Challenges in Ramularia collo-cygni Control
Definition
:1. Introduction
2. Epidemiology of Ramularia collo-cygni
3. Fungicide Resistance in R. collo-cygni Populations
3.1. Status of DMI-Fungicide Sensitivity
3.2. Status of SDHI-Fungicide Sensitivity
4. Common Barley Cultivars Enhance RLS Epidemics
5. Pleiotropic Effect of mlo Alleles on RLS
6. Future Challenges
Author Contributions
Funding
Conflicts of Interest
Entry Link on the Encyclopedia Platform
References
- Newton, A.C.; Flavell, A.J.; George, T.; Leat, P.; Mullholland, B.; Ramsay, L.; Revoredo-Giha, C.; Russell, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011, 3, 141–178. [Google Scholar] [CrossRef]
- Walters, D.R.; Havis, N.D.; Oxley, S.J. Ramularia collo-cygni: The biology of an emerging pathogen of barley. FEMS Microbiol. Lett. 2008, 279, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dussart, F.; Creissen, H.E.; Havis, N.D. Ramularia collo-cygni—An Enemy in Waiting. In eLS; 2020; pp. 1–8. Available online: https://pure.sruc.ac.uk/en/publications/riamularia-collo-cygnii-an-enemy-in-waiting (accessed on 13 October 2021). [CrossRef]
- Havis, N.; Brown, J.K.M.; Clemente, G.; Frei, P.; Jedryczka, M.; Kaczmarek, J.; Kaczmarek, M.; Matusinsky, P.; McGrann, G.; Pereyra, S.; et al. Ramularia collo-cygni—An Emerging Pathogen of Barley Crops. Phytopathology 2015, 105, 895–904. [Google Scholar] [CrossRef] [PubMed]
- McGrann, G.D.; Havis, N. Ramularia Leaf Spot: A Newly Important Threat to Barley Production. Outlooks Pest Manag. 2017, 28, 65–69. [Google Scholar] [CrossRef]
- West, J.S.; Townsend, J.A.; Stevens, M.; Fitt, B.D.L. Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur. J. Plant Pathol. 2012, 133, 315–331. [Google Scholar] [CrossRef]
- Matusinsky, P.; Leisova-Svobodova, L.; Gubis, J.; Hudcovicova, M.; Klcova, L.; Gubisova, M.; Marik, P.; Tvaruzek, L.; Minarikova, V. Impact of the seed-borne stage of Ramularia collo-cygni in barley seed. J. Plant Pathol. 2011, 93, 679–689. [Google Scholar] [CrossRef]
- Havis, N.D.; Oxley, S.J.P. Investigation the life cycle of Ramularia collo-cygni using PCR diagnostics. In First European Ramularia Workshop 12–14 March 2006; Koopmann, B., Oxley, S., Schützendübel, A., von Tiedemann, A., Eds.; Georg-August-Universität: Göttingen, Germany, 2006; pp. 39–44. [Google Scholar]
- Kaczmarek, M.; Piotrowska, M.; Fountaine, J.; Gorniak, K.; McGrann, G.; Armstrong, A.; Wright, K.; Newton, A.; Havis, N. Infection strategy of Ramularia collo-cygni and development of Ramularia leaf spot on barley and alternative graminaceous hosts. Plant Pathol. 2016, 66, 45–55. [Google Scholar] [CrossRef]
- Stabentheiner, E.; Minihofer, T.; Huss, H. Infection of Barley by Ramularia collo-cygni: Scanning Electron Microscopic Investigations. Mycopathologia 2009, 168, 135–143. [Google Scholar] [CrossRef]
- Havis, N.D.; Nyman, M.; Oxley, S.J.P. Evidence for seed transmission and symptomless growth of R amularia collo-cygni in barley (H ordeum vulgare). Plant Pathol. 2013, 63, 929–936. [Google Scholar] [CrossRef]
- Rodriguez, R.; Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 2008, 59, 1109–1114. [Google Scholar] [CrossRef]
