Higher Cognition: A Mechanical Perspective
Definition
:1. Definition of Cognition
1.1. A Scientific Definition of Cognition
1.2. Mechanical Perspective of Cognition
1.3. Scope of this Definition
1.4. Organization of Cognition as a Science
1.5. Definition of the Terminology
2. Visual Perception
2.1. Evolution and Probabilistic Processes
2.2. Abstract Encoding of Sensory Input
3. General Cognition
3.1. Algorithmic Description
3.2. Encoding of Knowledge
3.3. Representation of Common-Sense Concepts
3.4. Future Directions in Cognitive Science
3.4.1. Dynamics of Cognition
3.4.2. Generalization of Knowledge
3.4.3. Embodiment in Cognition
4. Abstract Reasoning
4.1. Abstract Reasoning as a Cognitive Process
4.2. Models of Abstract Reasoning
4.3. Future Directions in Abstract Reasoning
4.3.1. Embodiment in a Virtual and Abstract World
4.3.2. Reinforcement Learning and Generalizability
5. Conceptual Knowledge
5.1. Knowledge by Pattern Combination and Recognition
5.2. Models of Generalized Knowledge
5.3. Knowledge as a Physical Process
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merriam-Webster Dictionary (an Encyclopedia Britannica Company: Chicago, IL, USA). Available online: https://www.merriam-webster.com/dictionary/cognition (accessed on 27 July 2022).
- Cambridge Dictionary (Cambridge University Press: Cambridge, UK). Available online: https://dictionary.cambridge.org/us/dictionary/english/cognition (accessed on 27 July 2022).
- Friedman, R. Cognition as a Mechanical Process. NeuroSci 2021, 2, 10. [Google Scholar] [CrossRef]
- Vlastos, G. Parmenides Theory of Knowledge. In Transactions and Proceedings of the American Philological Association; The Johns Hopkins University Press: Baltimore, MD, USA, 1946; pp. 66–77. [Google Scholar]
- Chang, L.; Tsao, D.Y. The code for facial identity in the primate brain. Cell 2017, 169, 1013–1028. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G. How to represent part-whole hierarchies in a neural network. arXiv 2021, arXiv:2102.12627. [Google Scholar]
- Bengio, Y.; LeCun, Y.; Hinton, G. Deep Learning for AI. Commun. ACM 2021, 64, 58–65. [Google Scholar] [CrossRef]
- Streng, M.L.; Popa, L.S.; Ebner, T.J. Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations. Nat. Commun. 2018, 9, 1099. [Google Scholar] [CrossRef]
- Popa, L.S.; Ebner, T.J. Cerebellum, Predictions and Errors. Front. Cell. Neurosci. 2019, 12, 524. [Google Scholar] [CrossRef]
- Searle, J.R.; Willis, S. Intentionality: An Essay in the Philosophy of Mind; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Huxley, T.H. Evidence as to Man’s Place in Nature; Williams and Norgate: London, UK, 1863. [Google Scholar]
- Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 2017, 18, 196–207. [Google Scholar] [CrossRef]
- Ramon, Y.; Cajal, S. Textura del Sistema Nervioso del Hombre y de los Vertebrados Trans; Nicolas Moya: Madrid, Spain, 1899. [Google Scholar]
- Kriegeskorte, N.; Kievit, R.A. Representational geometry: Integrating cognition, computation, and the brain. Trends Cogn. Sci. 2013, 17, 401–412. [Google Scholar] [CrossRef]
