Metrological Evaluation of the Compatibility of Two Different Digital Density Meter Adjustment Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. HP DMA™ 4200 M Cell Approach, Recommended by the Anton Paar Factory
2.2. Approach to the Adapted DMA 512 Cell by a Brazilian Oil Company
2.3. Wilcoxon t-Test for Two Paired Samples [21,22]
2.4. Chemicals
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ANP (Agência Nacional de Petróleo). Portaria Conjunta ANP/INMETRO nº 001; ANP: Rio de Janeiro, Brazil, 2000. [Google Scholar]
- Barateiro, C.E.R.B.; Makarovsky, C.; Rodrigues de Farias Filho, J. Fiscal liquid and gaseous hydrocarbons flow and volume measurement: Improved reliability and performance paradigms by harnessing for fourth industrial revolution. Flow Meas. Instrum. 2020, 74, 101773. [Google Scholar] [CrossRef]
- ANP (Agência Nacional de Petróleo). Portaria Conjunta ANP/INMETRO nº 001; ANP: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- ANP (Agência Nacional de Petróleo). Proposta de Revisão da Portaria Conjunta ANP/INMETRO nº 001; ANP: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Bucci, V.F.; Biazon, C.L.; Guerra, M.J.P.; De Oliveira, E.C. Metrological analysis by measurement uncertainty of the shrinkage factor in oil. Pet. Sci. Technol. 2014, 32, 2976–2986. [Google Scholar] [CrossRef]
- Kanshio, S. A review of hydrocarbon allocation methods in the upstream oil and gas industry. J. Pet. Sci. Eng. 2020, 184, 106590. [Google Scholar] [CrossRef]
- Marques, D.C.; Ribeiro, P.R.; Santos, O.L.A.; Lomba, R.F.T. Thermodynamic behavior of olefin/methane mixtures applied to synthetic-drilling-fluid well control. SPE Drill. Complet. 2018, 33, 230–240. [Google Scholar] [CrossRef]
- Hussein, A.; Alqassab, M.; Atef, H.; Sirdhar, S.; Alajmi, S.A.; Aldeyain, K.W.; Hassan, M.F.; Goel, H.K. Mature oilfield production surveillance and optimization using clamp-on sonarflow surveillance. In Proceedings of the Society of Petroleum Engineers—Abu Dhabi International Petroleum Exhibition and Conference 2019, ADIP 2019, Abu Dhabi, United Arab Emirates, 14 November 2019. [Google Scholar] [CrossRef]
- Li, X.; Ren, S.; Liu, W.; Zhao, D.; Liao, M.; Lin, L. Study on temperature and pressure correction model for predicting liquid phase density of drilling fluids. Drill. Fluid Complet. Fluid. 2020, 37, 168–173. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Li, H.; Li, D.; Wu, Y. Study on the determination of apparent density conversion standard density of crude oil at 15~80 ℃ by comparing oscillating tube and pycnometer method. Jiliang Xuebao/Acta Metrol. Sin. 2022, 43, 629–635. [Google Scholar] [CrossRef]
- Moodley, K. Measurements of P-ρ-T for propan-1-ol or propan-2-ol + oct-1-ene between 303.15–353.15 K and 0.1–20 MPa. J. Chem. Eng. Data 2023, 68, 25–39. [Google Scholar] [CrossRef]
- Sequeira, M.C.M.; Avelino, H.M.N.T.; Caetano, F.J.P.; Fareleira, J.M.N.A. Viscosity and density measurements on liquid n-heptadecane at high pressures. J. Chem. Eng. Data 2022, 67, 37–44. [Google Scholar] [CrossRef]
- Hussain, M.; Moodley, K. P-ρ-T data and modelling for (2-methylpropan-1-ol + n-octane or n-decane) between 313.15 K–353.15 K and 0.1–20 MPa. J. Chem. Thermodyn. 2021, 152, 106279. [Google Scholar] [CrossRef]
- Domostroyev, A.; Nabieva, E.; Moldaganapov, U.; Tabullo, O.; Chubara, A. Comparison of liquid samples of density. Metrologia 2022, 59, 07003. [Google Scholar] [CrossRef]
- Yu, Y.-X.; Li, Y.-G. Excess molar volumes of sulfolane in binary mixtures with six aromatic hydrocarbons at 298.15 K. Fluid Phase Equilibria 1998, 147, 207–213. [Google Scholar] [CrossRef]
- Akhmadiyarov, A.A.; Marczak, W.; Petrov, A.A.; Rakipov, I.T. Measurements of density at elevated pressure—A vibrating-tube densimeter calibration, uncertainty assessment, and validation of the results. J. Mol. Liq. 2021, 336, 116196. [Google Scholar] [CrossRef]
- Bobbo, S.; Scattolini, M.; Fedele, L.; Camporese, R.; De Stefani, V. Compressed liquid densities and saturated liquid densities of dimethyl ether (RE170). J. Chem. Eng. Data 2005, 50, 1667–1671. [Google Scholar] [CrossRef]
- Thermophysical Properties of Fluid Systems. Available online: https://webbook.nist.gov/chemistry/fluid/ (accessed on 10 January 2023).
- Accurate Density Results in Wide Temperature and Pressure Ranges with DMA 4200 M. Available online: https://www.anton-paar.com/corp-en/services-support/document-finder/application-reports/accurate-density-results-in-wide-temperature-and-pressure-ranges-with-dma-4200-m/ (accessed on 2 January 2023).