- Schützendübel, A.; Stadler, M.; Wallner, D.; von Tiedemann, A. A hypothesis on physiological alterations during plant ontogenesis governing susceptibility of winter barley to Ramularia leaf spot. Plant Pathol. 2008, 57, 518–526. [Google Scholar] [CrossRef]
- Harvey, I. Epidemiology and control of leaf and awn spot of barley caused by Ramularia collocygni. N. Z. Plant Prot. 2002, 55, 331–335. [Google Scholar] [CrossRef]
- Sjökvist, E.; Lemcke, R.; Kamble, M.; Turner, F.; Blaxter, M.; Havis, N.; Lyngkjær, M.; Radutoiu, S. Dissection of Ramularia Leaf Spot Disease by Integrated Analysis of Barley and Ramularia collo-cygni Transcriptome Responses. Mol. Plant-Microbe Interact. 2019, 32, 176–193. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.M.; Rant, J.C. Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathol. 2013, 62, 83–95. [Google Scholar] [CrossRef]
- McGrann, G.; Stavrinides, A.; Russell, J.; Corbitt, M.M.; Booth, A.; Chartrain, L.; Thomas, W.T.B.; Brown, J.K.M. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 2014, 65, 1025–1037. [Google Scholar] [CrossRef]
- Leistrumaitė, A.; Liatukas, Ž. Resistance of spring barley cultivars to the new disease Ramularia leaf spot, caused by Ramularia collo-cygni. Agron. Res. 2006, 4, 251–255. [Google Scholar]
- Sooväli, P.; Tikhonova, M.; Matušinsky, P. First Report of Ramularia Leaf Spot Caused by Ramularia collo-cygni on Leaves and Seeds of Barley in Estonia. Plant Dis. 2014, 98, 997. [Google Scholar] [CrossRef]
- Kiiker, R.; Juurik, M.; Mäe, A. Fungicide Resistance Evolving in Ramularia collo-cygni Population in Estonia. Microorganisms 2021, 9, 1514. [Google Scholar] [CrossRef]
- Leisova-Svobodova, L.; Matusinsky, P.; Kucera, L. Variability of the Ramularia collo-cygni Population in Central Europe. J. Phytopathol. 2012, 160, 701–709. [Google Scholar] [CrossRef]
- Piotrowska, M.; Ennos, R.; Fountaine, J.; Burnett, F.; Kaczmarek, M.; Hoebe, P. Development and use of microsatellite markers to study diversity, reproduction and population genetic structure of the cereal pathogen Ramularia collo-cygni. Fungal Genet. Biol. 2016, 87, 64–71. [Google Scholar] [CrossRef]
- Strobel, D.; Bryson, R.; Stammler, G.; Prochnow, J. A European overview of the occurrence of Ramularia collo-cygni and its sensitivity to fluxapyroxad. In Proceedings of the 11th Conference of the European Foundation for Plant Pathology–Healthy People, Krakow, Poland, 8–13 September 2014. [Google Scholar]
- Jørgensen, L.N.; Heick, T.M. Azole Use in Agriculture, Horticulture, and Wood Preservation–Is It Indispensable? Front. Cell. Infect. Microbiol. 2021, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Stam, R.; Sghyer, H.; Tellier, A.; Hess, M.; Hückelhoven, R. The Current Epidemic of the Barley Pathogen Ramularia collo-cygni Derives from a Population Expansion and Shows Global Admixture. Phytopathology 2019, 109, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Kuck, K.-H.; Russell, P.E. FRAC: Combined resistance risk assessment. Asp. Appl. Biol. 2006, 78, 3–10. [Google Scholar]
- Fountaine, J.M.; Fraaije, B.A. Development of QoI resistant alleles in populations of Ramularia collo-cygni. In Proceedings of the Aspects of Applied Biology 92, The 2nd European Ramularia Workshop–A New Disease and Challenge in Barley Production; Association of Applied Biologists, The Warwick Enterprise Park Wellesbourne: Warwick/Edinburgh, UK, 2009; pp. 123–126. [Google Scholar]
