number of
images, COVID-19 samples, and classes within the datasets. The authors comprehensively
discussed the proposed FL methods that used pretrainable CNN models and compared
reported results. Furthermore, Hwang et al. [24] provided insights into FL’s fundamental
concepts and discussed the key challenges related to the medical domain and adversarial
attacks. They highlighted the promising applications of FL in the medical domain, using the
recent COVID-19 pandemic as a use case. However, these review works did not consider
the heterogeneity issue of medical data.

Shyu et al. [12] provides a comprehensive analysis of recent challenges in FL from a
data-centric perspective, addressing issues such as data partitioning, distribution patterns,
protection mechanisms, and benchmark datasets for healthcare applications. Additionally,
for medical imaging data, non-IID issues are thoroughly discussed by [25] and categorized
into data imbalance and heterogeneous imaging datasets. The authors further reviewed and
evaluated the proposed solutions to address these issues, as well as highlighting privacy
and communication challenges in FL.

Naz et al. [26] surveyed the proposed FL methods for detecting COVID-19 in patients
using chest images but did not consider other applications of the FL model, such as
segmentation, quantities, and treatments. This creates a need to review the efforts of
researchers to utilize FL for COVID-19 medical images in different model applications.
Numerous researchers have reviewed various sub-algorithms supporting FL for medical
data, each from a unique perspective. They have also reviewed the general issues of
using FL in distributed environments, such as privacy concerns [27] and communication
methods [28].

This study explores what makes COVID-19 medical image data unique, how non-IID
issues affect the performance of the global model, and the local behaviors of distributed
sites from training steps all the way through to the fitting of the aggregative model per
round. In this study, we categorize the type of data heterogeneity based on the different
types of skewness and then analyze and review valuable and applicable solutions that
mitigate this issue, thereby identifying potential research directions. Finally, we present
our findings and recommendations, which may require further technical investigations.

4. FL Opportunities for COVID-19 Lung Imaging

In the medical field, DL has reduced the time and cost of making clinical decisions
regarding diagnosis, prognosis, and treatment [21], thus providing sufficient accuracy and
high confidence in the results. Big data is an essential requirement for DL models because
it provides high volumes and variant samples, and such volumes and variant cases of
medical imaging data are required to compose multiple datasets from different hospitals or
clinical institutions around the world.

Practically speaking, COVID-19 medical imaging data have special characteristics
that may provide misleading DL results. In one study, a large-scale deep learning model
for COVID-19 medical imaging showed promising results, but it also revealed numerous
biases [29]. In this section, we outline the unique characteristics of COVID-19 medical image
data that should be considered before implementing the DL model. This is because these
characteristics can lead to a lack of justification for the results, which the FL framework
can potentially address. The following points describe these features and define the FL
framework’s applicability.

4.1. Data Availability

The rapid spread of the virus in many countries, with no clear cause of infection and
a wide range of symptoms in different infected populations [3,30], led to the compilation
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of COVID-19 medical data from scattered data collections. This phenomenon may have
precipitated the misclassification of annotated data, particularly during the initial phase
of the pandemic [31]. Additionally, the testing kit model was to archive and label images
solely for verified COVID-19 infections due to the substantial volume of patients combined
with restricted storage capacity in some medical facilities [26]. This complicates the differ-
entiation between the biomarkers of COVID-19 pathology and other ambiguous infections,
such as pneumonia and SARS, at a localized level.

Therefore, training the deep learning model on a small but high-quality local hospital
dataset is insufficient for generalization, as it contains unmeasurable instances of bias due
to the model’s incomplete understanding of co-features [10]. In practice, local models
encounter overfitting challenges and present elevated accuracy with decreased reliability.
On the other hand, several studies have integrated more than one source medical imaging
dataset for COVID-19 to train their own deep learning models, with the goal of improving
the model’s generalizability [31,32]. They compiled these datasets from the published
literature or radiology lecture notes; however, their poor quality led to underperforming
systems [22] and produced outcomes with significant bias. This is because deep learning
models are unable to identify COVID-19 characteristics, basing their knowledge on the
common image features in the same dataset [33].

Federated learning, also referred to as distributed learning, is a methodology that
instructs a model founded on all co-features that differ from one demographic to another.
The methodology aims to train a model by utilizing multiple image acquisitions, rare
instances, and diverse attributes in an acceptable ratio to refine the overall model. This
approach alleviates the bias of local models by utilizing a high-quality dataset without the
need to exchange actual data.

4.2. Cold-Start Problem

Over the centuries, as epidemiological diseases have plagued humanity, the observed
diseases within a specific geographical locale do not initiate catastrophic events during the
initial stages of viral propagation. However, as time progresses, these infections tend to
manifest more uniformly with identified symptoms and modes of transmission, thereby
highlighting the evolution of that disease. However, the COVID-19 infection took on a
different situation when the World Health Organization (WHO) declared COVID-19 a
global pandemic on 11 March 2020. The WHO made this announcement approximately
2.5 months after reporting the first cases in Wuhan, China, in December 2019 [34]. Moreover,
the rates of confirmed cases and deaths from COVID-19 vary across different countries,
possibly due to their distinct social, political, and healthcare circumstances during the
epidemic’s spread. For example, while the virus has had terrible effects on China, other
countries, like North Korea, may see impacts more like those of a seasonal virus [35]. Across
countries, there are different levels of access to epidemiological data, so the high availability
of data in some countries and lower availability in others necessitates collaboration between
them to benefit from analyzing these scattered data without actually sharing patient records.
Identifying the problem on a larger scale can thus lead to faster diagnosis, treatment, and
other healthcare services, and FL is the paradigm for accumulating knowledge about
COVID-19 and sharing insights globally. This highlights how important it is for those
countries to work together, as it would make it easier to obtain useful insights from the
disparate datasets without having to directly share private patient records, which can
raise ethical and privacy concerns. Addressing the challenges of infectious diseases on a
broader scale can significantly expedite the processes of diagnosis, treatment, and overall
provision of healthcare services, thereby improving public health outcomes and responses
to health crises. Federated learning (FL) has emerged as the most practical paradigm for
generalizable results regarding COVID-19 while enabling global collaboration between
heterogeneous data sources, ultimately fostering a more collaborative approach to tackling
this unprecedented public health challenge [36].
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4.3. Time and Cost of Processing

Commercial fields place a high value on patient information, which leads hospitals
and medical institutions to process and analyze medical data locally to prevent unexpected
leakage. Since hospitals and clinical institutions manage patient data under data gover-
nance rules, local processing incurs significant costs in terms of human and hardware
resources [30].

Labeling represents an additional cost since population density is unequal over geo-
graphical areas, and larger towns have large, busy hospitals with higher rates of screening
tests. The disparity between hospitals and medical institutions leads to variations in the
radiology department’s peak working hours. As a result, radiologists must spend more
time and effort analyzing and labeling medical images produced by crowded hospitals.
The rapid spread of COVID-19 infections means that numerous screening tests are thus
still pending labeling, we can use these unlabeled data as a testing set, training a global
model on distributed datasets to classify infections [37].

4.4. Security and Privacy

In most countries, health data governance has strict rules to prevent the leakage of
patient information. It is highly protected, and access is controlled by administrators of hos-
pitals and clinical institutions. Commonly, privacy concerns are still the largest obstacle to
sharing patient information, as regulated by the United States Health Insurance Portability
and Accountability Act (HIPAA) [38] and the European General Data Protection Regula-
tion (GDPR) [39] rules. They set rigorous conditions that prevent the sharing of patient
information or the use of smart technologies to extract patient information, even under
research justifications. Privacy-preserving methods have been shown to be insufficient,
with multiple attacks on anonymized patient information, which are easily targeted by
re-identification attacks (i.e., linkage attacks). Recent studies have also developed machine
learning (ML) approaches for predicting an individual’s face, age, gender, and name from
chest images [40].