- Lagourette, B.; Boned, C.; Saint-Guirons, H.; Xans, P.; Zhou, H. Densimeter calibration method versus temperature and pressure. Meas. Sci. Technol. 1992, 3, 699. [Google Scholar] [CrossRef]
- Bueno, A.F.; Ozaki, D.A.F.; Barbosa, E.; dos Santos, E.E.; Gomes, M.M.; Iida, P.H.; dos Santos, S.C.A.; de Sá, F.G.; de Oliveira, E.C. Validation of the performance of process stream analyzer systems with nonparametric behavior. Accredit. Qual. Assur. 2014, 19, 185–193. [Google Scholar] [CrossRef]
- Atilio, N.C.; Fertonani, F.L.; Oliveira, E.C.d. Modified and optimized glass electrode for pH measurements in hydrated ethanol fuel. Molecules 2022, 27, 8048. [Google Scholar] [CrossRef] [PubMed]
- Ivaniš, G.R.; Tasić, A.Ž.; Radović, I.R.; Djordjević, B.D.; Šerbanović, S.P.; Kijevčanin, M.L. An apparatus proposed for density measurements in compressed liquid regions at pressures of 0.1–60 MPa and temperatures of 288.15–413.15 K. Serb. Chem. Soc. 2015, 80, 1073–1085. [Google Scholar] [CrossRef]
Experiment | Pressure (psi) | Temperature (°C) | Density (g cm−3) | Experiment | Pressure (psi) | Temperature (°C) | Density (g cm−3) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
DMA 512 * | DMA™ 4200 M ‡ | Tabulated † | DMA 512 * | DMA™ 4200 M ‡ | Tabulated † | ||||||
1 | 0 | 5 | 0.8821 | 0.8805 | 0.8808 | 16 | 800 | 37.8 | 0.8545 | 0.8545 | 0.8549 |
2 | 100 | 5 | 0.8826 | 0.8810 | 0.8813 | 17 | 1000 | 37.8 | 0.8557 | 0.8557 | 0.8560 |
3 | 500 | 5 | 0.8846 | 0.8829 | 0.8832 | 18 | 1200 | 37.8 | 0.8569 | 0.8568 | 0.8571 |
4 | 800 | 5 | 0.8861 | 0.8844 | 0.8846 | 19 | 0 | 50 | 0.8382 | 0.8386 | 0.8388 |
5 | 1000 | 5 | 0.8870 | 0.8853 | 0.8855 | 20 | 100 | 50 | 0.8389 | 0.8392 | 0.8394 |
6 | 1200 | 5 | 0.8879 | 0.8862 | 0.8865 | 21 | 500 | 50 | 0.8414 | 0.8417 | 0.8419 |
7 | 0 | 20 | 0.8673 | 0.8666 | 0.8669 | 22 | 800 | 50 | 0.8433 | 0.8435 | 0.8437 |
8 | 100 | 20 | 0.8679 | 0.8672 | 0.8674 | 23 | 1000 | 50 | 0.8445 | 0.8448 | 0.8449 |
9 | 500 | 20 | 0.8700 | 0.8692 | 0.8695 | 24 | 1200 | 50 | 0.8457 | 0.8459 | 0.8461 |
10 | 800 | 20 | 0.8716 | 0.8708 | 0.8710 | 25 | 0 | 70 | 0.8191 | 0.8195 | 0.8196 |
11 | 1000 | 20 | 0.8726 | 0.8718 | 0.8721 | 26 | 100 | 70 | 0.8198 | 0.8202 | 0.8203 |
12 | 1200 | 20 | 0.8736 | 0.8728 | 0.8731 | 27 | 500 | 70 | 0.8228 | 0.8231 | 0.8232 |
13 | 0 | 37.8 | 0.8499 | 0.8500 | 0.8503 | 28 | 800 | 70 | 0.8249 | 0.8252 | 0.8253 |
14 | 100 | 37.8 | 0.8505 | 0.8506 | 0.8509 | 29 | 1000 | 70 | 0.8263 | 0.8265 | 0.8266 |
15 | 500 | 37.8 | 0.8529 | 0.8529 | 0.8532 | 30 | 1200 | 70 | 0.8277 | 0.8279 | 0.8279 |
Wcalculated | Wtabulated | Assessment | |
---|---|---|---|
DMA 512 versus tabulated | 0.7807 | 0.9270 | It is not normal |
DMA™ 4200 M | 0.8119 |
Calculated | Critical | |
---|---|---|
W-value | 192.5 | 137 |
Mean difference | −0.03 | |
Sum of positive ranks | 272.5 | |
Sum of negative ranks | 192.5 | |
Z-value | −0.8227 | 0.41222 |
Average | 232.5 | |
Standard deviation | 48.62 | |
Sample size | 30 |
Calculated | Critical | |
---|---|---|
W-value | 118 | 107 |
Mean difference | −0.03 | |
Sum of positive ranks | 260 | |
Sum of negative ranks | 118 | |
Z-value | −1.7058 | 0.08726 |
Average | 189 | |
Standard deviation | 41.62 | |
Sample size | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.B.d.; Oliveira, E.C.d. Metrological Evaluation of the Compatibility of Two Different Digital Density Meter Adjustment Methods. Metrology 2023, 3, 131-138. https://doi.org/10.3390/metrology3020008
Santos EBd, Oliveira ECd. Metrological Evaluation of the Compatibility of Two Different Digital Density Meter Adjustment Methods. Metrology. 2023; 3(2):131-138. https://doi.org/10.3390/metrology3020008
Chicago/Turabian StyleSantos, Eugênio Benevides dos, and Elcio Cruz de Oliveira. 2023. "Metrological Evaluation of the Compatibility of Two Different Digital Density Meter Adjustment Methods" Metrology 3, no. 2: 131-138. https://doi.org/10.3390/metrology3020008
APA StyleSantos, E. B. d., & Oliveira, E. C. d. (2023). Metrological Evaluation of the Compatibility of Two Different Digital Density Meter Adjustment Methods. Metrology, 3(2), 131-138. https://doi.org/10.3390/metrology3020008