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Abstract: With a view to improve measurements, this paper presents a statistical approach for char-
acterizing the behaviour of roughness parameters based on measurements performed on ground
surface topographies (grit #080/#120). A S neoxTM (Sensofar®, Terrassa, Spain), equipped with
three optical instrument modes (Focus Variation (FV), Coherence Scanning Interferometry (CSI), and
Confocal Microscopy (CM)), is used according to a specific measurement plan, called Morphomeca
Monitoring, including topography representativeness and several time-based measurements. Previ-
ously applied to the Sa parameter, the statistical approach based here solely on the Quality Index
(QI) has now been extended to a multi-parameter approach. Firstly, the study focuses on detecting
and explaining parameter disturbances in raw data by identifying and quantifying outliers of the
parameter’s values, as a new first indicator. This allows us to draw parallels between these outliers
and the surface topography, providing reflection tracks. Secondly, the statistical approach is applied
to highlight disturbed parameters concerning the instrument mode used and the concerned grit
level with two other indicators computed from QI, named homogeneity and number of modes. The
applied method shows that a cleaning of the data containing the parameters values is necessary
to remove outlier values, and a set of roughness parameters could be determined according to the
assessment of the indicators. The final aim is to provide a set of parameters which best describe the
measurement conditions based on monitoring data, statistical indexes, and surface topographies. It is
shown that the parameters Sal, Sz and Sci are the most reliable roughness parameters, unlike Sdq and
S5p, which appear as the most unstable parameters. More globally, the volume roughness parameters
appear as the most stable, differing from the form parameters. This investigated point of view offers
thus a complementary framework for improving measurement processes. In addition, this method
aims to provide a global and more generalizable alternative than traditional methods of uncertainty
calculation, based on a thorough analysis of multi-parameter and statistical indexes.

Keywords: roughness parameter family; focus variation; confocal microscope; coherence scanning
interferometer; uncertainty; reliability

1. Introduction

As geologists study the terrain relief [1], surface topography investigators aim to
understand the history of the surface [2], but physical phenomena at different scales [3,4]
could be linked (scale continuity), as in [5]. Particularly in tribology, understanding physical
phenomena is necessary to functionalize surface topography in order to tune the behaviour
of a final product, according to its use [6–9]. These tribological phenomena occur at the
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interface between two topographical features in contact and moving relative to each other.
This is why it is necessary to analyse the topography of these surfaces, because they play
a crucial role in how these phenomena manifest, and thus they are key to explaining
them. Among these tribological phenomena, there are friction [10], wear [11], which results
from the progressive deterioration of surfaces caused by friction, lubrication [12], which
tends to modify the friction conditions and avoid premature wear, adhesion [13], which
is an attractive force which contributes to friction conditions, contact fatigue [14], and
even tribo-corrosion [15]. Understanding these tribological phenomena through surfaces
topographies significantly contributes to various fields, including materials engineering [5]
and mechanical systems design [16,17].

There exist two types of instruments for measuring surface topographies: tactile and
optical. Tactile profilometry stands as one of the most commonly utilized techniques for sur-
face metrology in both research and industry, but this measurement technic is, little by little,
being replaced by the optical profilometers. The advantages of the optical profilometers
are their ability to carry out quick 3D measurements with different technologies, such as
Focus Variation [18,19], Confocal Microscopy [20] and Interferometry [21,22]. The diversity
of optical instruments allows us to choose the most adequate technology regarding the
features of the measured surface (form, slope, brightness, smoothness, etc.). However,
depending on the characteristics of the surface, measurement uncertainties can occur, es-
pecially with optical instruments. The instrument choice could be thus determined by
its ability to measure a given surface landscape regarding the generated uncertainties (as
defined in [23]).

Choosing an adequate instrument with its significant settings [24,25] is not the only
problematic factor in metrology. It is necessary to perform a judicious image treatment [26,27]
to put forward the required information, and then describe the surface topographies with
roughness parameters. A question could arise: what is a good parameter and how can we
determine its reliability for the carried-out measurement campaign?

1.1. State of the Art
1.1.1. Sources of Roughness Parameter Fluctuations

The roughness parameters are indicators that can describe a range of features such
as characteristic heights, height distribution maps (based on the Abbott–Firestone curve),
periodicity, directionality of textures, local gradients, fractal aspects, volume characteristics,
and surface topography motifs. These various types of parameters can also be influenced by
numerous factors, including the instrument used to perform the measurement, the inherent
properties of the surface, the measurement plan (such as repositioning and the duration of
acquisition), and uncertainties (such as environmental disturbances or instrument drift).

Surface/Instrument Interaction

In the field of this study, a Sensofar S neox (Sensofar®, Terrassa, Spain) device is
used. This device includes three types of instruments: Coherence Scanning Interferometry
(CSI), 3D field Confocal Microscope (CM) and Focus Variation or Shape-from-Focus (FV).
Regarding the state of the art, only these instruments are taken into account. In this part,
the focus is on the interaction between instruments and intrinsic properties of the surface.
Sometimes, no reference is found, due to the incompatibility of the measuring conditions
and the instruments.

The studied surface landscape type determines the entire investigation process. In-
deed, the optical and geometrical properties of a physical specimen play a main role
regarding the most adequate instrument and its ability to measure, more especially the
interaction between the surface and the instrument. These intrinsic properties are described
in Appendix A and are faced regarding the instrument type defined before, to highlight if
an instrument is commonly used regarding a given property (optical or geometrical).
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Measurement Conditions

The specimen repositioning is the major source of topographical variations in metrol-
ogy, whether repositioning is carried out manually or by a displacement table [28]. This is
why a measurement plan including multiple measurements at a given position reproduced
at multiple positions could impact the results. But the instrument settings used to perform
the measurement campaign have an impact too. The magnification, the lateral resolu-
tion [29], the scanning speed [30], the type and the intensity of light source [31] are some
examples of a non-exhaustive list of major instrument settings which have a crucial impact.

Environment

Instruments can face external fluctuations such as temperature, light, the hygrometry
or human activities. These aspects of fluctuation depend on the place when the instru-
ment is installed. Some preconisation is explained by the VDI/VDE 2655 [32]. These
evolutions could be followed during the measuring time with sensors such as a vibrome-
ter, a anemometer, or others, in order to try to describe more precisely the impact of the
environment on the measurements.

1.2. Uncertainty Determination
1.2.1. Classical Methods

In surface metrology, uncertainty is a complex and critical issue, influenced by various
factors and requiring rigorous methodological approaches for a precise evaluation. Among
the methods used to quantify these uncertainties, the Guide to the Expression of Uncertainty
in Measurement (GUM) [33] provides a standardized framework based on the propagation
of uncertainties. The Monte Carlo method, recommended by the Supplement 1 of GUM [34],
allows for the simulation and assessment of the impact of uncertainties by generating
probability distributions for the measured variables, thus providing a robust estimation of
combined uncertainties.

The uncertainties calculated with direct methods are obtained by comparison of the
signal obtained by the instrument with the theorical signal, while the uncertainties cal-
culated with indirect methods are obtained by subtraction. Substitution is a commonly
used technique where the direct measurement is replaced by an indirect measurement
of a known quantity, facilitating the evaluation of uncertainties [35,36] when direct mea-
surement is difficult or impossible. The uncertainties are composed of many sources of
fluctuation, such as the measurement noise generated by speckle fluctuations in White
Light Interferometry (WLI) [37–39], and are calculated from intensity. It is essential to
account for this noise, as well as other deviations such as flatness correction [40] or lateral
resolution [29] and the Z-axis scale [41], to ensure the reliability of measurements.

Intercomparison of instruments, based on statistical methods, is necessary to evaluate
the influence of each instrument on the measurement. This includes comparisons of
optical profilometers, where the results from different instruments must be equivalent in
accordance with filtering and lateral-resolution standards. However, it is crucial to consider
the specific metrological characteristics of each instrument as defined by ISO 25178-6 [42]
and ISO 25178-60X [43–48] standards, as well as to calibrate and verify these instruments
to correctly assess uncertainties, particularly by using recommended good practice guides.