FL offers a local processing framework under the ownership of medical data con-
trol [10]. Based on the aforementioned characteristics of COVID-19 medical image data,
collaborative research efforts are necessary to provide consistent and reliable facts about the
virus. FL has shown highly promising results for managing these data efficiently [41], and
it could be generalized as opportunities for other medical imaging data in similar diseases.

5. COVID-19 Medical Imaging Data

Since the pandemic began in late 2019, ongoing collective scientific efforts have aimed
to build reliable and consistent information about COVID-19, creating many medical
applications from textual [34], tabular [42], audio [43], and medical image datasets [22].
This section provides a brief description of the types of common imaging modalities, how
AI systems identify the biomarkers in the lungs, and the selection criteria of available
databases that DL uses for diagnosing, treating, extracting, and analyzing information
about the infected lung. The research focuses on the lung medical image datasets for
COVID-19 patients.

From a technical perspective, Junaid Shuja et al. [22] classified the imaging modalities
used by learning models for COVID-19 applications into CT images and X-ray images,
mentioning the low availability and quality of ultrasound datasets. Both X-ray images
and CT images can capture COVID-19 symptoms in the lungs, but CT images use a
multifocal view that more clearly distinguishes COVID-19 symptoms from other types
of viral pneumonia [44]. This provides DL models with high applicability for diagnosing
COVID-19 in the early stages, around days 2–4 of onset [6]. Different hospitals and
clinical institutions store and label X-ray and CT images in various formats, leading to
heterogeneity in shared medical image data. Hospitals and clinical institutions identified
heterogeneity issues and took early steps to overcome this by developing a standard format
for CT images, X-rays, and other medical image modalities. DICOM is a medical technical
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tool that combines medical images with structured patient information reports. A study
reported the successful collection, visualization, and diagnosis of COVID-19 from four
hospitals remotely over the DICOM network [45].

Unfortunately, according to radiology experts, most open-source DICOM datasets
collected from published works or educational sites do not follow DICOM standards [4] and
reflect low-quality acquisition [46] with weak standardization. Data quality plays a vital
role in the analysis of information about COVID-19 and patients, and to avoid the pitfalls
of FL applications, the garbage in, garbage out theory must be considered. To be useful
for technical applications, each collection of medical images must pass evaluation and
validation checks performed by more than one radiology expert. In addition, a dataset must
have annotated labels, segmentation, and reports based on AI application needs, such as the
RSNA dataset [47] and BIMCV dataset [48]. The findings advise medical institutions and
hospitals to collaborate with ML researchers to access high-quality datasets. Researchers
note that the DICOM standard provides a step forward for FL because it eliminates the
challenges of data heterogeneity in distributed environments [10]. One important factor is
the variety of cases in the training sites with enough volume to provide more generalizable
results by simply averaging weights, even when evaluating the model on a new external
dataset [49]. Regrettably, studies that integrate multiple datasets from multiple devices still
report the heterogeneity issue; Section 7.1 thus delves into a detailed discussion of data
heterogeneity, a major issue in FL.

6. Federated Learning Overview

FL is a technology for implementing DL over distributed data in multiple distinct
sites without the need to share data from hospitals or medical institutions. To compute
a global model, nodes upload only the local weights, also known as learning parameters
or theta values, to a central point and then download them again [50]. FL takes one of
two common design architectures: central aggregation or peer-to-peer architecture (P2P).
In centralized aggregation, a central server coordinates the participant nodes, computes
the global model, and communicates with the nodes, resulting in higher performance and
flexibility, as illustrated in Figure 2. P2P proposes more a reliable and secure architecture
to prevent a central point of failure in aggregation. It is a fully distributed architecture in
which each P2P node coordinates itself and communicates with other nodes to compute
the global model locally [51], as shown in Figure 3.
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Depending on the federation’s goals, FL categorized into horizontal federated learning
(HFL) and vertical federated learning (VFL) methods in distributed data contexts. If the
objective of the federation is to expand the data sample to provide a greater volume and
variety of training datasets, this necessitates the use of HFL. HFL is satisfied when the
distributed data sample contains similar features, particularly in medical settings where
different patient populations share the same disease, such as COVID-19 and cancer. On
the other hand, if the goal is to increase the feature dimensions for identical records in
distinct datasets, VFL is appropriate [52]. That is good enough when the distributed
data have different sets of features for the same sample or records have the same ID, like
when researchers need to work together between obstetrics and gynecology clinics and
pulmonary clinics to investigate how COVID-19 affects pregnancy. Practically speaking,
VFL is rarely used in the medical field because of the need for multiple datasets that must be
identical, arranged, and standard. This is unrealistic due to the complex nature of medical
image datasets and the lack of standardization management [17]. This study concentrates
on the HFL, a commonly utilized format for medical images [53,54].

For the FL scenario in a medical image application, suppose the dataset Dh for a
hospital or a medical institution where h is D(Se), where h = 0, 1, 2, . . . N, NϵR, and R is
real number. N is the number of participant nodes for a smart medical application (e.g.,
diagnosing, segmenting, or other application) for a disease S by teaching a model Lk(S).
Initially, the central server system offers a predefined learning model L0(Se) and sends
to all or a subset of nodes in parallel. Each node updates the model weights or gradients
value θ based on its own image data if the number of training images in the local dataset is
d and d = size(D(Se)):

θj := θj + α
1
d

d

∑
i=1

(L0(Se(x))− ŷ)xj (1)

The value of each θj is updated with the learning rate α for each image j until acceptable
results are retrieved by the node h. The next local model, L0+1(Se), is then computed and
returned to the central server to compute the global model at the end of round number T
using Equation (2).

Lg(j=T)(Se(x)) =
1
N

N

∑
i=0

Li(Se) (2)
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Equation (2) aggregates the global model by averaging each weight over the number
of sites, a process known as the FedAvg method [50]. Each round follows the same process
to compute a new version of the global model. Notably, two types of proposed aggregation
strategies exist: sequential aggregation and parallel aggregation. Sequential aggregation
trains the distributed data site by site, updating the global model after each site completes
its local training and moves on to the next. You can either repeat the training iteration
until the model converges, like in cycling weight transfer (CWT), or train it at a site for a
predetermined duration or number of epochs, like in single weight transfer (SWT). It is
efficient to perform these steps in a fully distributed FL framework. The second aggregation
strategy, known as a parallel aggregation, shares the same initial model with the distributed
sites, enabling them to train data simultaneously. It then collects the local updated models
from all sites before aggregating a global model. In HFL, averaging the weights in the
global model is a vanilla method because it supports the convergence of updated weights.
There are variant settings in the computations of local sides to preserve the personality of
each hospital, such as when computed with the proxy local model in FedProx [55].

The following points describe the practical differences between FL for medical image
applications and the standard processes of other fields, such as IOT devices, and explain
the reasons behind each.

• Medical imaging data management is costly. Many medical institutions lack the infras-
tructure necessary to manage their imaging data according to standard management
requirements. This is an emerging challenge in implementing federated learning for
research: the limitation of the number of data sources that can be selected for training
data.

• Only medium-to-large hospitals or medical research institutions own the repositories
of standardized medical images. This enables deep learning to concentrate on valu-
able features, avoid incorporating weak features from low-quality data, and identify
trustworthy participants. As a result, the local update models received from dis-
tributed sites might be more reliable [52], which leads to improving the global model’s
convergence in a lower number of rounds to achieve satisfactory accuracy.

• Datasets of medical images contain highly sensitive patient information. However, if
the application of FL ignores privacy-preserving methods such as differential privacy,
then the homomorphic encryption of the sharing weights may result in the leakage of
patient or institutional privacy. At the same time, it greatly increases the computational
overheads of training models because the medical image models exceed 10 million
weights [56].

