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Abstract: The increasing demand for electric drives challenges conventional powertrain designs and
requires new technologies to increase production efficiency. Hairpin stator manufacturing technology
enables full automation, and quality control within the process is particularly important for increasing
the process capacity, avoiding rejects and for safety-related aspects. Due to the complex, free-form
geometries of hairpin stators and the required short inspection times, inline reconstruction and
accurate quantification of relevant features is of particular importance. In this study, we propose a
novel method to estimate the creepage distance, a feature that is crucial regarding the safety standards
of hairpin stators and that could be determined neither automatically nor accurately until now. The
data acquisition is based on fringe projection profilometry and a robot positioning system for a highly
complete surface reconstruction. After alignment, the wire pairs are density-based clustered so that
computations can be parallelized for each cluster, and an analysis of partial geometries is enabled. In
several further steps, stripping edges are segmented automatically using a novel approach of spatially
asymmetric windowed local surface normal variation, and the creepage distances are subsequently
estimated using a geodesic path algorithm. Finally, the approach is examined and discussed for an
entire stator, and a methodology is presented that enables the identification of implausible estimated
creepage distances.
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1. Introduction

The trend of a steadily increasing number of electric vehicles (EV) sold has been ob-
served in global sales for more than ten years. According to [1], the number of EVs amounts
to 145 million until 2030 if the extrapolation is based on current policies. Therefore, the
continuous development of electrical power train solutions, in particular, is crucial. Elec-
trical engines basically comprise two components, a rotor and a stator, whereas the stator
significantly impacts the value chain [2]. The hairpin technology proposes a promising
manufacturing technology that replaces thin copper wires in stator winding by massive
flat stiff coils [3].

In contrast to conventional winding technology, hairpin winding offers the ability for
a higher automation degree in manufacturing. Additionally, due to the usage of methods
that are considered to be well researched, such as welding and forming, a better process
stability is feasible [4–6]. According to [7], the process chain differentiates the number of
process steps with regard to the applied technologies. Particularly for contacting the wires
and forming the pins to its determined shape, multiple technologies are deployed, where
the selection is mainly pendent on the consumers requirements [8].

Apart from process advantages, which result mainly in a higher reachable automation
degree, hairpin stators come with some notable technical advantages [6]. Compared to
random winding, the usage of hairpin winding improves the overall space efficiency. The
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geometry enables higher slot fill factors that increase the maximum reachable torque as well
as the overall power [6,9,10]. Additionally, cooling is improved because of larger contact
areas [5,9]. Apart from the mentioned technical advantages, increasing alternating current
losses can be observed in hairpin technology, which limits the overall efficiency.

Approaches to overcome this issue as well as challenges with regard to automated
forming and welding are further discussed in [11]. These circumstances and the fact of
having a complex process chain result in high demands regarding the quality aspects
within each manufacturing step. This creates the need for extensive quality assurance. The
creepage distance, which this study significantly contributes to determining, is described
as the shortest distance along the surface of a solid insulating material between two
conductors at different voltage potentials [12]. The creepage distance is similar to the
shortest distance in air between two conductors of different potential, and this is defined as
the clearance distance.

To prevent surface flashover or insulation breakdown, both of these features must
not fall below the required and prescribed limits depending on the application [12]. In the
field of electrical drives, specified requirements need to be ensured, e.g., to prevent parts
from explosion [12,13]. Hence, these features are safety relevant; the precise measurement
is crucial but has not been integrated within an automatic assurance procedure yet. Thus,
further development and design processes of hairpin stators can be improved by an accurate
estimation of geometric features, integrating appropriate methods for determining these
will be relevant for several manufacturing companies.

The inspection with tactile measurement devices is limited due to the geometry of the
hairpin stators. With the advantages of a short inspection time and an increasing resolution
in 3D reconstruction, optical measurement systems based on fringe projection profilometry
are becoming widely used for inspection applications in production technology [14] and
are also used in the proposed approach. Within this study, a novel method is presented
in order to estimate the creepage distance based on meshed 3D data. Furthermore, the
approach offers the feasibility for a simple integration within the inspection cycle that
results in a higher efficiency within the automated inspection during manufacturing.