Due to the complexity of applying classical methods for determining uncertainties on
real surfaces and estimating these uncertainties across all roughness parameters, alternative
methods have been developed.

1.2.2. Unconventional Methods
(X, Y) Method

A method based on gradients and height standard deviation of surface topography
pixels was developed to study measurement fluctuations [49,50]. This method quantifies
uncertainties from repeated measurements at the same position and links them to surface
gradients through a visual tool, B2D plots in 2D and 3D. As a result, height fluctuations
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(standard deviation) are correlated to gradients, and the height fluctuations depend on
both abrasion level and light/sub-layer interaction for the abraded lens.

Allan Deviation

Surface uncertainty assessment using Allan deviation [51] reveals the limitations of
traditional methods. Two types of Allan deviation can be calculated for surface topography
series: lateral and temporal deviation, both based on Sq2. The lateral deviation describes
the variation in Z (X, Y) using the root mean square of Sq between each map and the
mean map of a given series. In contrast, the temporal deviation accounts for multiple
subsets of long-term measurement series and includes a mean filter to describe a time
trend. Unlike ISO 25178-600 [35] and ISO 25178-700 [36] standards that assume stationary
and randomly distributed noise, the Allan deviation shows that these assumptions do not
always hold. The temporal Allan deviation indicates that averaging over longer periods
may not improve mean values if drifts or spikes occur. The lateral Allan deviation reveals
implicit or explicit filtering, often unnoticed in classical analyses, affecting the lateral
resolution. These methods enable in-depth analysis of non-stationary noise and lateral
correlations, providing a detailed understanding of uncertainties in surface measurements.

Coefficient Determination Method

Another method allowing us to follow the measurement deviation is presented
in [52,53], using S neoxTM (Sensofar®, Terrassa, Spain), and shows several important find-
ings in real-world conditions. The method is based on the determination coefficient R2

and shows the Z (X, Y) fluctuations between two measurements or a data set, allowing
us to compare different configurations. This method can be used to show the time evolu-
tion of height regarding the time or the difference of height obtained with two different
measurement modes. It allows us to quickly assess the repeatability, precision, and uncer-
tainty of topographic measurements. Each height value from the maps is plotted on a 2D
chart, with the height of the nth map as the X coordinate and the height of the (n + 1)th
map as the Y coordinate, allowing us to compute the R2 coefficient. It also determines
how consistent the measurements are between different optical modes. Measurements
with the same mode show very low height variations and a strong coefficient (R2 > 0.99).
However, measurements between different modes correlate less (R2 ≈ 0.88), and display
different slopes on their height–height plots. Overall, this assessment method shows the
Confocal mode is the most repeatable, with the strongest correlations, and tends to measure
slightly higher heights compared to the other modes. The method efficiently estimates
measurement reliability and noise levels, crucial for evaluating topographic data accuracy.

Index Method

Finally, the method developed in [54] shows statistical indicators developed to dis-
criminate two surfaces with neighbouring roughness, while considering stability, drift,
and signal-to-noise ratio, in order to help improve the quality of measurements. Unlike
the precedent approach, the developed indexes are computed from roughness parameters
calculated on the height maps, and not directly from the height maps. By using these
indexes, it is possible to determine if an instrument can effectively distinguish two similar
surfaces, to evaluate the impact of the stitching process (combining measurements) on data
quality [55], and thus to enhance the precision and relevance of measurements in surface
topography studies.

More globally, absolute metrology refers to the precise and unbiased measurement of
surfaces, aiming to provide results that are not influenced by the calibration of instruments
based on standardized specimens. However, the challenge arises when the real-world
surfaces differ from these standardized specimens, leading to instrument bias. Additionally,
roughness parameters, typically developed for simplified surfaces, may not accurately
represent real surfaces, creating a bias in the measurement results. Uncertainties in this
context are also problematic, as they stem from various sources, including environmental
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factors and instrument limitations, making it difficult to quantify them accurately. To
address these challenges and to be independent of the device set-up, relative metrology
steps in, focusing on the comparison of surfaces (A/B), considering roughness parameters,
scale, and process conditions. A well-structured measurement plan can help validate
parameters and control uncertainties, ensuring better quality, stability, and relevance
in measurements.

1.2.3. Uncertainty Methods Comparison

Table 1 presents a comparison of the conventional and unconventional methods for
estimating measurement uncertainties.

Table 1. Summary of uncertainty calculation methods, showing their respective strengths
and weaknesses.

Uncertainty Method Strengths Weaknesses

GUM/ISO

• Approved by the ISO committee and supported by
most metrologists

• Established for standard surfaces
• Takes into account multiple sources of uncertainties

• Difficult to apply to real surfaces
• Time effect not taken into account
• Could be difficult to implement for

non-linear effects
• Time consuming

X, Y mapping
• Mapping visualisation and correlation with the

surface gradients

• Sensitive to specimen drift
• Depends on the number and frequency of

map acquisitions

Allan deviation (lateral
and temporal)

• Time effect taken into account
• Non-stationary noise detected (drift, spikes,

modulation or regime changes)

• Method more difficult to implement than ISO
25478-600/700 [35,36]

• Noise distribution is not clearly Gaussian,
making it difficult to model

Correlation
• Easy to implement
• Trend modelling is straightforward

• Uncertainty quantification is not direct
• Height sensitivity to outliers’ map values

Statistical index

• Allows for the clear assessment of the
instruments’ performances

• Includes four type of indicators which
are complementary

• Adapted to real surfaces and comparisons

• Can be difficult to implement directly
• Statistical knowledge required
• Roughness parameter selection is not direct in

assessment of the instrument performance

1.3. Objectives

The primary objective of this paper is to develop a methodology based on a statisti-
cal index (here the Quality Index) for identifying reliable roughness parameters coming
from a given surface topography (surface #080/#120) and the instruments used (S neoxTM

Sensofar®, Terrassa, Spain), including Focus Variation, Confocal and Interferometry pro-
filometers). This involves evaluating parameters both through direct raw data analysis
and a developed statistical index (Quality Index). An important aspect of this study is to
identify the best and worst parameters which highlight measurement problems, and to
study the worst parameters to know if they can be valuable indicators.

To achieve this, four novel indicators were developed based on the Quality Index
(QI): the percentage of outliers of the roughness parameter values, the number of modes,
and the homogeneity of QI. The percentage of outliers is calculated from the raw data to
identify values that deviate from the main population. Subsequently, the QI is applied
to each roughness parameter, grit level, and measurement mode. This process allows for
the computation of two additional indicators based on the QI distribution: the number of
modes in the QI distribution and the homogeneity which reflects the ability to fit the QI
distribution using unimodal and polymorphic modelling. The goal is to assess whether
measurement conditions (such as measurement plans and instrument modes) or the level
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of surface grinding influence the quality index through a comparative assessment of
these indicators.

This methodology aims to identify reliable parameters and explain discrepancies
through topographical analysis. It includes comparing the raw data approach with sta-
tistical index analysis to decide if the outliers of the roughness parameter values should
be removed from the database, and validating the results with statistical indexes. Finally,
we will discuss how this new methodology could replace or complement existing uncer-
tainty calculation methods, which are often limited to specific cases, thus providing a more
generalized approach.

2. Materials and Methods
2.1. Surface Description

The TA6V material was selected for its ability to maintain surface conditions. Two TA6V
rods, of 10 mm thickness and 30 mm diameter, were cut using a machine with a diamond
cutting disc, and pre-ground with a Silicon Carbide (SiC) grinding paper P#320 to remove
cutting scratches and residual stresses. They were then ground with SiC papers from grit
P#80 to grit P#1200 for 2 min each, at 300 rpm, with a normal force of 30 N. Finally, one
specimen was ground with P#80 (called #080) and the other with P#120 (called #120) for
15 min, at 300 rpm, with a normal force of 30 N, using water lubrication. The surface
mechanisms are described in Appendix B.