Considering these scenarios, the practical implementation of FL provides promising
results for medical image analysis. Brain segmentation has demonstrated FL’s applicability
for MRI images [57], as well as biomarkers detected at four fMRI sites [58]. In previous
projects, research has recognized the value of secure collaboration, and FL has advantages
for fighting COVID-19. Several studies have shown that FL can provide accurate informa-
tion about COVID-19 in a range of situations, such as automatically diagnosing COVID-19
in chest images [54,59–62], identifying the amount and location of lung damage [63], and
estimating oxygen needs [64]. FL in medical imaging provides a feasible collaborative
technique to analyze sensitive data securely with limited and trusted participants, a lower
number of rounds, and synchronized communication with high bandwidth to achieve
reliable results. However, when designing an FL solution, there are challenges that arise
from a distributed framework that have to be considered by the model designer.

7. Data Heterogeneity Issue in Medical Imaging

FL allows each site to train its local model on its own data and optimize it according
to the features that arise internally. The model weights are adjusted to align with the local
results. This implies that we update each local model to align with its unique features. In
the aggregation phase, the global model tries to balance the received weights by combining
these local updates and averages. This makes the optimization very unstable and leads to a
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high degree of divergence. Moreover, it produces an optimization drift between the local
and global models, which leads the global model to bias [65]. Additionally, the distributed
sites assign the global model to train local data for the next round, leading to a deficiency
in personalization metrics and degradation of the local performance model.

Bias, a commonly reported issue in FL, negatively impacts both the generalizability
of the global model and the personality of local models. The generalization measure
refers to the global model’s ability to make more comprehensive decisions about out-
sampling or external training data, which may contain new features and come from a
variety of sources. Each round’s aggregation step progresses to collect additional weights
from local updates. Therefore, suggested solutions to address the generalizability metric
include preventing participant poisoning, measuring local contributions, and sharing
metadata and computational resources. Conversely, federated learning personalization
refers to the global model’s ability to effectively validate local data after each round. The
global model performance for the site that has the lowest size of data achieved the lowest
accuracy due to the averaging process of weights biased to the sites having a larger training
sample [66]. Further computations are suggested to adapt each local model depending on
the specifications corresponding to the participant sites (e.g., PPML [67] and FedAMP [49]).
However, this measure required more investigation to specify effective results and findings
about variant non-IID situations.

Specifically, controlling a larger divergence between these two measures becomes
more challenging in FL when dealing with more heterogeneous data. The large variation
between distributed datasets across FL participants is called the non-identical independent
distribution (non-IID) data issue [63]. By investigating related works that have considered
the non-IID data, we initially mentioned the variant process of partitioning experimented
data before viewing their proposed solutions to mitigate this issue. By default, the type of
skewness or shift in the data determines the partitioning process of data across FL partic-
ipants. In certain proof-of-concept experiments, the partitioning process may accurately
reflect the real-world data heterogeneity or sharing model used by distributed hospitals
to evaluate their methods in clinical practice [59]. This section therefore aims to identify
the situations that had been investigated for a distribution skew or shift in COVID-19 lung
imaging data and estimate the negative impact or each type depending on the selected
studies that have compared the FL performance in IID situations and in any one of the
non-IID types. Depending on the reviewed studies, we categorized the skewness of datasets
into the following six distinct types of data and provided examples for each in Figure 4.
Furthermore, Figure 5 shows the number of investigations per skewness and their impact
on the performance of FL frameworks.

7.1. Non-IID Types
7.1.1. Quantity Skew

Quantity skew occurs when larger hospitals have larger datasets based on the number
of patients, and the other participants have small datasets with a large difference between
the size of each. The different number of medical images affects the model, with an extreme
increase or decrease in data quantity [52]. The aggregation strategies may provide a larger
data size and a higher ratio of changed weights (e.g., FedAvg). However, these changes
may come from a limited variance of data or may only be cached based on trivial features
that are unrelated to COVID-19 but only depend on the protocol of acquisition data in each
local site. Sites with a small data quantity may lead to data ignorance due to the averaging
of the model weights over sampling data per training site. As a result, the existing emphasis
on COVID-19 features would fade with smaller datasets and bias the global model toward
a higher quantity of data.
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By assuming N hospitals have the same image modality (i.e., X-ray, CT, and ultrasound)
regardless of the captured equipment version, there is a dataset Di of hospital i that does
not have a size equal to that of the other dataset, where all the datasets have the same set
of labels L(D), and the sum of the lengths of each label k in all datasets is identical for
all labels m. An example is shown in Figure 4a, where each cell represents the number of
images for label Lm that are included in the corresponding dataset Di. The mathematical
expression of quantity skew is given via conditional Equation (3):

∃i, j ∈ {1, 2, ..N} : |Di| ̸=
∣∣Dj

∣∣ ∧ L(Di) ≡ L
(

Dj
)
∧

N

∑
i
|Lk(Di)| ≡ constant f or all k ∈ {1, 2, ..m} (3)
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A proposal suggests limiting the accepted ratio of quantity skew between two sites to
1:100 [52]. Experimentally, the FL performance is not significantly affected by quantity skew,
as shown in Figure 5; it only degrades FL performance by approximately < 2% [68]. The
researchers proposed the following methods to alleviate quantity skew across distributed
data:

• Using the augmentation method to expand the size of the image dataset is a simple
and common solution for highly training the model on the same data features, which
can be achieved by changing various scales such as transformation, zooming, and
rotation. However, the transformation methods used for generating data are not
always effective in training, which may degrade the model’s performance [69].

• Alternatively, a generative adversarial network (GAN) [59] can be utilized [60]. It
offers small improvements with a high computational time.

• In such aggregation strategies, quantity skew issues are improved by assigning a
learning rate or batch number to each client variant based on the quantity of data [70].

• The FedAMP model exhibits resistance to quantity skew because its aggregate weights
are adaptively learned throughout the training process [49].
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Figure 5. The number of investigations of skewness types and the impact of each on the FL perfor-
mance (collected from considered papers, as referred to in each skewness-type section).

7.1.2. Label Distribution Skew

Label distribution skew could be a combination of two types of skewness: quantity
and label. Label distribution skews occur when datasets have the same labels but different
quantities for each site. By assuming N hospitals have the same image modality (i.e., X-ray,
CT, or ultrasound) regardless of the captured equipment version, there is a dataset Di of
hospital i with a size equal to that of dataset Dj, where all the datasets have the same set of
labels L(D), and the summation of the lengths of each label k over all datasets is variable
for other labels in the set. An example is shown in Figure 4b, where each cell represents
the number of images for label Lm that are included in the corresponding dataset Di. The
mathematical expression of label distribution skew is given via conditional Equation (4):

∃ i, j ∈ {1, 2, ..N} : |Di| ≡
∣∣Dj

∣∣ ∧ L(Di) ≡ L
(

Dj
)
∧

N

∑
i
|Lk(Di)| ̸=

N

∑
i
|Lk+1(Di)| f or all k ∈ {1, 2, ..m} (4)

This skew has a negative impact on FL generalizability, personality, and the computa-
tional time [60]. FedAvg [50] is proposed to address this type of skewness, but it fails when
the distribution skewness ratio is high. It is the second skewness investigated, as shown
in Figure 5, and it reduced accuracy approximately by 4.30% within a low ratio of label
distribution skew [68].
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To mitigate this issue, researchers have followed one of three directions.

• A first-direction solution is implemented before training data by preprocessing data to
ensure a uniform distribution across sites using the local augmentation method [51],
GANs [52], and the synthetic minority oversampling technique (SMOTE) [71]. How-
ever, these solutions require more communication between parties to fine-tune the
number of labels and the distribution of images in each. This may also lead to in-
formation leakage from participant data with slightly improvements in accuracy,
approximately around 1.6% [68].

• The second direction is to improve convergence between updated models locally,
which focuses on the monitoring of local updates per batch in FedBN [72], per round
in FedProx [55], or by normalizing both local and global updates in HarmoFL [65].
These methods report efficient bias mitigation and improve the global model’s gener-
alizability. However, they may have a negative impact on the model’s personality. In
other words, the model may yield poor results due to its incompatibility with local
population data.