2. State of the Art

In the following, a brief overview of relevant processes in hairpin manufacturing
is provided as well as image-based approaches for quality assurance along the process
chain. The manufacturing procedure basically requires a stator core for further assembly
comprising stamping sheet metals that are interlocked afterward [15].

2.1. Hairpin Stator Manufacturing

According to [7], the process chain of hairpin stator manufacturing can be differen-
tiated in five steps as visualised in Figure 1. First, the hairpins are processed utilizing
different techniques from sheet-forming technology to produce the shape that has been
developed within a previous design process. Depending on the design, different shapes of
wires are used for stator manufacturing, which includes, for instance, straight bars that are
described as I-Pins [16].

After the geometry of the wires has been defined, the positioning is conducted within
a pre-assembly process according to a specified scheme. Subsequently, the hairpins are
inserted into the stator core using high forces [7]. After inserting the wires, the axial position
is determined. In the following twisting process, defined forces are used to twist the wires
cross-sections and to obtain the required tangential position. Therefore, the final position
is defined, and the ends of the intended wire pairs can be contacted by multiple welding
technologies [7]. Glaessel et al. described different welding technologies and emphasized
the importance of a proper removal of the insulation material [17].

Thus, it is of importance, on the one hand, not to reduce conductive material along
the cross-section of the wire and, on the other hand, to assure that no insulation material
remains in the joining area. According to [17], laser beam welding features some advantages
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in contrast to established technologies, such as resistance welding or ultrasonic welding.
Furthermore, Glaessel et al. proposed the application of infrared lasers with a small focus
as a promising technology [17]. In a following processing step, the wires as well as the
stator are impregnated to meet the requirements regarding the insulation characteristics
that are also evaluated in the final testing procedure [7,15,17].

Figure 1. Major steps in hairpin manufacturing [7].

2.2. Image-Based Quality Assurance in Hairpin Manufacturing

Single processes linked to the process chain in hairpin manufacturing have been the
subject of intense research. Due to a high number of wires that need to be connected, the
welding process features an integral role in hairpin stator manufacturing [18]. In [19], an
image-based approach using a neural network architecture was evaluated for in-process
monitoring of laser-based weld seams of hairpin stators. Mayr et al. [20] proposed a
comparable approach for estimating the quality of the cross-section in contacting, and they
used pre-trained neural network architectures to classify the images.

A method that ensures quality monitoring within bending processes was described
in [5]. In contrast, Mayr et al. utilized three dimensional data instead of 2D images
and performed the data processing based on machine-learning methods. In [21], Vater
et al. proposed an approach that processes 3D data that is conducted within hairpin
manufacturing and applied for error classification in the laser welding process. It can be
observed that some approaches apply 2D data instead of 3D data, which is mainly due to
higher costs of 3D scanners.

In contrast, 3D scanning achieves higher inspection stability as well as the advantage
of taking height information, which is crucial for reconstructing certain geometries [22].
Extracting features out of 3D data constitutes a wide field of research, which is linked
to many different use-cases. Due to an increasing development and cost reduction of
surface-probing technologies and 3D scanning, an increasing demand for appropriate 3D
data processing has been observed [23].

2.3. 3D Feature Extraction and Product Metrology

Previous research analysed the performance and revealed the advantages of optical 3D
metrology in different applications [14,24,25], and active vision sensors using an additional
light source are particularly widespread due to improved robustness and accuracy [26].
Therefore, the development of 3D processing and spatial feature extraction algorithms
is crucial. Li et al. [27] introduced an early reverse engineering approach that used 3D
reconstruction for modelling parts and subsequently derived tool paths to improve the
efficiency in repair processes of worn mechanical parts.

Wang et al. [28] also proposed an approach for robotic path planning based on feature
extraction. Using 3D reconstruction, parental surfaces were created after segmentation
and B-spline modelling. Recent measurement data were superimposed with the parental
surfaces, which led to an improved computation time. In a second iteration of the feature-
guided trajectory approach, Feng et al. [26] additionally proposed a refining process that
comprises outlier separation based on a nearest neighbour analysis (Kd-tree) and void
filling. Achieving maximum root mean squared errors less than 0.7 mm, even the compu-
tational time was improved by approximately 65% compared to the reverse engineering
approach mentioned.