2.2. Measurement Description
2.2.1. Instrument Settings

The S neoxTM (Sensofar®, Terrassa, Spain) 3D optical profilometer was chosen to carry
out the measurement campaign, supporting Focus Variation (FV), Confocal Microscopy
(CM), and Coherence Scanning Interferometry (CSI). The FV and CM modes used a green
LED light source and a 20× EPI Nikon lens, while the CSI mode employed a white LED
light source and a 20× DI Mirau lens. The system featured a 1.2-megapixel camera with
a pixel size of 0.69 µm, offering Z-scaling [56] of 8 nm for continuous CM and FV modes,
and 1 nm for CSI mode. The vertical scan range was configured to 128 µm for FV and CM
modes, and 30 µm for CSI mode.

2.2.2. Measurement Strategy

A dedicated measurement plan was used to perform measurements [54]. The mea-
surement process was automated. This measurement plan included a multi-measurement
strategy: 30 zones per specimen (30 repetitions) and 10 iterations at each given location. The
zones were randomly determined at the beginning of the measurement process, then set
for the entirety of the study and for the three instrument modes. Each measurement lasted
between 1 and 3 s. Each measurement presented raw data without any post-processing.
The measurements were of the elementary surfaces, avoiding stitching, and thus ensuring
detailed topographies sufficient for statistically robust roughness-parameter calculations.

Figure 1 shows the measurement order according to the two grit levels (in green),
the three instrument modes (in red), the repetitions (in blue) and the iterations (in black).
For instance, during 1 iteration step, 30 repetitions are performed, and 60 grit alternations
are made.

Figure 2 allows for the illustration of the measurement process according to the rep-
etitions, the iterations and the alternance between the grit levels. It is specified that the
grit level alternance is made at each measurement. The repetitions are incremented at
each position on a given specimen, as shown in Figure 2. After measuring all measure-
ment repetitions, i.e., all positions on the surface, a new measurement cycle is performed,
corresponding to the iteration step. This measurement process is carried out for all in-
strument modes without removing the specimen, to measure the same area and to have
comparative measurements.
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2.3. Data Post-Processing
2.3.1. Topography Processing

The surface post-processing, performed with MountainsMap®, is simplified to facil-
itate direct comparison of measurements, without the need for operator intervention to
clean the surface. Figure 3 illustrates the difference in roughness parameter calculation
between a raw surface and a surface where a second-order removal form was applied.
Removing the form significantly influences the results, highlighting the necessity of this
step in our case. No S-filter or C-filter was applied to the surface topographies, to ensure
that the comparison remains unaffected by image processing.
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of some roughness parameters.

2.3.2. Index Computation

To simplify the analysis and avoid working directly on the raw data of roughness
parameters, a series of statistical indexes was developed [54]. In this publication, only the
Quality Index (QI) is considered for the evaluation of the measurements. QI measures
the quality of the measurement for each roughness parameter, defined as a signal-to-
noise ratio between the roughness-parameter-inter-position (RP-inter-position) and the
roughness-parameter-intra-position (RP-intra-position). For the computed values, a ratio
is determined between RP-inter-position and RP-intra-position to create histograms of
QI values.

RP-intra-position represents the measurement variability within the iterations per-
formed at each position (30 repetitions per surface) on the two ground surfaces. Each
series has its own standard deviation, according to a given roughness parameter. RP-
inter-position represents the topographical variability between repetitions (30 positions
per surface) with 10 iterations (10 measurements at the same position) on the two ground
surfaces. Each set of repetitions has its own roughness-parameter standard deviation.

Additionally, four new indicators based on the Quality Index Probability Density
Function (QI PDF) have been developed to assess the reliability of the parameters under
different measurement modes used and grit level measured. These indicators include the
following: the mean value of QI (called Mean_Q, Equation (1)), the percentage of outliers in
the raw dataset (referred to as the %-Out Index), the homogeneity of QI, which is the ability
of the QI PDF to fit a unimodal polymorphic distribution (referred to as the Homo_Q), and
the number of modes present in the QI PDF (referred to as the NBmode Index).
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Mean_Q(RP, M, G) =
∑n

i=1 QIi(RP, M, G)

n
(1)

• RP: roughness parameter
• M: instrument mode
• G: grit level
• n: number of QI values

Homo_Q is an indicator used to assess the quality of the fitting of a chosen statistical
model in relation to the QI PDF. First, QI PDF is fitted using a unimodal and polymorphic
distribution, specifically the Johnson SU model [57]. The Johnson SU distribution is used
here, as this is characterized by four shape parameters (γ, δ, σξ) (Equation (2)), which
offer considerable flexibility for modelling a wide range of data distributions. The shape
parameter γ adjusts the curvature of the distribution, affecting its skewness and overall
shape. The location parameter δ shifts the distribution along the value axis, positioning
its central tendency, such as the mode or median. The scale parameter σ controls the
dispersion of the distribution, influencing its spread and standard deviation. Lastly, the
location parameter ξ affects the distribution symmetry and its central location, influencing
its skewness and kurtosis. By convention, δ > 0 and σ > 0.

Z = γ + δsinh−1
(

X − ξ

σ

)
(2)

Secondly, a χ2 calculation is made between the data set and the Johnson SU fitting,
to determine the ‘quality’ of the statistical model adjustment. The number of histogram
classes for which the histograms are calculated is different. Therefore, this factor has to be
taken into account for comparison purposes. Finally, thanks to this degree of freedom, we
can build the Homo_Q indicator according to Equation (3).

Homo_Q(RP, M, G) =
χ2(RP, M, G)

D f (RP, M, G)
(3)

• D f = k − 1 − p (Degree of Freedom)
• k: number of histogram classes
• p: number of Johnson SU model parameters

The NBmode represents the number of modes in the probability density function of QI
by utilizing a procedure that counts the modes after selecting an appropriate bandwidth. A
histogram is generated with an overlaid kernel density estimate, where the bandwidth is
carefully chosen to ensure an accurate representation of the distribution.

In summary, the optimal configuration of indicators includes a higher value of Mean_Q,
a lower value of Homo_Q, and a lower value of NBmode for a reliable parameter. It is noted
that a low %-Out is preferred.

2.3.3. Roughness Parameter Ranking Method

Since a global view combining all new indicators cannot be analysed directly, a ranking
strategy is adopted to identify the most reliable roughness parameters. The approach
involves creating a primary criterion called severity, based on the Mean_Q, Homo_Q, and
NBmode indicators. The percentage of outliers is excluded from the severity criterion, as
data have already been cleaned (outliers are removed from data).

The severity rate is determined by the ranking position of each roughness parameter
across different measurement configurations. These ranking positions are derived from
the charts presented in Appendix A. A function defined and called Rk is used to rank the
parameters from 1st to 50th (corresponding to the 50 roughness parameters calculated
for the study). If two parameters have the same value for a given indicator, they share
the same rank, and the subsequent parameter does not receive the next rank but skips to
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the following position. The severity rate, expressed as a percentage, is calculated using
Equation (4).

Sev =

(
Rk−1(Mean_Q)× Rk(Homo_Q)× Rk(NBmode)

)
NP3 × 100 (4)

• Sev: severity rate of a given roughness parameter for a specific measurement mode
and grit level;

• Rk: ranking position of the roughness parameter (increasing order);
• Rk−1: ranking position of the roughness parameter (decreasing order);
• Mean_Q: mean value of QI for a given roughness parameter in a specific measurement

mode and grit level;
• Homo_Q: homogeneity value of QI for a given roughness parameter in a specific

measurement mode and grit level;
• NBmode: number of modes of QI PDF for a given roughness parameter in a specific

measurement mode and grit level;
• NP: total number of parameters (in this case, 50).

2.3.4. Summary of the Methodology

Figure 4 presents the methodology adopted to analyse the results obtained from QI.
Firstly, the roughness parameters are plotted as timestamp visualization, parameter by
parameter, for each measurement mode and grit level. At this step, three aspects are
investigated: the stability through the iteration series, the topographic representativeness
of the parameter regarding the measured zones, and the global way of the data populations.
For the stability and the representativeness, the analysis is conducted directly through the
monitoring, and hypotheses can be made about the reliability of the parameter a priori. In
parallel, the QI values and its PDF are computed, allowing us to obtain the mean value of
QI, the homogeneity of QI and the number of PDF modes.