- Matusinsky, P.; Svobodova-Leisova, L.; Mariks, P.; Tvaruzek, L.; Stemberkova, L.; Hanusova, M.; Minarikova, V.; Vysohlidova, M.; Spitzer, T. Frequency of a mutant allele of cytochrome b conferring resistance to Ool fungicides in the Czech population of Ramularia collo-cygni. J. Plant Dis. Prot. 2010, 117, 248–252. [Google Scholar] [CrossRef]
- Havis, N.D.; Gorniak, K.; Taylor, J.; Stanisz-Migal, M.; Burnett, F.J. Controlling Ramularia leaf spot in barley crops. In Proceedings of the Proceedings Crop Production in Northern Britain 2018, Dundee, UK, 27–28 February 2018; The Association for Crop Protection in Northern Britain: Dundee, UK, 2018; pp. 91–96. [Google Scholar]
- Dooley, H.; Shaw, M.W.; Spink, J.; Kildea, S. The effect of succinate dehydrogenase inhibitor/azole mixtures on selection of Zymoseptoria triticiisolates with reduced sensitivity. Pest Manag. Sci. 2015, 72, 1150–1159. [Google Scholar] [CrossRef]
- Clark, W.S. Septoria tritici and azole performance. Asp. Appl. Biol. 2006, 78, 127–132. [Google Scholar]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. In Advances in Applied Microbiology; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 90, pp. 29–92. [Google Scholar]
- Huf, A.; Rehfus, A.; Lorenz, K.H.; Bryson, R.; Voegele, R.T.; Stammler, G. Proposal for a new nomenclature for CYP51haplotypes inZymoseptoria triticiand analysis of their distribution in Europe. Plant Pathol. 2018, 67, 1706–1712. [Google Scholar] [CrossRef]
- Rehfus, A.; Matusinsky, P.; Strobel, D.; Bryson, R.; Stammler, G. Mutations in target genes of succinate dehydrogenase inhibitors and demethylation inhibitors in Ramularia collo-cygni in Europe. J. Plant Dis. Prot. 2019, 126, 447–459. [Google Scholar] [CrossRef]
- FRAC—Fungicide Resistance Action Committee. Available online: http://www.frac.info/ (accessed on 6 June 2019).
- Heick, T.M.; Matzen, N.; Jørgensen, L.N. Reduced field efficacy and sensitivity of demethylation inhibitors in the Danish and Swedish Zymoseptoria tritici populations. Eur. J. Plant Pathol. 2020, 157, 625–636. [Google Scholar] [CrossRef]
- Kiiker, R.; Juurik, M.; Heick, T.; Mäe, A. Changes in DMI, SDHI, and QoI Fungicide Sensitivity in the Estonian Zymoseptoria tritici Population between 2019 and 2020. Microorganisms 2021, 9, 814. [Google Scholar] [CrossRef]
- Piotrowska, M.J.; Fountaine, J.M.; Ennos, R.A.; Kaczmarek, M.; Burnett, F. Characterisation of Ramularia collo-cygni laboratory mutants resistant to succinate dehydrogenase inhibitors. Pest Manag. Sci. 2016, 73, 1187–1196. [Google Scholar] [CrossRef]
- Rehfus, A.; Miessner, S.; Achenbach, J.; Strobel, D.; Bryson, R.; Stammler, G. Emergence of succinate dehydrogenase inhibitor resistance of Pyrenophora teres in Europe. Pest Manag. Sci. 2016, 72, 1977–1988. [Google Scholar] [CrossRef] [PubMed]
- Dooley, H.; Shaw, M.W.; Mehenni-Ciz, J.; Spink, J.; Kildea, S. Detection of Zymoseptoria tritici SDHI-insensitive field isolates carrying the SdhC -H152R and SdhD -R47W substitutions. Pest Manag. Sci. 2016, 72, 2203–2207. [Google Scholar] [CrossRef]
- Rehfus, A.; Strobel, D.; Bryson, R.; Stammler, G. Mutations in sdh genes in field isolates of Zymoseptoria tritici and impact on the sensitivity to various succinate dehydrogenase inhibitors. Plant Pathol. 2017, 67, 175–180. [Google Scholar] [CrossRef]