In defect analysis and classification on 3D printed surfaces, Zhao et al. [29] proposed
an approach that introduces a novel feature descriptor to statistically evaluate the local
topological information. The feature descriptor considers the results of normal differences
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in the neighbourhood of the keypoints in combination with a rotation projection statistic
feature descriptor.

The state of the art emphasizes that quality assurance plays an essential role in the
automation of the process chain in hairpin production. It can be observed that many related
approaches apply 2D image data instead of 3D data; however, the importance of appropriate
3D data processing continues to increase. However, some exemplary research activities have
shown promising developments in raising the robustness and computational efficiency for
feature extraction and the processing of spatial data in different applications. This research
contributes to the deployment of spatial feature extraction within the automated quality
assurance in hairpin manufacturing to enable accurate determination of the safety-relevant
creepage distance.

3. Problem Definition

In Figure 2, an exemplary hairpin winding is visualised in detail. The isolation edge
can be observed in the highlighted areas, which feature the transition from insulating to non-
insulating material on the wires surface. The challenge of estimating the creepage distance
dcd automatically and accurately constitutes the main work of this study. Even under
ideal conditions, to date, no approaches are available that go beyond simple estimation
procedures and allow for robust implementation in the context of automated production
measurement technology. The following section describes and evaluates a novel method to
extract the relevant areas out of three dimensional data to quantify the creepage distance.
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Figure 2. Exemplary visualisation of hairpin windings.Figure 2. Exemplary visualisation of hairpin windings.

4. Experimental Setup

The data used in the following were acquired with a robot cell supplied by GOM
GmbH (Braunschweig, Germany). The utilised measurement system is described as ATOS
ScanBox and comprises a six-axis jointed-arm robot (ARC Mate 120iC) by FANUC K.K.
(Oshina, Japan) with an optical sensor that is mounted at the robots end effector. A
GOM ATOS 5 3D-scanner was applied and is based on fringe projection profilometry to
reconstruct 3D geometries. The specifications of the utilized robot kinematics as well as the
applied fringe projection sensor are listed in Table 1.

Additionally, a rotation table is located inside the cell to realize an improved orientation
of the inspection parts. As a result, the data are epresented as a meshed 3D point cloud and
stored in .STL-files. For a more detailed overview on the application of fringe projection
metrology at various scales within production metrology, a comprehensive assessment
is provided in [14].Within the scope of this study, different types of hairpin stators were
inspected and reconstructed. The dimensions as well as specifications in terms of the power
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differentiated depending on the stator type. The proposed approach was evaluated using
one specific stator type.

Table 1. Specifications of the robot kinematics [30] and the applied fringe projection sensor [31].

Robot Kinematics

Designation
Maximum Payload

(at wrist) Reach Axes Repeatability

Arc Mate 120iC 20 kg 1811 mm 6 axes J1, . . . , J6 0.03 mm

Fringe Projection Sensor

Designation
Measurement

Volume
Measuring
Distance Resolution

Point
Density

ATOS 5 500 × 370 × 370 mm3 800 mm 12 M 115 µm

For these initial investigations, and to develop the algorithmic pipeline, an automated
measurement routine was programmed using the Inspect-Software from GOM. The imple-
mented routine attempts to capture the specimen as well as possible since a hairpin stator
features complex geometry, which requires multiple measurement poses. However, for
better integration into the production process and higher reconstruction accuracies, other
instruments and measurement approaches are also conceivable. The overall measurement
duration amounts to a few minutes.

5. Data Processing

The main data processing steps for determining the creepage distance are visualized
in Figure 3 and mainly comprise data alignment based on manually assigned initial points
and subsequent division into clusters, each corresponding to a pair of wires. The clusters
are processed individually for determining the stripping edge, which is based on a local
surface normal variation. For accurate results in regard to spatial windowing, a polygo-
nal resampling is applied to transform the mesh into a point cloud with uniform point
density. Subsequently, the creepage distance is determined as the geodesic distance of the
neighbouring stripping edge points on the mesh for each cluster.