• The third direction is examining the local updates on the server side before accepting
the updated models. This may rely on various calculations of acceptance priority [30],
the use of voting methods [7], and the implementation of smart contracts in blockchain-
based systems [50,73]. However, these methods have additional computational over-
heads.

7.1.3. Extreme Label Skew

This type of extreme skewness occurs when one or more labels completely disappear
from one or more sites; this phenomenon is known as extreme label distribution skew. This
situation is common because, during the COVID-19 pandemic, some hospitals stored only
confirmed infection cases due to storage capacity limitations [26]. Additionally, certain
medical image datasets categorize their data into two [74], three [54], or more [13] labels.
By assuming N hospitals have the same image modality (i.e., X-ray, CT, or ultrasound)
regardless of the captured equipment version, there exists a dataset Di of hospital i with a
different size for dataset Dj, L(D) is the set of labels in all the datasets, and the summation
of the lengths of each label k over all datasets is extremely variable for other labels in the
set. An example is shown in Figure 4c, where each cell represents the number of images for
label Lm that are included in the corresponding dataset Di. The mathematical expression of
extreme label skew is given via conditional Equation (5):

∃i, j ∈ {1, 2, ..N} : |Di| ̸=
∣∣Dj

∣∣ ∧ L(Di) ̸= L
(

Dj
)
∧

N

∑
i
|Lk(Di)| ̸=

N

∑
i
|Lk+1(Di)| f or all k ∈ {1, 2, ..m} (5)

The existence of a unique data label in one site and its absence in another are considered
extreme non-IID cases, which results in high divergence between the global aggregation
model and the local model performance. Even with more rounds, the global model may
fail to preserve that label’s features when averaging over larger data with variant labels.
This leads to poor convergence and degrades global accuracy by 50.64% in the central
testing node of the FL framework for COVID-19 X-ray images [75]. Figure 5 shows that the
experiments that have participants with one data label reported the lowest generalizability
accuracy compared to other types of skew. However, the global averaging model can
enhance the local model’s performance for participants trained on a single specific label
or class. Because the variety of their own data is very limited, overfitting during the
training process leads to high bias in the DL model. This type of skewness necessitates
further investigation into the behavior of updated models at each site, both before and after
aggregate models.

The following are valuable solutions proposed by different studies for this type
of skew:
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• The authors used a semi-supervised method to label unlabeled data and reported
satisfactory accuracy [63]. As a recommendation to the uniform label name in the FL
framework, their method could be useful in this situation.

• To address the word variants issue, radiologists could also analyze meta-data using
natural language processing (NLP) [37].

7.1.4. Data Acquisition Protocol Skew

Under this skew type, the same modality can be considered, but with image datasets
with different attributes, such as X-ray modality but with different scanning devices, resolu-
tions, light conditions, protocol for capturing (e.g., patient with upper/lower hands posed),
and protocol for storing (e.g., with/without compression and with/without radiologist
annotations).

By assuming N hospitals have the same image modality (i.e., X-ray, CT, or ultrasound)
regarding the captured equipment version and the protocol of collecting the local data,
where P = {volume, resolution, format, equipment, patient pose, etc.}, there exists a dataset
Di of hospital i with a size almost equal to that of dataset Dj. L(D) is an identical set
of labels in each the datasets, and the summation of the lengths of each label k over all
datasets approximately equal for other labels in the set. An example is shown in Figure 4d,
where each cell represents the number of images for label Lm included in the corresponding
protocol Pi of Di. The mathematical expression of the data acquisition protocol skew is
given via conditional Equation (6):

∃ i, j ∈ {1, 2, ..N} : |Di| ∼=
∣∣Dj

∣∣ ∧ P(Di) ̸= P
(

Dj
)
∧ L(Di) ≡ L

(
Dj

)
∧ ∑N

i |Lk(Di)| ∼= ∑N
i |Lk+1(Di)| f or all k ∈ {1, 2, ..Lm} (6)

As Figure 5 shows, this type is the most commonly considered skew. Many studies
have applied the same modality of acquisition in several hospitals, and it has a moderately
decreased impact on FL performance (around 8.01%) [74]. A previous study investigated
X-Ray datasets with a different image volume thickness in each site of FL. The authors
reported results with satisfactory performance, which could be collaborated to identify
COVID-19 features, even with a variety of image attributes [67].

The researchers followed one of the following directions to fix acquisition skew:

• A self-adaptive hyperparameter is proposed to adopt the variability of data between
distributed sites [70].

• In one study, the authors used a self-adaptive aggregation function with meta-transfer
modules to manage the settings of training data locally [74].
In two further studies, the authors made distributed datasets uniform by incorporating
regularization methods and leveraging ensemble techniques such as normalize image
intensity, resizing, and geometric transforming methods [59,64].

The most common preprocessing methods are indicated in Table 1 under the skew
type and FL architecture.

7.1.5. Modality Skew

Medical image equipment varies between single sites and different sites. Different de-
vices produce different imaging modalities (e.g., X-ray, CT, and ultrasound), with variations
in volume, resolution, color intensity, type, and amount of noise. Different image modalities
require different models and analysis procedures, which are difficult to unify [63]. It is
a rare situation in an FL framework (as Figure 6 shows), where most studies considered
single-modality X-ray data [53,68,74,76] or CT data [13,30,63,77,78], some studies combined
both and then redistributed randomly [79] or assumed variant modalities in clustered edge
nodes [80], and one study employed emerging X-ray imaging with simple vital signs [64].

By assuming N hospitals have different image modalities (M = {X-ray, CT, ultrasound,
etc.}), there exists a dataset Di of hospital i with a size almost equal to that of dataset Dj,
L(D) is an identical set of labels in each the datasets, and the summation of the lengths of
each label k over all datasets is approximately equal for other labels in the set. An example
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is shown in Figure 4e, where each cell represents example images of modality for label
Lm that are included in the corresponding M for data Di. The mathematical expression of
modality skew is given via conditional Equation (7):

∃ i, j ∈ {1, 2, ..N} : |Di| ∼=
∣∣Dj

∣∣ ∧ M(Di) ̸= M
(

Dj
)
∧ L(Di) ≡ L

(
Dj

)
∧ ∑N

i |Lk(Di)| ∼= ∑N
i |Lk+1(Di)| f or all k ∈ {1, 2, ..Lm} (7)

In Figure 5, this skew is the second highest degradation rate in FL, reducing the
accuracy approximately by 19.25, as per the investigated study [80]. Practically, Qayyum
et al. [80] conducted an experiment using the same model for X-ray, CT, and ultrasound
images for COVID-19 diagnosis and fixing the impact of modality skew by clustering
sites of FL that have a similar modality. They described the model’s ability to recognize
COVID-19 features without prior knowledge of the image modality. However, this type
of skewness is challenging the performance of the model that applied for training, which
comparing features per pixel. Researchers thus need to further investigate this skew type
and define the impact of varying image qualities on FL accuracy [69].

One feasible approach worth further exploration involves implementing an additional
layer inside a neural network. This layer would be capable of determining the most suitable
FL for deployment based on medical imaging and clinical similarities between variant
dataset features [49].

7.1.6. Feature Skew

The feature skew of datasets relates each participant’s training sample to distinct
features like age range, patient gender, smoking patients, and dead patients. The hospital
or medical institution may acquire data for an intended feature, or it may depend on the
virus’s behavior in their population, such as the ability of COVID-19 to infect aging patients
more rapidly in some regions than others.