Sometimes, roughness parameters are more prone to have outliers in their results. For
this reason, it is necessary to clean the data in each case. An algorithm is used to remove
these outliers, to make all the cases studied comparable. The outliers are removed from
the dataset according to the MCB method as explained in Appendix C. A topographical
inspection could be also performed to determine the origin of the outliers if a difference
between the a priori and a posteriori result is noted, in order to try to identify the physical
causes. The aim is to link the parameter behaviour with the measurement fluctuations.

A new analysis on timestamp charts can be also conduced, identical to the previous
one, but without outliers, to determine firstly if the cleaning process is correct, and in order
to have an idea if the parameter is reliable a posteriori through the iteration series or the
topographic representativeness. In parallel, QI is observed again, also depending on the
heterogeneity of the new QI values compared to a normal distribution and the number of
modes in the new QI PDF. The goal is to determine if a good quality is obtained a posteriori
by comparison of QI charts.

The complete set of results from the various indicators is organized according to
the measuring instruments and grinding grades, to establish a ranking of the roughness
parameters based on the indicator values. For each combination of instrument, grinding
grade, and roughness parameter, the values of Mean_Q, Homo_Q, and NBmode are ranked.
This ranking helps to identify the best roughness parameter in each scenario. This ranking
is made according to a severity rate described in Equation (4).

After completing a ranking for each scenario, it is necessary to summarize all the
rankings. A severity rate threshold is set at 5%, allowing us to count the number of times
a roughness parameter falls below this limit. This will provide an overview of the most
reliable and least stable parameters in our study.
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3. Results and Discussion
3.1. Novel Indicators Applied on the Sa Parameter

In our previous article [54], four indexes were used to evaluate the performance of the
S neoxTM (Sensofar®, Terrassa, Spain) instrument with the Sa parameter concerning the
two grit levels and the different measurement modes. Figure 5 presents the results of QI
and the new indicators described above. This makes it possible to know if the Sa roughness
parameter is reliable.
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Figure 5. Quality Index computed for the Sa roughness parameter (a), raw Sa values versus 
timestamp (b) and calculation of the new indicators (%-Out, NBmode, Homo_Q, Mean_Q) (c) for each 
instrument mode and grit. 

As explained in the previous article, QI is better for the CSI mode and QI is equivalent 
for the FV and CM modes. It can also be noted that no significant difference in QI is seen 
between two grit levels for a given instrument mode. Regarding Figure 5b, the Sa values 
seem to form a homogeneous population for the grit #080 (circle markers) and grit #120 
(triangular markers) for each instrument mode. 

This first approach allows us to compare the measurement modes and the grits, but 
other information is needed to choose the best roughness parameter. Sa has, globally, a 
low number of outliers (Figure 5c). This confirms that the populations in Figure 5b are 
homogeneous. The mean values of QI are higher for the CSI mode, as was said in a previ-
ous analysis [54], but it is also highlighted that QI is slightly higher for FV than CM. The 
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Figure 5. Quality Index computed for the Sa roughness parameter (a), raw Sa values versus timestamp
(b) and calculation of the new indicators (%-Out, NBmode, Homo_Q, Mean_Q) (c) for each instrument
mode and grit.

As explained in the previous article, QI is better for the CSI mode and QI is equivalent
for the FV and CM modes. It can also be noted that no significant difference in QI is seen
between two grit levels for a given instrument mode. Regarding Figure 5b, the Sa values
seem to form a homogeneous population for the grit #080 (circle markers) and grit #120
(triangular markers) for each instrument mode.

This first approach allows us to compare the measurement modes and the grits, but
other information is needed to choose the best roughness parameter. Sa has, globally, a
low number of outliers (Figure 5c). This confirms that the populations in Figure 5b are
homogeneous. The mean values of QI are higher for the CSI mode, as was said in a previous
analysis [54], but it is also highlighted that QI is slightly higher for FV than CM. The PDF
form plotted in Figure 5a gives information about the QI values distribution, i.e., the beauty
of the histograms. Homo_Q is better for the FV mode (lowest Homo_Q values for the
two grit levels) than the others. This means that the unimodal and polymorphic model is
more capable of fitting the QI PDF of the FV mode. Moreover, FV has the most ‘beautiful’
histogram of QI. It can be noted that Homo_Q is higher for the grit #120 than the grit #080
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for the CM and CSI modes. This means that the grit #080 has more ‘beautiful’ histograms
than the grit #120, unlike the FV mode which has similar Homo_Q values, probably due to
the smoothing effect during measurement.

The CSI and CM modes have the same number of PDF modes (one mode for #080 and
three modes for #120). The one and only mode for the grit #080 confirms that the histograms
are more ‘beautiful’ for this grit, as shown with a lower value of Homo_Q. The FV mode
has the same number of modes for the two grits. The number of modes is therefore used to
create a two-level PDF discrimination for QI.

By taking into account all these results, and in particular the FV results, Sa cannot be
the only roughness parameter to be analysed. This is why a lot of roughness parameters
from ISO and EUR [58] standards are studied in this paper, the aim being to find the most
reliable parameters to describe the measurements. The number of outliers in the raw data
is low for Sa, but it is not the case for the other parameters. As an example, the outlier’s
effect for the Sp parameter is presented in Figure 6.
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Figure 6. Raw values of the Sp roughness parameter versus acquisition time, as presented in Mor-
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The Sp parameter is presented here, as this parameter is very sensitive to map fluc-
tuations, and data clean-up could be needed. The average percentage of outliers for the 
grit #080 is 16.89% (+2.78%/−4.89%) and 11.55% (+4.48%/−6.55%) for the grit #120. It can be 
noted in Figure 6 that the range of the Sp values has the same order of magnitude for the 
grit #080 and #120, both before and after removing outliers. The difference in the data 
population between the two grits is therefore more easily established, and the Sp values 

Figure 6. Raw values of the Sp roughness parameter versus acquisition time, as presented in
Morphomeca Monitoring: with outliers for grit #080 (a) and grit #120 (c), without outliers for grit
#80 (b) and grit #120 (d).

The Sp parameter is presented here, as this parameter is very sensitive to map fluc-
tuations, and data clean-up could be needed. The average percentage of outliers for the
grit #080 is 16.89% (+2.78%/−4.89%) and 11.55% (+4.48%/−6.55%) for the grit #120. It can
be noted in Figure 6 that the range of the Sp values has the same order of magnitude for
the grit #080 and #120, both before and after removing outliers. The difference in the data
population between the two grits is therefore more easily established, and the Sp values for
the grit #080 are more dispersed than the grit #120, due to a higher relief in topography. It
can therefore be questioned how the removal of these outliers influences the QI PDF.
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3.2. Example of Cases of QI Regarding the Homogeneity of PDF, the Number of PDF Modes, and
the Percentage of Outliers with and Without Outliers

As introduced earlier, three indicators are built based on the QI. These characterize
the QI to determine the reliability of roughness parameters regarding their measurement
representativeness and repeatability.

Figure 7 presents various cases of indicator performance with no removed data (with
outliers), including the best Mean_Q and the worst Homo_Q (Figure 7a), the worst Mean_Q
(Figure 7b), the highest NBmode (Figure 7c), the best Homo_Q (Figure 7d) and the lowest
(Figure 7e) and highest (Figure 7f) %-Out. Table 2 presents the values of the indicators
associated with Figure 7.
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Figure 7. QI PDF (i) and timestamp graph (ii) with outliers for different cases of indicator performance:
the best Mean_Q and worst Homo_Q (a), the worst Mean_Q (b), the highest NBmode (c), the best
Homo_Q (d), the lowest %-Out (e) and the highest %-Out (f).
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Table 2. Values of the indicators for each performance case with outliers illustrated in Figure 7.