5.1. Data Alignment

The reconstructed 3D mesh Ω = {v, f } of the geometry comprises vertices v ∈ R3×V

and faces f ∈ N3×F
1 . The latter are stored in the form of a connectivity list for all respective

polygons. The overall approach is based on clustering corresponding pairs of wires to sub-
sequently analyse every clustered pair itself. Subsequently, the isolation edge is segmented
so that the shortest distance between the two conductors can be estimated. An overview of
the procedure for processing the 3D data is visualised in Figure 3. The reconstructed mesh
is aligned within a coordinate frame. In an initial implementation, this is performed via
a two-step alignment process, which may be redundant in later automation due to fully
identified kinematic relationships along with minor numerical corrections.

Let pcs,1 = R3×M be a set of points that are manually selected (M ≥ 3) via a graphical
user interface and that are located in the base plane of the reconstructed mesh. This is
visualized in Figure 4a with red points, into which a plane is subsequently fitted via a
least-squares approach [32]. Additionally, the deviations of all vertices in the plane normal
direction dp ∈ RV are calculated. The subset

pcp = {vj | dp,j ≤ dc , ∀ j = 1, · · · , V} (1)
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of all plane points with the maximum point-plane normal distance dc is then used in the
following for the optimization of the unknown rigid-body transformation Tp ∈ SO(3):

Tp = arg min
T

∥∥pcp,T,z(T)
∥∥

2 , pcp,T = T ·
[

pcp
1

]
= {pcp,T,x, pcp,T,y, pcp,T,z, 1} . (2)
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Figure 3. Procedure for estimating the creepage distance.
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Due to numerical considerations, the quaternion convention is used for the optimiza-
tion of the rotational component, since it performs well and converges fast [33]. The
non-linear Levenberg–Marquardt algorithm is applied as a solver [34–36].

In a second step, on the basis of additional manually assigned points pcs,2 = R3×N , N ≥ 6
(green points as per Figure 4b), a circle is then fitted into the point clouds on a geometric
circumference using a least-squares approach [32]

{cs,x, cs,y} = arg min
cx ,cy

∥∥∥∥
[

pcp,T,x(ds ≤ dc)
pcp,T,y(ds ≤ dc)

]
−
[

cx
cy

] ∥∥∥∥
2

(3)
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based on the vertex-cylinder distance ds ∈ RV . The aligned point cloud, subsequently
centred around {cx, cy}, is further separated into different segments for subsequent cluster
analysis with fixed geometric thresholds based on the polar coordinate representation with
regard to the radius and z-component.
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In a second step, on the basis of additional manually assigned points pcs,2 = R3×N , N ≥
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For clustering the wires into corresponding pairs, the dbscan density-based clustering
algorithm [37] is applied.

5.2. Cluster Analysis

Figure 5 shows the division into K clusters, which are processed individually in the
following to estimate the corresponding vertices of the stripping edges for the determination
of the creepage distance as accurately as possible. First, a reduced mesh Ωk ∈ Ω = {vk, fk}
is derived via a rangesearch based on the fast k-d search tree [38,39] with respect to the
Euclidean distance in the XY plane, and the polygon-based normal vectors nk ∈ R3×Fk are
extracted according to Figure 6.

Using the shortest Euclidean distance with respect to the polygon normal vectors and
the z-axis

dl =
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the mesh is adjusted for polygons that do not point towards the z-axis:
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In this case, a threshold of dl,t = 40 mm is selected.
Based on the inlier vertices, the reduced mesh Ωk,in = {vk,in, fk,in} with face normals

nk,in is generated according to Figure 7a. For subsequent calculations, it is essential to
generate a point cloud pck = {pck,x, pck,y, pck,z} ∈ R3×P with a relatively homogeneous
local point density, which, accordingly, cannot be based on the simple vertices vk,in due to
strongly varying polygon sizes. Therefore, random samples are generated in dependence
of the polygon size according to the approach of Osada et al. [40], which was further
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For clustering the wires into corresponding pairs, the dbscan density-based clustering
algorithm [37] is applied.