- Hinton, G.E. Connectionist learning procedures. Artif. Intell. 1989, 40, 185–234. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Descartes, R. Meditations on First Philosophy; Moriarty, M., Translator; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Friedman, R. Themes of advanced information processing in the primate brain. AIMS Neurosci. 2020, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Galetta, S.L. Anatomy and physiology of the afferent visual system. In Handbook of Clinical Neurology; Kennard, C., Leigh, R.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–19. [Google Scholar]
- Paley, W. Natural Theology: Or, Evidences of the Existence and Attributes of the Deity, 12th ed.; R. Faulder: London, UK, 1809. [Google Scholar]
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- De Sousa, A.A.; Proulx, M.J. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives. Front. Neuroanat. 2014, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Slobodkin, L.B.; Rapoport, A. An optimal strategy of evolution. Q. Rev. Biol. 1974, 49, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Didolkar, A.; Ke, N.R.; Blundell, C.; Beaudoin, P.; Heess, N.; Mozer, M.; Bengio, Y. Neural Production Systems. arXiv 2021, arXiv:2103.01937. [Google Scholar]
- Scholkopf, B.; Locatello, F.; Bauer, S.; Ke, N.R.; Kalchbrenner, N.; Goyal, A.; Bengio, Y. Toward Causal Representation Learning. Proc. IEEE 2021, 109, 612–634. [Google Scholar] [CrossRef]
- Wallis, G.; Rolls, E.T. Invariant face and object recognition in the visual system. Prog. Neurobiol. 1997, 51, 167–194. [Google Scholar] [CrossRef]
- Friedman, R. A Perspective on Information Optimality in a Neural Circuit and Other Biological Systems. Signals 2022, 3, 25. [Google Scholar] [CrossRef]
- 28. Rina Panigrahy (Chair), Conceptual Understanding of Deep Learning Workshop. Conference and Panel Discussion at Google Research, 17 May 2021. Panelists: Blum, L., Gallant, J., Hinton, G., Liang, P., Yu, B. Available online: https://sites.google.com/view/conceptualdlworkshop/home (accessed on 17 May 2021).
- Gibbs, J.W. Elementary Principles in Statistical Mechanics; Charles Scribner’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Schmidhuber, J. Making the World Differentiable: On Using Self-Supervised Fully Recurrent Neural Networks for Dynamic Reinforcement Learning and Planning in Non-Stationary Environments; Technical Report FKI-126-90; Technical University of Munich: Munich, Germany, 1990. [Google Scholar]
- Griffiths, T.L.; Chater, N.; Kemp, C.; Perfors, A.; Tenenbaum, J.B. Probabilistic models of cognition: Exploring representations and inductive biases. Trends Cogn. Sci. 2010, 14, 357–364. [Google Scholar] [CrossRef]
- Hinton, G.E.; McClelland, J.L.; Rumelhart, D.E. Distributed representations. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition; Rumelhart, D.E., McClelland, J.L., PDP Research Group, Eds.; Bradford Books: Cambridge, MA, USA, 1986. [Google Scholar]
- Friston, K. The history of the future of the Bayesian brain. NeuroImage 2012, 62, 1230–1233. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Phuong, M.; Hutter, M. Formal Algorithms for Transformers. arXiv 2022, arXiv:2207.09238. [Google Scholar]
- Chen, T.; Saxena, S.; Li, L.; Fleet, D.J.; Hinton, G. Pix2seq: A language modeling framework for object detection. arXiv 2021, arXiv:2109.10852. [Google Scholar]
- Hu, R.; Singh, A. UniT: Multimodal Multitask Learning with a Unified Transformer. arXiv 2021, arXiv:2102.10772. [Google Scholar]