By assuming N hospitals have the same image modality (i.e., X-ray, CT, and ultrasound)
regardless of the captured equipment version, there exists a dataset Di of hospital i with a
size almost equal to that of the other dataset, where all the datasets have the same set of
labels L(D), and the sum of the lengths of each label k in all datasets is identical for all labels
m. An example is shown in Figure 4f, where each cell represents the number of images for
label Lm in the corresponding feature F for Di (where F = {age, gender, country, etc.}).
The mathematical expression of feature skew is given via conditional Equation (8):

∃ i, j ∈ {1, 2, ..N} : |Di| ≡
∣∣Dj

∣∣ ∧ F(Di) ̸= F
(

Dj
)
∧ L(Di) ≡ L

(
Dj

)
∧ ∑N

i |Lk(Di)| ≡ ∑N
i |Lk+1(Di)| f or all k ∈ {1, 2, ..Lm} (8)

This type of feature skew is applicable to horizonal FL, where the non-overlapping
sample at each site differs from the one defined in vertical FL. However, it is a real situation
and rare in vertical experiments studies. A unique study investigated the FL performance
by distributing the dataset into four sites, each with a range of ages. They reported a
satisfactory degradation performance in the central node, ranging from 82% to 80% [81], as
shown in Figure 5.

As mentioned above, a real medical data situation may consist of one or many skew-
ness types in the training or testing data in the FL framework. It is crucial to examine the
data specifications for each participant, as this information can be quantified and shared as
meta-data prior to the start of training. These meta-data were used to identify the degree of
non-IID per skewness, which provides the manager with the ability to assess the source of
bias and help them to take advantage of FL, depending on their goal.

7.2. Bias Generation Factors

Many factors vary in the FL framework, which may be influenced by researchers’
considerations rather than the nature of distributed data. The model architecture that
exchanges between participant sites and updates based on the training of each local dataset
is a vital factor with an essential impact on the FL framework. Additionally, the strategy
used to accept and aggregate these updated models and then compute the global model for
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the next round is a crucial factor that could either be inherent in the bias of non-IID data or
overcome it, as briefly described below.

7.2.1. Training Model

Identifying a model for training medical image data for all applications is difficult.
However, researchers can conduct tests to identify an appropriate model that aligns with
the system’s size, available bandwidth, and resource capabilities. It is possible to train
large amounts of data effectively with pre-trained models based on convolutional neural
networks. These models can also solve the overfitting problem and are very flexible and
scalable in distributed settings [82]. Additionally, training the federated model from scratch
yields a lower generalizable performance compared to transfer learning models, which
have been shown to deliver higher improvements [59].

As there are many studies in the literature comparing how well common models
worked [30,53,68,69,76,83], we found the average accuracy of the most common models
reported in those studies based on the type of skewness studied. Researchers commonly use
pretrained-CNN models (as mentioned in Figure 7) to train COVID-19 image data within
the FL framework. Meanwhile, the residual network (ResNet) has gained widespread
adoption in various medical imaging applications, such as diagnosis [54,59–62], segment
and quantity [63], and oxygen needs prediction [64]. It is used by researchers to investigate
feature skewness, label distribution, and acquisition, and may relate to the bottleneck
architecture of residual blocks that augment network performance. In addition, it protects
against vanishing gradient issues during training by utilizing identity connection.
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Figure 6. Type of lung imaging dataset modalities used in FL framework for COVID-19.

The second most common model used in FL for COVID-19 imaging is the DenseNet
model, which investigates acquisition, quantity, and feature skewness types. The VGG
model is the third most popular used in the investigation of label, acquisition, quantity, and
modality skewness experiments. ResNet50 and DenseNet, on the other hand, have higher
and similar performance models and more stable convergence in comparison to the state-of-
the-art ML models used for medical image classification in FL environments with an equal
data distribution across sites [82]. Based on our literature review analysis, we identified
other pre-trained CNN or simple CNN models that could fit into the FL architecture for
the IID case or acquisition skew. Furthermore, the literature review revealed that the
CNN’s architecture, which includes batch normalization layers and dropout parameters,
negatively impacts the model’s convergence [56]. The literature review demonstrated that
these elements could potentially deteriorate the overall FL performance [64].
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7.2.2. Aggregative Strategy

Aggregation strategies are methods used for collecting updated local models from
participants and computing the global model. Selecting an adopted aggregation strategy
is a vital phase that could include the blockade bias or breadth for the distributed sites.
FedAvg [50] is a commonly used strategy for aggregation, as it effectively prevents bias
from data heterogeneity and enhances the fairness contribution of global models from sites
using their trained data. However, it can present challenges in certain data heterogeneity
distribution scenarios. Some improvements have been proposed to address the bias of
aggregated weights resulting from non-IID skewness, which was achieved by collecting
meta-data from participants, including computational resources and the training time [30].
Based on this information, the hyperparameters for each local model were then adopted.

Darzi et al. [84] performed a comparative experiment on different aggregative strate-
gies and found that more stable convergence strategies required greater computational
costs and communication rounds. Therefore, defining the goal metric is essential for identi-
fying the aggregate strategy. Researchers can choose the appropriate aggregation strategy
for their situation by managing the goals based on the generalization and personalization
metrics, the specified FL architecture, and the application aim. Table 1 provides a summary
of the proposed aggregation strategy for non-IID solutions within the FL framework for
COVID-19 lung imaging, considering the metric, FL architecture, and training applica-
tions. This could guide researchers in identifying the existing solutions under investigation
and suggesting ways to enhance them. Further investigation is required to identify the
dependent factors and independent variables that need tuning to mitigate non-IID issues.
Additionally, efforts must be made to create a benchmark for COVID-19 medical image
datasets for FL simulation, considering all the challenges inherent in real datasets. This
would help researchers study the relationships between these factors and system entities
and interpret the results more clearly.
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Table 1. Summary of the researchers’ directions for managing non-IID skewness types using an
aggregative strategy and preprocessing.

Application FL Architecture Measured Metrics Skewness Type Aggregative Strategy Preprocessing

Classification of lung
diseases

Central

Generalization
Data acquisition FedAvg Used CycleGAN method [69]

Quantity/label
distribution FedAvg SMOTE [71]

Personalization

Extreme label FedAvg GAN with augmentation method
[60]

Data acquisition FedBN
Lung segmentation, image

normalization, and data
augmentation [49]

Quantity/label
distribution

FedAvg under smart
contract

The size of training sample is
computed based on the ratio of class

in the test set [70]

P2P Generalization

Quantity/label
distribution FedAvg

Augmentation [68]
Change of the setting of FL

hyperparameters [75]

Data acquisition
FedAvg Using vision transformers model

[85]

Delegated
Proof-of-Stake (DPoS) GAN [77]

Segmentation of lung
infections

Central Personalization
Data acquisition

FedAvg with local
adoption epoch

Spatial normalization and scaling
[67]

P2P Generalization FedAvg with weights
of computational cost

Spatial and signal normalization
with segmentation [30]

Boundary box of lung
lesions Central Generalization vs.

personalization Data acquisition FedAvg Normalization and data
augmentation [59]

Labeling and
annotating data Central Generalization

Quantity/label
distribution

Self-adaptive
aggregation method

CLAHE parameter on data and
transferring meta data [74]

Data acquisition FedAvg Augmentation [63]

Oxygen prediction Central Generalization and
personalization Data acquisition FedAvg Normalization and augmentation of

distributed data [64]

Severity diagnosing

Central Generalization IID FedAvg Not mentioned [13]

P2P Generalization and
personalization Data acquisition FedAvg with timer for

generated ledger

Capsule network for segmentation
and classification with blockchain

technology [73]

8. Common FL Challenges

The FL framework, a distributed system that remotely analyzes sensitive data, em-
phasizes the consideration of several challenges to achieve a satisfactory result. Model
hyperparameters, as well as varying software and hardware, are variables that could be
difficult to tune efficiently without in-depth investigation and practical experimentation.
This section briefly discusses the common issues of communication costs, privacy and secu-
rity attacks, and system resources, followed by a critical analysis of the available proposed
solutions.