Observation Instrument
Mode

Roughness
Parameter

Grit

Indicator Case #080 #120

Mean_Q Best
CSI Sal

532.99 480.48
Homo_Q Worst 150.13 250.72
Mean_Q Worst FV Sds 8.80 6.71
NBmode Highest CM Smr 2 4
Homo_Q Best FV Vmc 1.43 0.91

%-Out (%) Lowest CM Sal 0 0
%-Out (%) Highest FV Sp 21.37 14.33

In general, no major difference in Mean_Q is observed between the two grits for
each case, indicating that the parameters are consistent across grit levels. It is important
to note that the parameter is selected based on a global ranking across all instrument
modes. It appears that some QI PDF are clearly not smooth and contain multiple modes,
more especially in Figure 7a,c,e,f. The irregular shapes are highlighted by the number of
modes, the homogeneity, and the percentage of outliers. In the study, the Sal parameter
is highlighted three times as a specific parameter: it is ranked as one of the best Mean_Q
values for the CSI mode in Figure 7a, and one of the lowest %-Out values for the CM mode
(Figure 7e), but Sal is also highlighted as the worst parameter for Homo_Q for the CSI mode.
The Sds parameter for the FV mode has one of the worst Mean_Q values but a low number
of PDF modes. Additionally, the Smr parameter shows a high number of PDF modes for
the grit #120 and for the CM mode, while the Sp parameter has one of the highest numbers
of outliers.

Given the percentage of outlier points for certain roughness parameters, it may be
necessary to clean the data before calculating the Quality Index and the new indicators.
However, this cleaning is not intended to make the ‘poor parameters’ reliable, but rather
to prevent values that deviate too much from the parameter data from being taken into
account (graphs presenting parameter values versus time). This allows us to obtain valuable
indicators for roughness parameters having a few unstable points, which disturb the
QI results.

Similar to Figure 7, Figure 8 presents the same cases of indicator performance after
outlier removal, allowing for a comparison of the indicator values with (Table 2) and
without outliers (Table 3). Overall, it is evident that the amplitudes of QI PDF remain
consistent for the charts with removed outliers, except in the case of a higher percentage of
outliers. This indicates that the outlier removal method does not significantly affect the
Mean_Q, Homo_Q, or the number of mode indicators. It is also reassuring that the shapes of
the QI distributions are generally similar. The outlier percentage is remembered, and is the
same as before (Table 2).

Table 3. Values of the indicators for each performance case without outliers illustrated in Figure 8.

Observation Instrument
Mode Parameter

Grit

Indicator Case #080 #120

Mean_Q Best
CSI Sal

531.26 472.80
Homo_Q Worst 96.29 311.17
Mean_Q Worst FV Sds 8.87 6.73
NBmode Highest CM Smr 2 5
Homo_Q Best FV Vmc 2.51 1.94

%-Out (%) Lowest CM Sal 0 0
%-Out (%) Highest FV Sp 0 0
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Figure 8. QI PDF (i) and timestamp graph (ii) without outliers for the same cases of indicator
performance presented in Figure 7: initially the best Mean_Q and worst Homo_Q (a), initially the
worst Mean_Q (b), initially the highest NBmode (c), initially the best Homo_Q (d), initially the lowest
%-Out (e) and initially the highest %-Out (f).

For example, a notable difference in QI PDF is observed in the case of the Sp parameter,
due to the significant number of removed data: a high percentage of outliers is computed
(21% for grit #080 and 14% for grit #120). Appendix D shows the indicators without outliers
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for Sp and the FV mode (Figures A3 and A4). Thus, the outlier removal method only
impacts QI PDF for parameters with a higher percentage of outliers, validating the method
application. It is also worth noting that the Mean_Q values are sometimes slightly higher
in the cleaned QI results, because the data cleaning algorithm reduces the topographical
representation (roughness parameter inter-standard deviation) without modifying the
measurement fluctuation (roughness parameter intra-standard deviation). This results in
an increase in QI (signal-to-noise ratio).

3.3. Ranking of Roughness Parameters

To conclude, while these indicators effectively describe the behaviour of roughness
parameters, a case-by-case analysis for all parameters is impractical. This raises the impor-
tant question of how a multi-parameter analysis can be conducted based on these indexes,
emphasizing the need for a more integrated approach.

Figure 9 gives an example of the ranking detailed in Appendix E, showing the severity
values in percentage for the three instrument modes and the two grit levels. It appears that
the severity rates are generally higher for the grit #080 for the CM and CSI modes, likely
due to the greater texture. This indicates that the roughness parameters have generally a
low quality and a poor PDF for the grit #080 compared to that for the grit #120. However,
this is not the case for the FV mode, where higher values are observed for the grit #120.
As previously shown, the FV mode behaves differently from the other two modes when
comparing grits.
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Figure 9. Example of roughness parameter ranking, depending on the severity rate. 

A threshold of 5% is chosen to distinguish the reliable roughness parameter and un-
stable parameters. A 5% threshold value is used as a convention, representing the level at 
which the severity rate of a roughness parameter is considered unstable based on the in-
dicators Homo_Q, Mean_Q, and NBmode. These indicators are calculated from the Quality 
Index (QI) probability density function, to determine whether the QI values can be con-
sidered for further analysis. In each case, approximately half of the roughness parameters 
are below 5% showing the threshold is correctly chosen, but only some parameters are 
common for all grits and instrument modes. 

Figure 10 illustrates how often a parameter falls below the 5% severity rate, as shown 
in Appendix E. The six scenarios are analysed based on the measurement conditions. The 
occurrence values range from 0 to 6, with 0 indicating the worst parameters (those that 
consistently exceed 5% severity) and 6 indicating the best parameters (those that consist-
ently stay below 5% severity). For example, Sa is higher than 5% of severity for the cases 
FV mode/grit level #080, CM/#120 and CSI/#120. The occurrence value is thus 3. In 

Figure 9. Example of roughness parameter ranking, depending on the severity rate.

A threshold of 5% is chosen to distinguish the reliable roughness parameter and un-
stable parameters. A 5% threshold value is used as a convention, representing the level
at which the severity rate of a roughness parameter is considered unstable based on the
indicators Homo_Q, Mean_Q, and NBmode. These indicators are calculated from the Quality
Index (QI) probability density function, to determine whether the QI values can be con-
sidered for further analysis. In each case, approximately half of the roughness parameters
are below 5% showing the threshold is correctly chosen, but only some parameters are
common for all grits and instrument modes.

Figure 10 illustrates how often a parameter falls below the 5% severity rate, as shown
in Appendix E. The six scenarios are analysed based on the measurement conditions.
The occurrence values range from 0 to 6, with 0 indicating the worst parameters (those
that consistently exceed 5% severity) and 6 indicating the best parameters (those that
consistently stay below 5% severity). For example, Sa is higher than 5% of severity for the
cases FV mode/grit level #080, CM/#120 and CSI/#120. The occurrence value is thus 3. In
addition, it can be noted that each occurrence is represented in Figure 10, showing the 5%
threshold is correctly chosen.
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Figure 10. Occurrence of the parameters having a severity rate below 5% for each grit level and 
instrument mode presented in Appendix E. 

Notably, the best roughness parameters are Sal (spatial parameter), Sz (height pa-
rameter), and Sci (functional indice) with an occurrence of six (six times below 5%). Ad-
ditionally, Vm, Vmp, Vvv, Svk, Sk, Vv, Sdc, Smr2, Sxp, Svi, Sha, Shv, and Ssk can also be 
considered reliable parameters, as they appear in five out of six cases. It appears that the 
least reliable roughness parameters are clearly Sdq and S5p, because in all cases they al-
ways have more than 5% of severity rate. It could be considered that the Smr, Sv, FLTv, 
Sku, FLTy parameters are unstable too. 