- Xu, Y.; Zhu, C.; Wang, S.; Sun, S.; Cheng, H.; Liu, X.; Gao, J.; He, P.; Zeng, M.; Huang, X. Human Parity on CommonsenseQA: Augmenting Self-Attention with External Attention. arXiv 2021, arXiv:2112.03254. [Google Scholar]
- Zeng, A.; Wong, A.; Welker, S.; Choromanski, K.; Tombari, F.; Purohit, A.; Ryoo, M.; Sindhwani, V.; Lee, J.; Vanhoucke, V.; et al. Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. arXiv 2022, arXiv:2204.00598. [Google Scholar]
- Chaabouni, R.; Kharitonov, E.; Dupoux, E.; Baroni, M. Communicating artificial neural networks develop efficient color-naming systems. Proc. Natl. Acad. Sci. USA 2021, 118, e2016569118. [Google Scholar] [CrossRef]
- Irie, K.; Schlag, I.; Csordás, R.; Schmidhuber, J. A Modern Self-Referential Weight Matrix That Learns to Modify Itself. arXiv 2022, arXiv:2202.05780. [Google Scholar]
- Schlag, I.; Irie, K.; Schmidhuber, J. Linear transformers are secretly fast weight programmers. In Proceedings of theInternational Conference on Machine Learning, PMLR 139, Virtual, 24 July 2021; pp. 9355–9366. [Google Scholar]
- Petty, R.E.; Cacioppo, J.T. The elaboration likelihood model of persuasion. In Communication and Persuasion; Springer: New York, NY, USA, 1986; pp. 1–24. [Google Scholar]
- Mittal, S.; Bengio, Y.; Lajoie, G. Is a Modular Architecture Enough? arXiv 2022, arXiv:2206.02713. [Google Scholar]
- Ha, D.; Tang, Y. Collective Intelligence for Deep Learning: A Survey of Recent Developments. arXiv 2021, arXiv:2111.14377. [Google Scholar]
- Mustafa, B.; Riquelme, C.; Puigcerver, J.; Jenatton, R.; Houlsby, N. Multimodal Contrastive Learning with LIMoE: The Language-Image Mixture of Experts. arXiv 2022, arXiv:2206.02770. [Google Scholar]
- Chase, W.G.; Simon, H.A. Perception in chess. Cogn. Psychol. 1973, 4, 55–81. [Google Scholar] [CrossRef]
- Pang, R.; Lansdell, B.J.; Fairhall, A.L. Dimensionality reduction in neuroscience. Curr. Biol. 2016, 26, R656–R660. [Google Scholar] [CrossRef] [PubMed]
- Deng, E.; Mutlu, B.; Mataric, M. Embodiment in socially interactive robots. arXiv 2019, arXiv:1912.00312. [Google Scholar]
- Open-Ended Learning Team; Stooke, A.; Mahajan, A.; Barros, C.; Deck, C.; Bauer, J.; Sygnowski, J.; Trebacz, M.; Jaderberg, M.; Mathieu, M.; et al. Open-ended learning leads to generally capable agents. arXiv 2021, arXiv:2107.12808. [Google Scholar]
- Agarwal, R.; Machado, M.C.; Castro, P.S.; Bellemare, M.G. Contrastive behavioral similarity embeddings for generalization in reinforcement learning. arXiv 2021, arXiv:2101.05265. [Google Scholar]
- Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144. [Google Scholar] [CrossRef]
- Barrett, D.; Hill, F.; Santoro, A.; Morcos, A.; Lillicrap, T. Measuring abstract reasoning in neural networks. In Proceedings of the International Conference on Machine Learning, PMLR 80, Stockholm, Sweden, 15 July 2018. [Google Scholar]
- Schuster, T.; Kalyan, A.; Polozov, O.; Kalai, A.T. Programming Puzzles. arXiv 2021, arXiv:2106.05784. [Google Scholar]
- Lewkowycz, A.; Andreassen, A.; Dohan, D.; Dyer, E.; Michalewski, H.; Ramasesh, V.; Slone, A.; Anil, C.; Schlag, I.; Gutman-Solo, T.; et al. Solving Quantitative Reasoning Problems with Language Models. arXiv 2022, arXiv:2206.14858. [Google Scholar]