- Büschges, R.; Hollricher, K.; Panstruga, R.; Simons, G.; Wolter, M.; Frijters, A.; van Daelen, R.; van der Lee, T.; Diergaarde, P.; Groenendijk, J.; et al. The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 1997, 88, 695–705. [Google Scholar] [CrossRef]
- Jørgensen, I.H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 1992, 63, 141–152. [Google Scholar] [CrossRef]
- Lyngkjær, M.; Newton, A.C.; Atzema, J.L.; Baker, S.J. The Barley mlo-gene: An important powdery mildew resistance source. Agronomie 2000, 20, 745–756. [Google Scholar] [CrossRef]
- Dreiseitl, A. Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review. Genes 2020, 11, 971. [Google Scholar] [CrossRef]
- Kjær, B.; Jensen, H.P.; Jensen, J.; Jørgensen, J.H. Associations between three ml-o powdery mildew resistance genes and agronomic traits in barley. Euphytica 1990, 46, 185–193. [Google Scholar] [CrossRef]
- McGrann, G.R.D.; Burt, C.; Nicholson, P.; Brown, J.K.M. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens. J. Exp. Bot. 2015, 66, 3417–3428. [Google Scholar] [CrossRef]
- Oxley, S.J.P.; Havis, N.D. Development of Ramularia collo-cygni on spring barley and its impact on yield. In Proceedings of the Dundee Conference: Crop protection in Northern Britain 2004, Dundee, UK, 24–25 February 2004; Heilbronn, T., Ed.; pp. 147–152. [Google Scholar]
- Rostoks, N.; Schmierer, D.; Mudie, S.; Drader, T.; Brueggeman, R.; Caldwell, D.G.; Waugh, R.; Kleinhofs, A. Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol. Genet. Genom. 2005, 275, 159–168. [Google Scholar] [CrossRef] [PubMed]
- McGrann, G.R.D.; Brown, J.K.M. The role of reactive oxygen in the development of Ramularia leaf spot disease in barley seedlings. Ann. Bot. 2017, 121, 415–430. [Google Scholar] [CrossRef] [PubMed]
- McGrann, G.R.D.; Miller, S.; Havis, N. The enhanced magnaporthe resistance 1 locus affects Ramularia leaf spot development in barley. Eur. J. Plant Pathol. 2019, 156, 123–132. [Google Scholar] [CrossRef]
- McGrann, G.R.D.; Steed, A.; Burt, C.; Goddard, R.; Lachaux, C.; Bansal, A.; Corbitt, M.; Gorniak, K.; Nicholson, P.; Brown, J.K.M. Contribution of the drought tolerance-related Stress-responsive NAC 1 transcription factor to resistance of barley to R amularia leaf spot. Mol. Plant Pathol. 2014, 16, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.V.D.; Paveley, N.; Shaw, M.; Hobbelen, P.; Oliver, R.A. The dose rate debate: Does the risk of fungicide resistance increase or decrease with dose? Plant Pathol. 2011, 60, 597–606. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mäe, A.; Kiiker, R. Challenges in Ramularia collo-cygni Control. Encyclopedia 2022, 2, 256-263. https://doi.org/10.3390/encyclopedia2010017
Mäe A, Kiiker R. Challenges in Ramularia collo-cygni Control. Encyclopedia. 2022; 2(1):256-263. https://doi.org/10.3390/encyclopedia2010017
Chicago/Turabian StyleMäe, Andres, and Riinu Kiiker. 2022. "Challenges in Ramularia collo-cygni Control" Encyclopedia 2, no. 1: 256-263. https://doi.org/10.3390/encyclopedia2010017
APA StyleMäe, A., & Kiiker, R. (2022). Challenges in Ramularia collo-cygni Control. Encyclopedia, 2(1), 256-263. https://doi.org/10.3390/encyclopedia2010017