More precisely, the focus is on the best and the worst ranked parameters, to make the 
link between the parameter definition and the obtained results (physical causes): 
• The Sal parameter (Texture Aspect Ratio of the Surface) represents the autocorrela-

tion length of the map, expressed in wavelength. A higher Sal value indicates a 
greater presence of long wavelengths within the map. The Sal parameter is a key 
metric used to evaluate the anisotropy of a surface, meaning the directional proper-
ties of the patterns or textures present. It is especially useful for surfaces with regular, 
oriented textures, such as those produced by grinding or lapping processes, which 
often result in surfaces with distinct striations. For striated surfaces, such as those 
produced by grinding or polishing, Sal is directly related to the width and spacing of 
the striations. A surface with wide, well-aligned striations will have a low Sal, indi-
cating strong directionality. Conversely, if the striations are irregular or vary signifi-
cantly in spacing, Sal may increase, reflecting a loss of clear directional alignment. A 
high Mean_Q value for Sal indicates low dispersion of the Sal values across the itera-
tion series, highlighting broad topographic characterization. For the manufactured 
surfaces (#080 and #120), this suggests that the long wavelengths (wide cutting 
scratches on the surface) are dependent on the different measured areas, as evidenced 
by the wide variation in the Sal values. This shows that Sal is a good parameter for 
distinguishing between different measured areas, particularly regarding the noise 
observed in the iteration series. However, it is important to note that while variations 
in wavelength are averaged when calculating Sal, small variations within an iteration 

Figure 10. Occurrence of the parameters having a severity rate below 5% for each grit level and
instrument mode presented in Appendix E.

Notably, the best roughness parameters are Sal (spatial parameter), Sz (height parame-
ter), and Sci (functional indice) with an occurrence of six (six times below 5%). Additionally,
Vm, Vmp, Vvv, Svk, Sk, Vv, Sdc, Smr2, Sxp, Svi, Sha, Shv, and Ssk can also be considered
reliable parameters, as they appear in five out of six cases. It appears that the least reliable
roughness parameters are clearly Sdq and S5p, because in all cases they always have more
than 5% of severity rate. It could be considered that the Smr, Sv, FLTv, Sku, FLTy parameters
are unstable too.

More precisely, the focus is on the best and the worst ranked parameters, to make the
link between the parameter definition and the obtained results (physical causes):

• The Sal parameter (Texture Aspect Ratio of the Surface) represents the autocorrelation
length of the map, expressed in wavelength. A higher Sal value indicates a greater
presence of long wavelengths within the map. The Sal parameter is a key metric
used to evaluate the anisotropy of a surface, meaning the directional properties of the
patterns or textures present. It is especially useful for surfaces with regular, oriented
textures, such as those produced by grinding or lapping processes, which often result
in surfaces with distinct striations. For striated surfaces, such as those produced by
grinding or polishing, Sal is directly related to the width and spacing of the striations.
A surface with wide, well-aligned striations will have a low Sal, indicating strong
directionality. Conversely, if the striations are irregular or vary significantly in spacing,
Sal may increase, reflecting a loss of clear directional alignment. A high Mean_Q
value for Sal indicates low dispersion of the Sal values across the iteration series,
highlighting broad topographic characterization. For the manufactured surfaces (#080
and #120), this suggests that the long wavelengths (wide cutting scratches on the
surface) are dependent on the different measured areas, as evidenced by the wide
variation in the Sal values. This shows that Sal is a good parameter for distinguishing
between different measured areas, particularly regarding the noise observed in the
iteration series. However, it is important to note that while variations in wavelength
are averaged when calculating Sal, small variations within an iteration series may
have minimal impact on the Sal values. Additionally, Homo_Q of Sal is not particularly
strong, indicating that the QI ratio, which includes both intra-position and inter-
position standard deviations of Sal, may not be stable across different measured
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areas or throughout the iteration series (i.e., zone-dependent or time-dependent).
One of the main limitations of Sal in this context is its sensitivity to the size of the
striations. If certain striations are significantly larger or more irregular than the rest,
they can disproportionately influence the Sal value, even if they are few in number.
This creates a high statistical variability, making it difficult to obtain a representative
measure of the surface’s anisotropy. To address this variability, a highly effective
approach is to increase the measurement area using a technique called stitching. This
involves combining multiple local measurements of a surface into a single, larger
image. Stitching allows for the measurement of a greater portion of the surface, thus
incorporating more striations into the analysis. By increasing the number of measured
striations, the influence of rare, large, or irregular striations is minimized, leading to
more reliable and representative Sal measurements.

• The Sz parameter represents the maximum height of the surface, defined as the
difference between the highest peak and the deepest valley. The Sz ranking is reliable,
characterized by low Homo_Q and NBmode values, which suggest a well-defined
histogram and a satisfactory Mean_Q value. Due to differences in topographic features
between measured areas, a high dispersion in Sz can be observed. When taking
multiple measurements at different locations on a randomly textured surface, such as
a ground surface, the Sz parameter can exhibit significant variability, which is closely
related to the extreme value theory. Since Sz is based on the highest peaks and lowest
valleys of the surface, its value is highly sensitive to local irregularities, such as isolated
large peaks or deep pits. On a surface with random striations and irregular features,
different measurement locations may capture different extreme values, leading to
a wide range of Sz results. This variability arises because each measurement could
include a rare or extreme feature that disproportionately impacts the Sz value, despite
the overall surface texture being relatively homogeneous. According to extreme value
theory, which models the behaviour of maxima or minima in random systems, such
extreme events are expected to occur infrequently, but can significantly influence
the outcome when they do. This results in Sz being a less reliable indicator of the
overall surface roughness, as it is heavily influenced by outliers rather than reflecting
the typical texture of the surface. To address this variability, larger measurement
areas using stitching techniques can be employed to capture a more representative
sample of the surface, averaging out extreme features. Extreme value theory can also
be applied to better understand and model the behaviour of these extreme surface
features, particularly when they are critical to the application [59]. However, the ratio
between topographic representativeness and noise in the iteration series is sufficient to
consider Sz as a qualitative parameter, particularly given the robustness of the QI for
every measured area and iteration series, as reflected in the well-formed histogram.

• The Sci parameter is a roughness index that indicates core fluid retention, calculated as
the ratio of void volume in the core zone (from 5% to 80%) to the RMS deviation (Sq).
Mean_Q of Sci is generally good, outperforming Sz, due to high deviations between
different measured areas, which is linked to variations in the surface topographies.
NBmode of Sci, while higher than Sz and Sal, is still acceptable. This could be attributed
to the presence of high peaks on the surface (groove pile-up) or third core inclusions,
as the calculation of Sci is highly sensitive due to its 5% threshold, leading to multi-
ple modes in QI PDF. Nevertheless, Homo_Q remains favourable for this parameter,
indicating that the NBmode values are closely aligned or nearly merged.

• The Sdq parameter represents the RMS slope of the surfaces, and appears to be unreli-
able in terms of ranking. However, it is noteworthy because it indicates that slope is a
highly sensitive feature of the surface [49]. Despite this, Sdq performs well in terms of
QI, showing that the ratio of deviation between topographical representativeness and
noise in the iteration series is generally good. However, the high NBmode and Homo_Q
values suggest a local instability in Sdq QI values, both intra- and inter-position. This
instability likely stems from the physical limitations of the instruments in measuring
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slope. When the slope limit is reached, some pixels may be measured inconsistently,
leading to variable pixel quality [60]. The Sdq parameter is crucial for assessing surface
roughness, but it is highly sensitive to the sampling interval used in measurements.
This sensitivity arises because the Sdq calculation involves the derivative of the surface
profile, and any noise present in the data can significantly affect the accuracy of this
derivative. A larger sampling interval can amplify noise during derivative calculations,
as it may exaggerate random fluctuations in the data, leading to less accurate Sdq
values. Conversely, a smaller sampling interval can enhance precision by capturing
more detailed surface features, but it increases the data volume and may also magnify
the effects of measurement noise. To mitigate these issues, several approaches can be
employed. Data filtering techniques, such as the Gaussian filter [61], can smooth the
data before derivative calculation, reducing noise while preserving essential surface
characteristics. Choosing an optimal sampling interval is essential to balance detail
and noise effects. Advanced interpolation methods, like B-spline interpolation, can
offer more robust performance against noise compared to Lagrange interpolation by
providing a smoother approximation of the surface profile. Our sensitivity analysis
can help us to understand how variations in the sampling interval impact Sdq calcula-
tions, allowing for adjustments in measurement and processing methods, to ensure
reliability. By addressing our indexes and implementing appropriate solutions, the
accuracy and reliability of Sdq measurements can be significantly improved.