- Drori, I.; Zhang, S.; Shuttleworth, R.; Tang, L.; Lu, A.; Ke, E.; Liu, K.; Chen, L.; Tran, S.; Cheng, N.; et al. A Neural Network Solves, Explains, and Generates University Math Problems by Program Synthesis and Few-Shot Learning at Human Level. arXiv 2021, arXiv:2112.15594. [Google Scholar] [CrossRef]
- Reed, S.; Zolna, K.; Parisotto, E.; Colmenarejo, S.G.; Novikov, A.; Barth-Maron, G.; Gimenez, M.; Sulsky, Y.; Kay, J.; Springenberg, J.T.; et al. A Generalist Agent. arXiv 2022, arXiv:2205.06175. [Google Scholar]
- Lee, K.H.; Nachum, O.; Yang, M.; Lee, L.; Freeman, D.; Xu, W.; Guadarrama, S.; Fischer, I.; Jang, E.; Michalewski, H.; et al. Multi-Game Decision Transformers. arXiv 2022, arXiv:2205.15241. [Google Scholar]
- Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; Mordatch, I. Decision Transformer: Reinforcement Learning via Sequence Modeling. Adv. Neural Inf. Process. Syst. 2021, 34, 15084–15097. [Google Scholar]
- Fei, N.; Lu, Z.; Gao, Y.; Yang, G.; Huo, Y.; Wen, J.; Lu, H.; Song, R.; Gao, X.; Xiang, T.; et al. Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kant, I.; Smith, N.K. Immanuel Kant’s Critique of Pure Reason; Translated by Norman Kemp Smith; Macmillan & Co: London, UK, 1929. [Google Scholar]
- Chan, S.C.; Santoro, A.; Lampinen, A.K.; Wang, J.X.; Singh, A.; Richemond, P.H.; McClelland, J.; Hill, F. Data Distributional Properties Drive Emergent In-Context Learning in Transformers. arXiv 2022, arXiv:2205.05055. [Google Scholar]
- Seo, P.H.; Nagrani, A.; Arnab, A.; Schmid, C. End-to-end Generative Pretraining for Multimodal Video Captioning. arXiv 2022, arXiv:2201.08264. [Google Scholar]
- Yan, C.; Carnevale, F.; Georgiev, P.; Santoro, A.; Guy, A.; Muldal, A.; Hung, C.; Abramson, J.; Lillicrap, T.; Wayne, G. Intra-agent speech permits zero-shot task acquisition. arXiv 2022, arXiv:2206.03139. [Google Scholar]
- Guo, Z.D.; Thakoor, S.; Pîslar, M.; Pires, B.A.; Altche, F.; Tallec, C.; Saade, A.; Calandriello, D.; Grill, J.; Tang, Y.; et al. BYOL-Explore: Exploration by Bootstrapped Prediction. arXiv 2022, arXiv:2206.08332. [Google Scholar]
- Baker, B.; Akkaya, I.; Zhokhov, P.; Huizinga, J.; Tang, J.; Ecoffet, A.; Houghton, B.; Sampedro, R.; Clune, J. Video PreTraining (VPT): Learning to Act by Watching Unlabeled Online Videos. arXiv 2022, arXiv:2206.11795. [Google Scholar]
- Traniello, I.M.; Chen, Z.; Bagchi, V.A.; Robinson, G.E. Valence of social information is encoded in different subpopulations of mushroom body Kenyon cells in the honeybee brain. Proc. R. Soc. B 2019, 286, 20190901. [Google Scholar] [CrossRef]
- Bickle, J. The first two decades of CREB-memory research: Data for philosophy of neuroscience. AIMS Neurosci. 2021, 8, 322. [Google Scholar] [CrossRef]
- Piller, C. Blots on a field? Science 2022, 377, 358–363. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedman, R. Higher Cognition: A Mechanical Perspective. Encyclopedia 2022, 2, 1503-1516. https://doi.org/10.3390/encyclopedia2030102
Friedman R. Higher Cognition: A Mechanical Perspective. Encyclopedia. 2022; 2(3):1503-1516. https://doi.org/10.3390/encyclopedia2030102
Chicago/Turabian StyleFriedman, Robert. 2022. "Higher Cognition: A Mechanical Perspective" Encyclopedia 2, no. 3: 1503-1516. https://doi.org/10.3390/encyclopedia2030102
APA StyleFriedman, R. (2022). Higher Cognition: A Mechanical Perspective. Encyclopedia, 2(3), 1503-1516. https://doi.org/10.3390/encyclopedia2030102