8.1. Communication Issues

The communication links between servers and participating hospitals were used to
share the weights of DL models for local medical image training. In the COVID-19 situation,
reliable/synchronized communication is required to ensure the ability of participants to
measure each contribution to the global model computation. Therefore, improvements
in communication might adjust the links based on three factors: the size of the model,
the number of rounds, and the available bandwidth. Medical image training typically
involves a large model with millions of weights, necessitating the upload and download of
numerous megabytes. For example, ResNet models are the most successful for COVID-19
images, and 3D-ResNet101 is 85.21 MB in size [69]. Similarly, size presents a challenge to
FL performance, especially with the encryption overheads of privacy-preserving methods.
The fusion model successfully minimizes the classification model, yielding satisfactory
outcomes [79]. However, further research is required to understand its influence on various
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non-IID skewness. The integration of FL and knowledge distillation boosts the volume of
computational data, leading to an improvement in communication efficiency and training
throughput. When evaluated on two sets of medical image segmentation datasets, their
results demonstrate data privacy, reduced communication costs, and improved accuracy
when using TransUNet and ResUNet as teacher models [86].

The number of rounds is essential to consider, as mentioned in Section 5. The COVID-
19 medical situation requires a lower number of rounds than FL implementation in another
domain. However, many experimental studies [54,61,62,64,69,83,87] provided results after
15 rounds as a minimum for their evaluation, with some studies requiring up to 200 rounds.

Observing the ratio of improvements in global model accuracy with increasing num-
bers of rounds revealed that it became insignificant after a few rounds in non-IID situations.
However, in the IID situation, the global model convergence significantly improved after a
few rounds, starting from the first 5–10 training rounds. Chowdhury et al. [76] observed
stable convergence after the third round. To determine the stopping point of systems with
low-performance improvements, further experiments are required.

8.2. Privacy and Security Issues

FL frameworks provide partial privacy and security. Guaranteed privacy is required
to avoid reverse engineering attacks against local model updates, and numerous attacks
have been reported in the FL system, as illustrated in Table 2. It is possible to implement
privacy-preserving methods over three entities in FL systems, namely, images, local updates
and global models, and communication channels, which can prevent any re-identification
and reconstructor attacks. Reducing image quality by adding an amount of deferential
privacy (DP) noise significantly degrades model performance [56]. Finding methods to
preserve patient privacy requires more effort.

Table 2. Types of security and privacy attacks.

Attack Name Description of Impact Methods

Reconstructor attacks The image features are retrieved from the local
updated weights. DP/HE.

Poisoning model
a local model trained on fake labels or irrelevant

datasets aimed at harming a global model is
uploaded.

Measure the quality of local updates,
which is still an open door in FL systems.

This method works for both local and global models. It adds noise to the model’s
weights when it collects models from sites or uses homomorphic encryption (HE) on the
weights that are shared (step 3 of Figure 2 or step 1 of Figure 3). HE has a lower impact on
model accuracy because it depends on the encryption on the local side and the decryption
on the server side. However, it has higher computational overheads than DP [8]. The
Secure Multi-Party Channel (SMPC) method encrypts communication channels between
servers and participant nodes. Reports have indicated that it boasts a high number of
communication channels [56], while blockchain-based systems are also used to maintain
secure communication channels [73] and improve the accountability and accessibility of
FL frameworks [62,88]. For further details about FL attacks in the medical image domain,
Kessie et al. [10] provided a comprehensive review of secure and private methods for FL in
medical imaging.

8.3. System Resource Issues

For hospitals and medical institutions, computational resources are usually limited.
High computational resources, GPUs, bandwidth, and secure storage are essential for an
efficient FL framework. The complexity of tuning hyperparameters in an FL setting and
detecting errors in deployment and configuration over various resources may necessitate
the involvement of numerous technical experts [49]. In FL, it is crucial to understand that
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every single training round functions completely independent of the participating sites.
The selecting of optimal local epoch, batch size, learning rate, training model, and number
of rounds are factors significantly influence on the robustness performance [26]. Abdul
Salam et al. [54] identified which factors affect model accuracy and loss, such as activation
function, model optimizer, learning rate, number of rounds, and data size in IID settings.
However, in the context of non-IID medical imaging, further investigation is required. We
suggest classifying the configuration factors into high impact and low impact, with the aim
of reducing negative performance.

9. Results and Discussion

FL provides promising solutions to mitigate privacy risks that hinder the full utility of
medical data. It significantly enhances the applicability of various hospitals and medical
institutions worldwide, enabling the construction of a global model. This provides the
medical field with more generalizable results, emphasizing the relationships between the
various COVID-19 variables. This is crucial for ensuring the generalizability of the achieved
results across a larger population. Furthermore, it is crucial for the FL facility to maintain
updated models with newly generated data from various sources, ensuring they align with
current trends and strains, particularly given the evolving nature of COVID-19 [89].

This study discussed one of the main obstacles challenging FL’s applicability, which
is the lack of standardization of medical imaging data, and this rise in heterogeneous
data across distributed hospitals and medical institutions is called non-IID. The non-IID
issue arises when data distributions across different sites are heterogeneous, leading to
challenges in model training and generalization. In this review, the types of skewness in
data heterogeneity are described as the real situation mentioned in the radiologist field [46].
As described, the types and sources of data skewness can hinder the aggregated model’s
performance. This variety can lead to unfair model updates, where some hospital site
data have a greater impact on the overall model than they should, making the model less
useful across different patient populations and medical settings. Non-IID data can also
worsen overfitting problems because models may become too specific to the features of a
few medical resources, and not enough attention is paid to the wider range of variations in
the smaller resources.

Table A1 shown the summarization of original papers that used FL framework to
analysis and training COVID-19 lung medical imaging. Several research studies on the non-
IID problem focused on comparing the performance of different models and the model’s
ability to achieve stable accuracy results over the training rounds. Other studies looked at
how different hyperparameter settings affected the results of federated learning for different
types of data skewness and tried to find a logical relationship between these factor settings
in different situations of data heterogeneity. In addition, those research studies focused on
examining the various types of distributed data skewness that are mentioned in Section 6
and providing solutions to mitigate their impacts. Specifically, the proposed solutions
were diverse and followed one or more of three methods, which include expanding data,
dynamic parameter adaptation, and the aggregation strategy.

The multiple reviewed experiments indicate that an increase in the homogeneity of
the distributed data leads to a tendency toward the least effective type of skewness, known
as the quantity skew. Conversely, as the data homogeneity decreases, there is a tendency
toward extreme label skew and modality skew in the distributed medical imaging data.
These have a significant negative impact on the performance of the federated learning
model, as shown in Figure 5. This literature survey observed the label distribution skew
as the most prevalent phenomenon in the distributed reality of medical imaging data,
having attracted the attention of most researchers. It also revealed a paucity of studies
on the three types of skewness, namely, feature, modality, and extreme label skews. This
emphasizes the necessity of studying these types and determining the impact they have on
both generalization and personalization metrics. This literature review demonstrates the
pretrainable-based CNN model architecture, specifically the ResNet and DenseNet models
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within the FL framework, which yield more consistent results. It interprets these models’
appropriateness for training medical imaging in distributed environments.

This review discusses other common issues within the FL framework, such as privacy
and security, communication, and system resources. To ensure FL’s success in various
medical applications beyond diagnosing and segmenting COVID-19 infection from lung
imaging data, specialists in those fields must consider and further investigate these issues.
Besides the technical issues mentioned in this review, clinical efforts are required to re-
flect the theoretical and simulation results in real-life situations. However, validation by
independent medical researchers is crucial for predictive analytics [24]. Clinical recom-
mendations should advocate publicly available and verified algorithms, and adequate and
in-depth analysis of data complexity is necessary. For example, in survival cases, some
prognostic results should be tracked for 30 days. Monitoring patients and analyzing their
updates, whether they have recovered or died within that period, could be necessary as
part of the risk management framework.