5.2. Cluster Analysis

Figure 5 shows the division into K clusters, which are processed individually in the
following to estimate the corresponding vertices of the stripping edges for the determination
of the creepage distance as accurately as possible. First, a reduced mesh Ωk ∈ Ω = {vk, fk}
is derived via a rangesearch based on the fast k-d search tree [38,39] with respect to the
Euclidean distance in the XY plane, and the polygon-based normal vectors nk ∈ R3×Fk are
extracted according to Figure 6.

Using the shortest Euclidean distance with respect to the polygon normal vectors and
the z-axis

dl =
n · vk( fk)

‖n‖2
, n = nk ×




0
0
1


, (4)

the mesh is adjusted for polygons that do not point towards the z-axis:

vk,in = {vk,j | dl,j ≤ dl,t , ∀ j = 1, · · · , |vk|}. (5)

In this case, a threshold of dl,t = 40 mm is selected.
Based on the inlier vertices, the reduced mesh Ωk,in = {vk,in, fk,in} with face normals

nk,in is generated according to Figure 7a. For subsequent calculations, it is essential to
generate a point cloud pck = {pck,x, pck,y, pck,z} ∈ R3×P with a relatively homogeneous
local point density, which, accordingly, cannot be based on the simple vertices vk,in due to
strongly varying polygon sizes. Therefore, random samples are generated in dependence
of the polygon size according to the approach of Osada et al. [40], which was further
developed in [41,42]. The result is shown in Figure 7b. For the localization of the stripping
edge, the local normal variation

Nvar,k,j =

|ιk,j |

∑
i=1

(nk,in,j − nk,in(ιk,j,i)) · wj,i (6)
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is calculated, where

ιk,j = { p | ‖pck,j − pck,p‖2 ≤ dt,1

∪ ‖{pck,x,j − pck,x,p , pck,y,j − pck,y,p}‖2 ≤ dt,2 , ∀ p = 1, · · · , P}
(7)

represents the indices of all neighbour points with respect to pck within the cylinder–
sphere intersection defined by dt,1 = 1 mm and dt,2 = 0.2 mm. Additional windowing is
subsequently performed via spherical distance weighting:

wu,j,i = e
−(pck,j−pck,j(ιk,j,i))

2

2σ2 (8)

wj,i =
wu,j,i

∑
|ιk,j |
l=1 wu,j,l

. (9)
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The results are shown in Figure 7c. Subsequently, the sum

Nsum(pz) =
|ιN(pz)|

∑
i=1

Nvar,k(ιN(pz)) (10)

or the median
Nmed(pz) = median(Nvar,k(ιN(pz))) (11)

of all normal variations Nvar with regard to the vertical position pz ∈ [40, 60] is determined.
With

ιN(pz) = { p | |pck,z,p − pz| ≤ dt,3 ∀ p = 1, · · · , P} (12)

representing the indices of neighbouring points within regard to their vertical position and
threshold dt,3 = 2 mm. The normalized results are depicted in Figure 8.
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In principle, similar characteristics of N̂sum and N̂med can be observed, with the median
likely being more robust with respect to strongly fluctuating numbers of points within the
local neighbourhood. Although this did not occur in the experiment, it is conceivable with
respect to the polygon masking according to N̂var. For the identification of the stripping
edge within mesh Ωk, it is necessary to find neighbouring vertices with respect to the global
maximum of N̂sum or N̂med. Since neighbouring vertices vk,in feature a certain distance to a
mesh–plane intersection at a respective height, lower and upper limits are defined via the
normalized distance N̂t = 0.95, which is represented in Figure 8.
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The resulting mesh Ωk,r ∈ Ωk is further modified by triangle subdivision refinement
until a sufficient number of vertices is close enough to the mean height N̂mean (red according
to Figure 9), respectively, and the overall maximum polygon area is reached. This is shown
in Figure 9b by the black, refined mesh Ωk,r,f, which is incorporated in an updated mesh
Ω f = {(Ω ∩Ω1,r) ∪Ω1,r,f, · · · , (Ω ∩ΩK,r) ∪ΩK,r,f} = {vf, ff}.
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5.3. Determination of the Creepage Distance

With the edge cutoff distance dedge = 0.2 mm, the subset

vk,edge = {vf,k | |N̂k,mean − v f ,z| ≤ dedge , ∀ j = 1, · · · , |vf|}, (13)

of all corresponding edge vertices is extracted. Subsequently, the centroid in the XY plane
is determined for each cluster edge vertex set vk,edge, and the corresponding neighbour
clusters are identified via 2-NN search. This determines the corresponding clusters within
the mesh that may be affected by creepage currents. For determination of the creepage
distance dcd ∈ R|vk,edge|, the geodesic distance on the mesh is calculated on the basis of the
Graph toolbox of Peyre [43], which is used with few modifications and features functions
to be locally compiled for optimized runtime.