• The S5p parameter belongs to the segmentation-based family. The Wolf pruning al-
gorithm is used to eliminate insignificant motifs by merging smaller ones into larger
ones. This parameter is sensitive to the calculation method, representing the average
height of the five peaks with the highest global peak height within the defined area. As
a result, the area computation is sensitive to small variations in surface iteration series,
as evidenced by a poor ranking of Mean_Q for this parameter. Furthermore, the high
NBmode and Homo_Q values indicate instability in the inter- and intra-position stan-
dard deviations of S5p values. The variability in segmentation caused by noise means
that the significant peaks identified may differ from one measurement to another,
complicating the consistency and accuracy of the results. To mitigate this issue, several
approaches can be employed. Data filtering techniques, such as filters [62], can smooth
out the noise before segmentation, helping to preserve essential surface characteristics
while reducing random fluctuations. Performing repeated measurements at the same
location and obtained a mean map can also help to lessen the impact of noise and
provide a more stable assessment of surface quality [50]. Advanced pruning methods,
like the Wolf pruning threshold, can be used to refine the results by focusing on the
most significant data points and minimizing the influence of noise. By addressing the
challenges of noise and segmentation variability through these strategies, it is possible
to achieve more reliable and accurate evaluations of surface quality.

An analysis of the roughness parameter family reveals that the functions and related
parameters (highlighted by a red box) are generally reliable, particularly the volume
parameters. However, it also indicates that the form parameters are globally unstable (in
yellow). As for the height parameters, they exhibit either reliability or instability, likely
due to the calculation method which directly depends on the heights of the maps, and
can cause some instabilities in results. No further comments can be made on the other
roughness parameter families, as the parameters within them are uniformly represented in
the ranking. Finally, the severity rate can describe as a Quality indicator of a Quality index,
allowing us to validate whether a Quality index computed on roughness parameter values
is good or not. This answers the following question: if a set of parameters is known for its
physical relevance, which is the most reliable parameter?

4. Conclusions

Previously, four indexes were developed to characterize the measurements performed
with a Sensofar S neox™ (Sensofar®, Terrassa, Spain): quality index, stability index, drift
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index and relevance index. Each index was calculated on the Sa values computed from
topographies obtained according to a specific measurement plan, named Morphomeca
Monitoring. In this paper, only the quality aspect is studied through the Quality Index (QI)
and four new indicators are created based on this index: the mean QI value (Mean_Q), the
QI homogeneity (Homo_Q), the number of modes in the QI probability density function
(NBmode) and the percentage of outliers of the parameter values (%-Out). These indicators
were firstly studied for the Sa parameter, then for 50 roughness parameters (ISO and
EUR standards).

If only the Sa parameter is considered, the analysis of QI across different instrument
modes and grit levels shows that the CSI mode consistently has the highest Mean_Q, while
the FV and CM modes perform similarly. The FV mode is notable for its superior histogram
homogeneity (Homo_Q) and more consistent QI distributions, which are less influenced
by grit levels. However, the FV mode tends to smooth the surface topography, which can
introduce bias in the conclusions. For example, no significant differences are observed
between grit #080 and grit #120 across any instrument modes. This limitation highlights
the need for a multi-parameter approach to fully capture surface characteristics.

Additionally, the data of the Sa parameter have relatively few outlier values, which
is why an outlier removal method was applied in this study. This method is necessary to
harmonize parameters with one another. Generally, removing outliers does not significantly
affect key indicators like Mean_Q or Homo_Q, except in cases with a high percentage of
outliers, such as the Sp parameter.

To evaluate the roughness parameters across different instrument modes and grit
levels, a ranking system was established using severity rates. A 5% threshold was set to
identify reliable parameters. Through this process, Sal, Sz, and Sci emerged as the most
reliable parameters, while others like Sdq and S5p were consistently unstable. The analysis
also showed that function-related parameters, especially those related to volume, tended to
be more reliable, whereas form parameters were generally unstable.

The proposed method adopts an overview of a large set of roughness parameters,
allowing us to investigate a complementary point of view regarding the surface properties
and features. The method takes into account the fact that the measurements could be
performed with different instruments and different levels of surface generation intensity.
However, it can be noted that just because a parameter is reliable, it does not necessarily
have physical significance in the study of the surface generation process.

All of the approach is based on the QI but, as shown in [54], others indexes such as the
Drift Index (DI), Stability Index (SI) and Relevance Index (RI) exist, and could be included
in the study. A future work including all indexes is scheduled to find the criteria to rank
roughness parameters by following a global method allowing us to determine the best
instrument mode to measure a specified manufactured surface.

In the bibliography, a lack of knowledge is identified regarding the reliability of the
roughness parameters with regard to a specific measurement condition (instruments and
measurement plan) and intrinsic properties of a surface. These findings underscore the
complexity of selecting appropriate roughness parameters and the importance of using a
comprehensive, integrated approach to achieve accurate and reliable surface measurements.

To conclude, this study proposes a novel method based on the statistical analysis
of roughness parameters and a severity ranking system to highlight the most reliable
parameters computed from surface topographies obtained using a set of instruments and
a specific measurement strategy. This method can be applied to all surface types and for
other roughness parameters, even if only one instrument is analysed, although the ranking
step will show only two values (1 for parameters below 5% and 0 for parameters above
5%). When only a single instrument is studied, the results become more specific, and are
not meant for comparative analysis.

As a future perspective, a complementary study could be conducted on other surface
conditions, such as sandblasting, femto-laser, or oxidation, to identify the most reliable
parameters, regardless of surface type. This would help determine if certain parameters
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are sensitive enough to be attributed to specific surface types. In such cases, a particular
parameter could be linked to a specific device/surface combination to monitor measure-
ment quality. It can also be noted that the influence of instruments settings is not taken into
account in the field of this study. Another work can be conducted to show the influence of
magnification, acquisition velocity or other relevant settings on the roughness parameter
reliability, the quality index or the others indexes developed in [54].
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Appendix A. Optical and Geometrical Surface Properties, with Regard to
Instrument Performance

Table A1. Instrument performance, with regard to intrinsic surface properties.

Type Properties Definition
Instrument Performance

CSI (VSI) CM (Field) FV
Rating Rating Rating

Optical

Reflection (mirror, polished surfaces) Light reflected by the surface +++
[63–67]

++
[68] +

Absorption (carbon layers, copper oxides,
black ceramics, textured silicon) Ability to absorb certain wavelengths + + +

Transmission (optical lens,
transparent layer) Ability of light to pass through the surface +++

[21,22,60,69]
++

[70,71]
+

[70]

Geometrical

Flatness Degree from which a surface deviates from a
perfectly flat plane

+++
[22,72]

+ +

Form Degree from which a surface bends or curves ++
[21,73,74]

++
[20]

+++
[75]

Local slopes Local gradient of surfaces ++
[60,71,73,76,77]

+++
[78–80]

+
[81]

Texture (skin, grounding, turning, textile) Including roughness, waviness, and
pattern directionality

++
[16,81–84]

++
[81,85,86]

+++
[18,81,85,87]

Table A1 presents a comparative analysis of the CSI, CM, and FV instruments in
relation to surface properties, indicating the affinities of each instrument using a notation
system (+, ++, +++) in increasing order.

The optical and geometrical properties are detailed here:

• Optical properties:

o Reflection: the light is either reflected in a single direction, like a mirror, or
diffusely reflected in many directions, as seen on matte surfaces. The FV instru-
ments are more sensitive to reflection than the CSI and CM instruments, due to
the focusing criteria (maximum contrast gradient between a pixel and its neigh-
bours). It is explained in [65] that the mirror measurement by conventional FV
is not possible.

https://www.digitalsurf.com/software-solutions/profilometry/
https://www.digitalsurf.com/software-solutions/profilometry/
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o Absorption: this is the ability of a surface to absorb certain or all light wave-
lengths, converting light energy into heat or other forms of energy. In other
words, this type of surface could be assimilated as a light trap. CSI is very
sensitive to absorption because the interferogram is based on the succession of
fringes and their intensities, while FV takes into account the contrast gradient
between one pixel and its neighbours, and CM cannot measure without light
projection on the CCD sensor through the pin hole. In this case, Atomic Force
Microscopy (AFM) is commonly chosen, as in [88,89], but the measurement
size and Z-amplitude are limited.

o Transmission: this refers to the capability of the light to pass through a surface.
Transmission is high for transparent materials and almost zero for opaque
materials. CSI is not too sensitive if a good scanning range is set [21], because
it uses constructive or destructive waviness [22]. As CM uses the principle of
laser focalization, it can be disturbed due to the upper and lower interface, as
explained in [70]. The FV, based on contrast criteria, cannot be used, due to
the lack of contrast gradient on the surface, as explained in [70]. CSI could be
slightly better than CM because noise could appear for CM, but CM is able to
detect a change in the refractive index.