10. Recommendations and Directions

FL in medical imaging succeeded in creating a private environment to process these
sensitive data. However, it suffers from inconsistent results because the training relies on
insufficient medical imaging data for COVID-19. Many open-source datasets are published
in technical communities such as Kaggle and GitHub [20]; unfortunately, these datasets
have low quality and are not confirmed by validation or testing radiology methods to
support measurement experiments.

Identifying the FL framework with effective hyperparameter settings for medical im-
ages needs further work. It is important to study the trade-off settings in the case of non-IID
data, such as the number of local epochs against GPU consumption, the number of rounds
against accuracy, the number of participants, and the convergence rate against the batch
size. Furthermore, more experiments are needed to define the proper aggregation strategy,
activation function, and generalizability of the global model without compromising the
personality of the local model.

Moreover, researchers are required to provide further investigations about the solu-
tions to data heterogeneity by studying the mentioned skewness issues. In addition, more
efforts are required to reduce the communication cost and find a recovery strategy in case of
lost connections or dropping one or more communication sites during the training round.

Improving FL frameworks and overcoming these challenges can provide promising
results for valuable studies in the medical field. This requires researchers to broaden
the benefits of federated learning for COVID-19 data beyond just identifying the disease
or extracting the affected part of the lung to encompass a wide range of applications,
especially studies identifying the relationship between COVID-19 and patient immunity,
genetic impact, and chronic diseases. FL enables studies on larger samples to gain reliable
results.

We highly recommend broadening the contact between researchers from both the
medical and technical fields to facilitate studies about COVID-19 virus behaviors. The
FL method could effectively process the variety of COVID-19 viral sequences, which aids
medical studies in tracing the origins and transmission pathways of infections [3]. These
data are crucial for improving global contact tracking, guiding epidemiological studies,
and supporting broader public health campaigns to stop the virus’s spread. The distributed
samples that FL trains are also useful for studying and understanding how quickly COVID-
19 sequences change. This has caused a lot of worry about the appearance of new variants
that might be more virulent or more easily spread than the strains that are already out
there. Additionally, it could provide an answer to a crucial question in the context of viral
evolution: could specific mutations within the viral RNA sequence potentially undermine
the effectiveness of existing vaccines? This could potentially aid in the development of new
immune strategies to combat the virus.
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11. Conclusions and Future Work

Federated learning utilizes local data to learn without revealing private information
or granting access to the data. As described in this literature review, the FL paradigm
provides a secure distributed environment for training sensitive medical data, with the
aim of providing a useful context for unresolved issues that necessitate further research in
data heterogeneity. We started by discussing how FL can address the global shortage of
COVID-19 information. Next, we identified the available medical images for COVID-19 and
discussed how DL could efficiently read COVID-19 symptoms from various chest image
modalities, depending on the radiologist’s perspective. We discussed FL scenarios and the
unique characteristics of the system for medical image training. Lastly, we summarized
the recently suggested FL systems for the non-IID distribution of COVID-19 data variants.
Furthermore, other common challenges were discussed in detail, and effective solutions
were described under each issue.

Despite significant technical efforts to harness the benefits of AI, its application in
combating the COVID-19 pandemic alone may be limited. Technical issues such as bias,
data heterogeneity, compromised privacy and security, and a lack of resources have been
reported, but these are not the only obstacles to achieving an efficient outcome in real-world
scenarios. Technical professionals must collaborate to read, interpret, and offer comments
and recommendations to enhance the design of the FL system. Tools must be developed to
tune hyperparameters remotely according to local resources and assist radiology experts
and doctors in reading and evaluating FL findings on COVID-19 data from a healthcare
perspective. Collaboration between medical and technical fields is thus essential to gaining
the advantages afforded by FL.
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Appendix A

Table A1. A summary of proposed FL framework for COVID-19 lung medical imaging.

Study Aim Application Contributions Limitations

Xu et al., 2020 [13]

Compares the accuracy
of FL models with six

radiologists in a
diagnosing task.
Fixes the lack of

generalization for local
models.

Diagnosing CT lung
images with four
infection labels:
COVID-19, viral

pneumonia, bacterial
pneumonia, and

healthy.

They achieved a
comparable FL model

in terms of
sensitivity-specificity

for classification results
compared with six

radiologists.
They conducted real FL
experiments with data
from three hospitals in

Wuhan.

There was a trade-off
between performance
and communication

because 16 hours were
required to finish 200

training rounds.
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Table A1. Cont.

Study Aim Application Contributions Limitations

Zhang et al., 2021 [79]

Improves
communication
efficiency using

dynamic fusion-based
federated learning.

Diagnosing X-ray and
CT lung images with
three infection labels:

COVID-19, pneumonia
and healthy.

They were able to
reduce communication
overheads by scaling
down the uploaded
model to 1/16 of the

time needed by galaxy
FL in complicated

models with
satisfactory accuracy.

They did not consider
reversing engineering

abilities in their
solution.

Feki et al., 2021 [68]

Investigates properties
and specificities of FL

settings, including
non-IID and

unbalanced data
distribution.

Diagnosing chest X-ray
images with two
infection labels:

COVID-19 and healthy.

They found the
following:

Increasing the number
of rounds could

improve the accuracy
of models.

More participants led
to fast convergence

rates and reduced the
need for more rounds.
- Labeled distribution

skew led to worse
performance than

quantity skewness.

They reported the
results on a small

dataset containing only
108 chest X-ray images
of positive COVID-19.

Liu et al., 2021 [53]

Compares the
performance in FL of
four DL models on

COVID-19 X-ray
images: COVIDNet,

ResNeXt,
MobileNet-v2, and

ResNet18.

Diagnosing X-ray lung
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They found ResNeXt
has the best

performance in images
with COVID-19 labels.

Models were trained on
data containing only
2% COVID-19 labels,
which may provide

unreliable results
without considering

non-IID issues.

Jabłecki et al., 2021 [83]
Measures the impact of
the non-IID issue on the
accuracy of FL models.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They found the
following:

More local epochs
increase GPU time
without significant
impact on accuracy.
Non-IID degraded

accuracy from 0.923 to
0.39.

- EfficientNetB0
achieved the best

performance.

The time needed for the
first round was longest
due to the construction
of the execution graph

in the TensorFlow
framework at the

beginning of training.
However, they

neglected the impact of
low availability of GPU

resources on Google
Collab cloud.

Dou et al. n.d.
2021 [59]

Improves
generalizability of and
automated estimation

of the lesion
progression using data

from 4 different
hospitals in Germany
and China in testing
with comparison to
radiologists’ report.

Quantifying lesions
from COVID-19 CT

images.

They found the
following:

- Increasing data size is
important to mitigate

model bias and
improve

generalizability of
diverse training data

associated with
imaging scanners and
annotation protocols.

The time required was
40 ms per round to test
one CT image, but they

did not consider
reverse engineering

attacks.
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Table A1. Cont.

Study Aim Application Contributions Limitations

Qayyum et al., 2022
[80]

Attempts to fix
heterogeneity of

imaging modalities and
improves

computational
overheads by using

edges to cluster each
type of modality with
different models for

automatic diagnosis of
COVID-19.

Diagnosing chest
X-rays and ultrasound

images with binary
classification of

COVID-19 and normal.

They found that the
same result can be

reported by sharing the
same model with

different modalities.
The generalizability of
the global model can be

improved, even with
limited hospital

resources, and they
could benefit from this
collaborative learning

method.

They did not mention
how the data were
distributed across

clients and clusters in
their experiments.
Privacy was not

guaranteed.
They mentioned

improving the low
latency of FL as an aim
of the study, but there

were no results about it.

Yang et al., 2021 [63]

Evaluates FL
performance with

heterogeneity of data
acquisition skew and

unlabeled data by
training on data from

China, Italy, and Japan.

Segmenting and
annotating lesions on

lungs infected by
COVID-19 using CT

images.