The process is visualized in Figure 10 for a pair of wires, where, initially, the fast
marching mesh front propagation [44] is used to determine the distance function D for all
starting points (green) followed by the estimation of the geodesic distance [45], which is
visualized with black curves.
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5.3. Determination of the Creepage Distance

With the edge cutoff distance dedge = 0.2 mm, the subset

vk,edge = {vf,k | |N̂k,mean − v f ,z| ≤ dedge , ∀ j = 1, · · · , |vf|}, (13)

of all corresponding edge vertices is extracted. Subsequently, the centroid in the XY plane
is determined for each cluster edge vertex set vk,edge, and the corresponding neighbour
clusters are identified via 2-NN search. This determines the corresponding clusters within
the mesh that may be affected by creepage currents. For determination of the creepage
distance dcd ∈ R|vk,edge|, the geodesic distance on the mesh is calculated on the basis of the



Metrology 2023, 3 179

Graph toolbox of Peyre [43], which is used with few modifications and features functions
to be locally compiled for optimized runtime.

The process is visualized in Figure 10 for a pair of wires, where, initially, the fast
marching mesh front propagation [44] is used to determine the distance function D for all
starting points (green) followed by the estimation of the geodesic distance [45], which is
visualized with black curves.
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For further computational acceleration, the number of edge vertex correspondences
to be computed is reduced via further neighbourhood classifications and rangesearch
operations, and the mesh is trimmed for each search operation (refer Figure 10), which,
however, is not further elaborated here. In total, the computation time amounts to about
20 min with about 2.4 million polygons and 12,500 edge vertices (start resp. end points).
All data processing operations were implemented using MATLAB (The MathWorks, Inc.,
Natick, MA, USA). Further reductions of the processing time, for example, by more efficient
vectorizations or GPU implementations, are feasible. All neighbourhood searches were
based on the data structure of the fast k-d search tree [38], although more efficient search
tree structures or queries are possible.

6. Results

The following section presents the results of the proposed method applied to the
conducted measurements. After assessing the stripping edge, the creepage distance is
estimated for the whole stator and is visualised in Figure 11a. In addition, Figure 11b
shows the minimal values for the creepage distance that are further considered to assess
the feature since they are more relevant when investigating the potential leakage current.

On closer inspection, at Figure 11b, one cluster exhibits an abnormally high creepage
distance with dcd,min ≈ 32 mm. This observation motivated a further analysis to attempt
to evaluate whether the assessed value for the feature represents an outlier or an inlier.
One possible cause for excessive creepage distances is an incomplete mesh with many
holes, which is likely due to faulty reconstruction during data acquisition, e.g., shading
effects. Therefore, according to Figure 12a, the total number of geodetic edge vertices nve of
each cluster is examined. A low number of geodetic edge vertices indicates that either the
stripping edge itself was incompletely reconstructed or, more likely, the geodetic path of all
vertices corresponds to one or very few edge vertices of an adjacent stripping edge.

This may indicate that the mesh contains holes or other errors and that the path was
presumably estimated as overly long. The results are shown in Figure 12, where the data
of the probable outlier are marked in orange. The supposed outlier is transferred to the
creepage distance of all geodesic edge vertices dcd (Figure 12b) as well as the minimum
creepage distance dcd,min of each cluster, according to Figure 12c. The results demonstrate
that an estimation of plausible or implausibly determined creepage distances is feasible
with this approach.

Figure 10. Determination of the creepage distance over the geodesic distance with respect to adjacent
wire pairs.