• Geometrical properties:

o Flatness: this is the degree to which the concerned surface deviates from a
perfect plane. The majority of work with measurements on flat surfaces is
performed with CSI or AFM instruments. CSI instruments, particularly Phase
Shifting Interferometry (PSI) instruments, are preferred for flat surfaces, though
Vertical Scanning Interferometry (VSI) can also measure flatness, but not with
the same precision.

o Form: this refers to the global shape of the specimen. Measuring form requires
a high Z-scanning range, and in most cases, instruments using Focus Variation
are predisposed to measure this type of surface. CSI instruments, especially
VSI, are also capable of measuring form, but not on as large a scale as FV [21],
and the scale for CSI is more relative to low-frequency waviness in this case.
The Numerical Aperture (NA) is an important criterion for form measurement
with CSI. CM instruments have comparable performance to CSI for form mea-
surement, but like CSI, CM instruments have errors that increase with the
specimen slope [20,74].

o Local slope: this refers to the local variation in relief in surface morphology,
calculated from heights on measured topographic maps between two pixels,
commonly called the surface gradient. According to the literature, the most
effective instrument for measuring the local slope is the CM instrument, due
to its small lateral resolution. CSI instruments can also be effective, but the
numerical aperture of the lenses may limit acquisition and cause measurement
errors, due to a lack of signal. FV instruments are generally not capable of
measuring the local slope because of the smoothing effect inherent in this
technology [81].

o Texture: this refers to the entirety of surface features, representing the global
definition of surface characteristics. Surface texture can be seen as a summary
of the geometrical properties of the surface. The ISO 25178-2 [58] defines a
set of scale-limited features in three class: areal (hill and dale), line (courses
line and ridge line) and point (peak, pit and saddle point). This classification
is usually used in surface segmentation analysis. Generally, all instruments
with sufficient magnification or stitching area can measure surface texture, but
with their own abilities. FV instruments are more suited for this task, due
to their capability of handling high roughness levels (when surface texture
is high), and because a global surface description is often required. CM and
CSI instruments can be limited in this application at equivalent magnification
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because a large field of view (FOV) is required for texture measurement, but
they can also provide complementary information when small-scale textures
need to be measured. Some textures, such as skin surfaces, can pose challenges
due to light traps, especially with CSI instruments. Textures that include step-
like features can also be problematic for CM and CSI instruments as they may
lead to overestimation around the measured features.

Appendix B. Features of the Raw Surfaces

The ground surface (#080) measured in this paper is presented in Figure A1. Un-
derstanding the tribological aspects is essential for processing the surface topographies
and comprehending the behaviour of roughness parameters. It is shown that the ground
surfaces are composed of multi-scale features created by the abrasive grains, as in [90].
These features include deeper valleys at higher scales, resulting from the cutting mecha-
nism of the abrasive particles, as described in [11,91]. At a scale larger than the grain-size
distribution, the edges of the grains tend to be smoother, leading to less-pronounced
indentations and less-important valleys. Peaks become more prominent, and debris, in-
cluding large metal flakes mixed with abrasive particles, can be embedded in the surface.
This mix of adhesive and abrasive wear, as detailed in [92], further influences the surface
roughness characteristics.
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Figure A1. Surface features obtained by grinding process on TA6V. 
Figure A1. Surface features obtained by grinding process on TA6V.

Appendix C. The Outlier Detection Method

The outliers are detected with an algorithm presented in [93]. Among the four methods
presented in this paper, the Boxplot Method (BPM) is used here (Figure A2). This method
is based on the first quartile Q1 (25th percentile) and the third quartile Q3 (75th percentile).
Two thresholds are defined from these statistics: a lower cutoff (LC) and an upper cutoff
(UC) (Equations (A1) and (A2)).

LC = Q1 − 1.5 × IQR (A1)

UC = Q3 + 1.5 × IQR (A2)

• IQR = Q3 − Q1: Interquartile Range

This outlier’s detection method is robust because it is based on the Q1 and the Q3
and is less sensitive to outliers. In addition, the distribution skewness does not impact the
outlier’s detection, because the median is not taken into account (just the Q1 and the Q3).
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Figure A3. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), for
the FV mode and the grit #080: with outliers (a) and without outliers (b).
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Appendix D.2. Focus Variation (FV), Grit #120
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Figure A4. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), for
the FV mode and the grit #120: with outliers (a) and without outliers (b).

The Homo_Q values of the parameters Spc, Sdq and Ssk (respectively, 500, 2500 and
3000) are not displayed in Figure A4a because the other values are not clearly visible, due
to their higher magnitude.

Appendix D.3. Confocal Microscope (CM), Grit #080
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Figure A5. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), for 
the CM mode and the grit #080: with outliers (a) and without outliers (b). 
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the CM mode and the grit #080: with outliers (a) and without outliers (b).
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Appendix D.4. Confocal Microscope (CM), Grit #120
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Figure A6. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), for 
the CM mode and the grit #120: with outliers (a) and without outliers (b). 

The Homo_Q value of the parameter Sp (1800) is not displayed in Figure A6a because 
the other values are not clearly visible, due to their higher magnitude. 

  

Figure A6. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), for
the CM mode and the grit #120: with outliers (a) and without outliers (b).

The Homo_Q value of the parameter Sp (1800) is not displayed in Figure A6a because
the other values are not clearly visible, due to their higher magnitude.

Appendix D.5. Coherence Scanning Interferometry (CSI), Grit #080
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Figure A7. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), for 
the CSI mode and the grit #080: with outliers (a) and without outliers (b). 
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the CSI mode and the grit #080: with outliers (a) and without outliers (b).
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Appendix D.6. Coherence Scanning Interferometry (CSI), Grit #120

Metrology 2024, 4 669 
 

 

Appendix D.6. Coherence Scanning Interferometry (CSI), Grit #120 

 
Figure A8. Ranking of the roughness parameters for the indicators (NBmode, Mean_Q, Homo_Q), 
for the CSI mode and the grit #120: with outliers (a) and without outliers (b). 
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Appendix D.7. Conclusion of Roughness Parameter Ranking

In Figures A3–A8, the parameters Sds, Sp, Vmc, Smr, and Sal are highlighted as exam-
ples of application. These parameters were selected based on their performance described
in the section ‘Results’, as either the best or worst roughness parameters, according to the
four indicators. It is shown that Sds consistently ranks as the worst parameter in terms of
Mean_Q, regardless of the instrument mode and grit level. However, Sds does not exhibit a
high %-Out or a high value of Homo_Q, indicating that the raw data are stable and the QI
histograms are ‘beautiful’. In contrast, Sal is consistently among the best parameters for
Mean_Q, but it has a high Homo_Q value, suggesting poor fitting of the Johnson model to
QI PDF. This underscores the importance of considering the entire set of indicators. For
the Sp roughness parameter, its indicator values show a wide range between the QI values
computed with and without outliers, due to the high %-Out. After removing outliers,
Sp does not emerge as the best parameter, demonstrating that data cleaning does not
necessarily transform a poor parameter into the best one.

Appendix E. Overview of Roughness Parameters Ranking, Regarding the Severity Rate

The presented results in Figure A9 show the different rankings of roughness parame-
ters depending on the severity rate regarding the instrument modes analysed in the study.
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Figure A9. Ranking of roughness parameters from the severity rate for each measurement/grit cou-
ple. 
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37. Pavliček, P.; Hýbl, O. White-Light Interferometry on Rough Surfaces—Measurement Uncertainty Caused by Noise. Appl. Opt.
2012, 51, 465. [CrossRef] [PubMed]
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