They reported the
importance of data

augmentation
strategies for

computing consistency
loss, which improves
the generalizability of

model.
They described the

need to tune the
trade-off between

aggregation frequency
and communication

cost based on the
applications.

They did not solve the
problem of how to

improve models with
non-IID issues and

mitigate or detect bias
during FL.

Bai et al., 2021 [69]

Aims to improve
generalizability by

collecting data from 5
hospitals and

challenging the FL
method with high

heterogeneity of data.

Diagnosing chest X-ray
images with three

infection labels:
non-COVID-19 viral

and bacterial
pneumonia, COVID-19,

and healthy.

They provided the
results of

computational cost
FLOPS with different

models.

They mentioned the
lack of bias in their

study and dropping of
participants during

training rounds.

Kumar et al., 2021 [77]

Attempts to overcome
the problem of a central

point using a fully
decentralized

blockchain and HE.

Segmentation and
classification to detect

the COVID-19.

They introduced a new
dataset containing

34,006 CT scan slices
for 89 patients and
28,395 CT positive

scans.
The accuracy of the

global model was 84.21
± 0.43.

They did not report the
latency of the

blockchain or minimize
the cost of the solution.

Abdul et al., 2021 [54]

They studied the
impact of the FL
hyperparameters

during testing on the
accuracy and loss of the

global model.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They found the
following:

- Softmax activation
function and SGD

optimizer gave the best
prediction accuracy

and loss.

They reported the
limited impact of

increasing data size
and number of rounds.
However, the results

cannot be generalized
because they are

incompatible with
other studies [50,73].
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Table A1. Cont.

Study Aim Application Contributions Limitations

Zhang et al., 2021 [60]

Attempts to fix data
availability and data

privacy issues by using
generative adversarial
networks to generate

fake chest X-ray images
and DP to determine

the gradient’s weights.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They demonstrated
that the impact of

generating fake images
improves global

accuracy by 0.84% and
reduces loss by 3.0%.
They achieved high

performance with a low
ratio of noise.
They reported

satisfactory results,
even with non-IID.

They reported results
of non-IID with label

distribution skew only
and did not consider

other types of
skewness.

Kumar et al., 2021 [30]

Proposes a
normalization method
for uniform data to fix
heterogeneity of data

using a
blockchain-based

method.

Segmentation and
classification to detect

COVID-19.

Their method achieved
the highest sensitivity
and lowest specificity.

They reported the
negative impact of

communication costs
when increasing the

number of participants.

The configuration
procedure was not
explained clearly.

Dong et al., 2021 [74]

Attempts to annotate
unlabeled data with a
federated contrastive
learning framework
with two modules:
metadata transfer

module and
self-adaptive

aggregation module.

Labeling unlabeled
data with two infection
labels: COVID-19 and

healthy.

They reduced
annotation costs while

utilizing only 3% of
labeled data in training

to achieve 90%
accuracy.

Their aggregation
module outperformed

the FedAvg method
consistently, even with
non-IID issues, while

metadata transfer
improved performance.

They did not apply any
privacy-preserving

method to guarantee
privacy.

Dayan et al., 2021 [64]

Uses data from 20
distributed sites to

predict outcomes at 24
and 72 h from time of
initial presentation to
the emergency room

and predicts
mechanical ventilation
treatment or death at
24 h for symptomatic

patients with
COVID-19 using inputs

of vital signs,
laboratory data, and
chest X-ray images.

Predicting future
oxygen requirements.

FL provided
comparable

performance even
when only 25% of

weight updates were
shared.

Personalization could
be improved by
fine-tuning local

parameters.
Participant diversity

improved
generalizability by 38%.

They did not refer to
the time/cost of
computations.

Nguyen et al., 2021 [61]

Attempts to fix data
availability and data

privacy by using
generative adversarial
networks to generate

fake chest X-ray images
in edge cloud
computing.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They improved the
generalizability of

models.

They did not apply any
privacy-preserving

methods to guarantee
privacy.
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Lo et al., 2021 [70]

Attempts to enhance
the accountability and
fairness of FL by using

a blockchain-based
smart contract system

and a weighted fair
data sample algorithm.

Diagnosing chest X-ray
images with four
infection labels:

COVID-19, pneumonia,
lung opacity, and

healthy.

They found the
following:

More stable and faster
convergence rate than

ResNet50 models.
Blockchain-based smart

contracts provided
satisfying performance

with accountability.
Weighted fair data

improved performance
in cases of distribution

skew.

They did not apply any
privacy-preserving

methods to guarantee
privacy.

Bhattacharya et al.,
2022 [66]

Uses three different
sources of data to
maintain non-IID

nature.

Diagnosing chest X-ray
images with two
infection labels:

COVID-19 and healthy.

They found that
personality was

improved while each
client’s models

performed well on the
test data belonging to

the same source.
However, they found
that generalizability

could be improved by
averaging the weight

on a global model.

They did not apply any
privacy-preserving

method to avoid
privacy attacks.

They did not mention
the configuration

process or HW of the
system.

Ho et al., 2022 [75]

Aims to improve the
privacy and accuracy of

COVID-19 detection
models using an FL
model with X-ray

image and symptom
data.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They found that
SPP-CNN with 3X3
had higher accuracy

because it extracts more
spatial details.

The accuracy was
reduced with non-IID
data from 14% to 24%.

A larger batch size
achieved faster

convergence.
The accuracy was only
reduced by 0.17% with

DP noise.

They did not fix the
lack of data quantity

using any
preprocessing method.
Their dataset contained

only 3616 COVID-19
positives against 10,192

normal images.

Durga et al., 2022 [87]

Combines a model of
capsule networks and

extreme learning
machines (ELMs) to

improve the accuracy
of segmentation and
COVID-19 detection.

Segmentation and
classification to detect

COVID-19.

The ensemble of
capsule networks and
ELMs produced the

best accuracy in
detecting COVID-19

from multiple datasets
and was superior to

other algorithms.

In the first phase, each
hospital uploads image

datasets for
collaborative learning.
In the second phase,
hospitals share the

locally trained model
weights with the

blockchain and use FL
to aggregate all local
models into a global

model.
Uploading images to
the BC involves high
costs and threatens

privacy.
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Chowdhury et al., 2023
[76]

Proposes a web
application to help

users detect COVID-19
in a few seconds by
uploading a single
chest X-ray image.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They found that the
Xception model

outperforms other
models.

They did not apply any
privacy-preserving

method to avoid
privacy attacks. Also,
they did not consider

non-IID.

Kumar et al., 2022 [73]

Attempts to improve
fully decentralized FL
by using distributed

blockchain ledgers that
share weights with HE.

Diagnosing chest X-ray
images with three

infection labels:
COVID-19, pneumonia,

and healthy.

They proposed a
method to ensure the
quality of the model
and the learned data.

The dropping of any FL
participant may affect
the performance of the

model due to
divergence of weights

in the local models
from the global model.

HE provided lower
reduction in accuracy

than DP.

They mentioned the
limitation of latency

caused the blockchain
and encryption
computations.

Wang et al., 2022 [62]

Attempts to fix the
third-party dependence

of FL on blockchain
technology.

Diagnosing CT lung
images with two
infection labels:

COVID-19 and healthy.

They found that the
asynchronous method

in the FL process
achieved similar

performance to using
non-IID datasets.

They reported results
with different link

capacities and found
that increasing link

capacity may decrease
iteration delay time.

They reported difficulty
in ensuring the quality

of the local updated
model because the

operation was
consistent for each local
node. However, it was
measured by Kumar

et al. [62].

Kandati and Gadekallu
[90] 2023

Aims to address the
issue of communication

cost using swarm
optimization algorithm.

Diagnosing X-ray
images into three labels:
Normal, COVID, and

Viral Pneumonia.

They found swarm
optimization has

effective results only
with small datasets and

lower number of
participants.

Their algorithm took
longer to convert global

model and required
huge search space.
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