For further computational acceleration, the number of edge vertex correspondences
to be computed is reduced via further neighbourhood classifications and rangesearch
operations, and the mesh is trimmed for each search operation (refer Figure 10), which,
however, is not further elaborated here. In total, the computation time amounts to about
20 min with about 2.4 million polygons and 12,500 edge vertices (start resp. end points).
All data processing operations were implemented using MATLAB (The MathWorks, Inc.,
Natick, MA, USA). Further reductions of the processing time, for example, by more efficient
vectorizations or GPU implementations, are feasible. All neighbourhood searches were
based on the data structure of the fast k-d search tree [38], although more efficient search
tree structures or queries are possible.

6. Results

The following section presents the results of the proposed method applied to the
conducted measurements. After assessing the stripping edge, the creepage distance is
estimated for the whole stator and is visualised in Figure 11a. In addition, Figure 11b
shows the minimal values for the creepage distance that are further considered to assess
the feature since they are more relevant when investigating the potential leakage current.

On closer inspection, at Figure 11b, one cluster exhibits an abnormally high creepage
distance with dcd,min ≈ 32 mm. This observation motivated a further analysis to attempt
to evaluate whether the assessed value for the feature represents an outlier or an inlier.
One possible cause for excessive creepage distances is an incomplete mesh with many
holes, which is likely due to faulty reconstruction during data acquisition, e.g., shading
effects. Therefore, according to Figure 12a, the total number of geodetic edge vertices nve of
each cluster is examined. A low number of geodetic edge vertices indicates that either the
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stripping edge itself was incompletely reconstructed or, more likely, the geodetic path of all
vertices corresponds to one or very few edge vertices of an adjacent stripping edge.

This may indicate that the mesh contains holes or other errors and that the path was
presumably estimated as overly long. The results are shown in Figure 12, where the data
of the probable outlier are marked in orange. The supposed outlier is transferred to the
creepage distance of all geodesic edge vertices dcd (Figure 12b) as well as the minimum
creepage distance dcd,min of each cluster, according to Figure 12c. The results demonstrate
that an estimation of plausible or implausibly determined creepage distances is feasible
with this approach.
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7. Discussion

The work conducted in this study and the results presented demonstrate that au-
tomated and accurate quantification of the creepage distance in electric motor stators is
possible. For all clustered wire pairs, the creepage distance could be estimated. Although
the vast majority of the results show comparable values representing the feature, an outlier
can be observed by visually inspecting Figure 11b. This motivated the further analysis that
is presented in Figure 12. To identify possible outliers only by interpreting Figure 12b,c
seems challenging. However, the results evaluated in Figure 12a allow the outlier to be de-
termined due to a very low number of vertices that are considered to estimate the creepage
distance. Through combining with the previous results, the outliers can be neglected for
further evaluation.

However, it should be noted that this approach requires a complete and seamlessly
meshed surface model for precise estimation of the creepage distance. In the case of a
faulty mesh, the creepage distance is estimated to be too long and, therefore, harmless from
a safety point of view. Thus, it should be mentioned that, in its current form, even with
the introduced outlier identification, the actual structure and condition of the mesh is not
further evaluated. Further investigations and algorithmic improvements are, therefore,
possible to improve the precision and robustness of the approach.

As there were no comparable solutions available on the market until now, the imple-
mentation leads to advantages within the quality assurance process and, in consequence,
helps to improve the product quality. However, this also results in the inability to validate
the approach and compare it with reference data.

The proposed method offers the ability for extensive evaluation of manufactured
hairpin stators regarding absolute measurements of the creepage distance as well as the
variance of the feature over each wire pair. Due to the fact that the length of the creepage
distance influences the characteristics of the electrical machine [46], an increased precision
in measuring the feature allows optimizations in the design process. Although other
product features are evaluated within the supplied software of the measurement system
producer, the proposed method has the feasibility for a simple integration within the
automated inspection cycle. However, raising the efficiency in the quality assurance
process and, furthermore, integrating novel approaches, which results in a higher precision
of determining features, leads to great value for manufacturing companies.

8. Conclusions

Within this work, a novel approach was proposed to provide the estimation of the
creepage distance of hairpin stators. Using a fringe projection sensor, the 3D-geometry was
reconstructed for further processing. Multiple steps for data processing were used mainly
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can be observed by visually inspecting Figure 11b. This motivated the further analysis that
is presented in Figure 12. To identify possible outliers only by interpreting Figure 12b,c
seems challenging. However, the results evaluated in Figure 12a allow the outlier to be de-
termined due to a very low number of vertices that are considered to estimate the creepage
distance. Through combining with the previous results, the outliers can be neglected for
further evaluation.

However, it should be noted that this approach requires a complete and seamlessly
meshed surface model for precise estimation of the creepage distance. In the case of a
faulty mesh, the creepage distance is estimated to be too long and, therefore, harmless from
a safety point of view. Thus, it should be mentioned that, in its current form, even with
the introduced outlier identification, the actual structure and condition of the mesh is not
further evaluated. Further investigations and algorithmic improvements are, therefore,
possible to improve the precision and robustness of the approach.

As there were no comparable solutions available on the market until now, the imple-
mentation leads to advantages within the quality assurance process and, in consequence,
helps to improve the product quality. However, this also results in the inability to validate
the approach and compare it with reference data.

The proposed method offers the ability for extensive evaluation of manufactured
hairpin stators regarding absolute measurements of the creepage distance as well as the
variance of the feature over each wire pair. Due to the fact that the length of the creepage
distance influences the characteristics of the electrical machine [46], an increased precision
in measuring the feature allows optimizations in the design process. Although other
product features are evaluated within the supplied software of the measurement system
producer, the proposed method has the feasibility for a simple integration within the
automated inspection cycle. However, raising the efficiency in the quality assurance
process and, furthermore, integrating novel approaches, which results in a higher precision
of determining features, leads to great value for manufacturing companies.

8. Conclusions

Within this work, a novel approach was proposed to provide the estimation of the
creepage distance of hairpin stators. Using a fringe projection sensor, the 3D-geometry was
reconstructed for further processing. Multiple steps for data processing were used mainly
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to align the measured part and cluster the wires. In the cluster analysis, the relevant points
to estimate the creepage distance were located and extracted.

Finally, the geodesic distance was implemented to assume the creepage distance. The
evaluation on experimental data showed promising results, and the discussion already
mentioned some important components where further development is needed. Further-
more, we emphasize that the proposed approach has feasibility for integration within the
automatic quality assurance process.

9. Further Research

Although we have shown the principal functionality of the method as well as promis-
ing results, various aspects can be addressed in further research. An integration in the
quality assurance process offers the opportunity for acquiring a large quantity of data and,
therefore, a profound evaluation of the proposed approach. This evaluation could include
an analysis on the robustness regarding interferences and different types of stators. In order
to analyse the accuracy of our method more extensively, it is crucial to include reference
measurements for the creepage distance itself in the conducted measurements.

In addition, algorithmic or conceptual improvements are possible with respect to the
concept presented in this study. First, it is worth investigating whether another metro-
logical approach can possibly be pursued as an essential alternative to fringe projection
profilometry. In particular, focus variation metrology should be considered in this context.
However, it operates on a significantly smaller scale and can, accordingly, reconstruct only
a very small part of the surface, which necessitates a combination with an appropriate
positioning system for complete data acquisition from various individual measurements.

Advantageously, by omitting a triangulation basis, shadowing effects can be signif-
icantly reduced, and the reconstructed and meshed surface model presumably contains
fewer holes. Furthermore, optical cooperativity (for example, by matting spray) does not
need to be ensured in the same form, since the measurement principle is, in particular,
more robust against effects, such as multiple reflections. Due to the smaller scale, a higher
lateral and axial resolution can additionally be assumed.

An adapted inspection setup would also provide better and faster automatability as
well as direct data prealignment by identifying all relevant kinematic relationships during
system calibration. Although vectorized, precompiled or GPU-supported algorithms have
been widely applied, further runtime improvements are certainly possible in order to
not exceed a total inspection time in combination with a possible positioning setup and
acquisition procedure.

Algorithmically, further improvements are feasible, including, in particular, mesh post-
processing (such as the closing of holes) or the improved determination of the stripping
edge height, which is of considerable importance in the case of diagonal stripping edges.
Furthermore, additional quality metrics can assess the quality of the underlying mesh; thus,
the accuracy of each reconstructed creepage distance can be developed to further improve
the robustness and informative value of the inspection approach.
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