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Definition: Cognition is the acquisition of knowledge by the mechanical process of information flow
in a system. In cognition, input is received by the sensory modalities and the output may occur as a
motor or other response. The sensory information is internally transformed to a set of representations,
which is the basis for downstream cognitive processing. This is in contrast to the traditional definition
based on mental processes, a phenomenon of the mind that originates in past ideas of philosophy.

Keywords: cognition; cognitive processes; physical processes; mental processes

1. Definition of Cognition
1.1. A Scientific Definition of Cognition

Dictionaries commonly refer to cognition as a set of mental processes for acquiring
knowledge [1,2]. However, this view originates from the assignment of mental processes to
the act of thinking and is anchored in philosophical descriptions of the mind, including
the concepts of consciousness and intentionality [1,3,4]. This also presumes that objects of
nature are reflections of true and determined forms, and creates a division between the
substances of matter and that of the mind.

Instead, a material description of cognition is restricted to the physical processes available
to nature. An example is the study of primate face recognition, where the measurements of
facial features serve as the basis of object recognition [5]. This perspective also excludes the
concept that there is an innate and prior knowledge of objects, so therefore, cognition would
form a representation of objects from their constituent parts [6,7]. Likewise, there is not an
expectation that the physical processes of cognition are functionally deterministic.

The following sections on cognition focus on an informational perspective. For example,
information flow as a physical process is a fundamental cause of cognition, so this scale of
interest is insightful in forming expectations about cognitive processes. These expectations
do not exclude the other levels of the biological hierarchy which yield an insight into brain
function, such as in the action of individual neurons of regions in the primate brain and
their effect on motor function [8,9].

1.2. Mechanical Perspective of Cognition

Scientific work generally acknowledges a mechanical description of information and
the physical processes as drivers of cognition. However, a perspective based on the duality
of physical and mental processing is retained to a small degree in the academic world.
For example, there is a conjecture about the relationship between the human mind and
a simulation of it [10]. This idea is based on assumptions about intentionality and the
act of thinking. In contrast with this view, a physical process of cognition is defined
by the generation of an action in neuronal cells without dependence on non-material
processes [11].

Another result of physical limits on cognition is observed in the intention of moving
a body limb, such as a person reaching for an object across a table. Instead, studies have
replaced the assignment of intentionality with a material interpretation of this action, and
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have shown that the relevant neural activity occurs before awareness of the associated
motor action [12].

Across the natural sciences, the neural system has been studied at various biological
scales, including at the molecular level and at the higher level in the case of information
processing [13,14]. At this higher-level perspective, the neural systems are functionally
analogous to the deep learning models of computer science, as both are based on infor-
mation and the flow of information [15,16]. This allows for a comparative approach for
understanding cognitive processes. However, at the lower scale, the artificial neural system
is dependent on an abstract model of neurons and the network, so here, the animal neural
system is not likely comparable.

1.3. Scope of this Definition

The definition of cognition as used here is restricted to a set of mechanical processes [1].
Moreover, cognitive processing is described from a broad perspective, with some exam-
ples from the visual system along with insights from the deep learning approaches in
computer science.

This is an informational perspective of cognition, since this scale has explanatory
power in explaining the causes of knowledge. The other scales, both the large and the
small, seem less tractable for constructing explanations of cognition. At the larger scale,
if we consider the mental processes as occurrences of the mind, then the phenomena of
cognition are subject to mere interpretation, guided by perception and impression, and are
not restricted to the true designs and processes of nature. At the lower scale, modeling
cognition is less tractable as an activity at the level of individual neuronal cells, given the
complexity of the corresponding experiments. These notions on scale and perspective are
pivotal in finding explanations for the phenomena of nature [17].

There are also insights from other perspectives, but the definition that follows is not
a systematic review of studies of the mind or a broad survey of empirical knowledge
across the cognitive sciences; instead, it is a narrow survey of the physical processes and
the phenomena of information of higher cognition. This definition is also for a general
audience and academic workers outside the science of cognition. However, within the
practice of cognitive science, the technical terms may be defined in a different context,
consistent with the stricter definitions as recommended by this entry [8,18].

1.4. Organization of Cognition as a Science

The following sections represent the categories of cognition and its processes. However,
they do not reflect the true divisions in cognition, since the cognitive processes are not fully
understood at a mechanistic level. Instead, the divisions are based on commonly used
boundaries in thinking about cognition, such as in the division between sensory perception
and higher reasoning regarding concepts.

The last section on conceptual knowledge is a synthesis of ideas from the previous
sections, and serves the purpose of yielding an insight into the general properties of
higher cognition. The overarching theme of the sections is that the neural network and its
information flow are the foundation for a deeper understanding of the cognitive processes.

1.5. Definition of the Terminology

This entry uses terminology from science and engineering that requires further clarifi-
cation. An example is a (mental) representation. In this case, a representation is commonly
defined as information that corresponds to an idea or image. This is a particular case where
there is reference to the mind, but this term is also a reminder that the origin of these
phenomena is in the brain itself. They are encoded in the neural network of the brain.

Another term is “probabilistic”, as a description of a process. This refers to a process
that is expected to vary and potentially lead to different outcomes. Representations are
expected to occur by this process, so their properties will vary among individuals.
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The reference to deep learning originates in the field of engineering. This is a many-
layered neural network that is particularly suited for learning about the abovementioned
representations. These artificial neural networks share a network-like organization with
that of the brain in animals. The other terms and their use are expected to follow their
commonly accepted meanings as found in a dictionary of scientific or common words. For
example, the biosphere of the Earth refers to that portion of the planet shaped by biological
and geological processes. These processes are dynamic, so they have changed over time
and across the surface of the Earth.

Lastly, the informational processes have been described as physical processes because
information flow is a phenomenon of the physical world. Therefore, matter and energy
are required for this phenomenon to occur. The proximate mechanism of the flow of
information in the brain is in the electrochemical dynamics that occur among neuronal cells,
involving the movement of the ions of chemical elements that generate an electromotive
force (voltage), and the diffusion of molecular-level neurotransmitters. The neural system is
also influenced by humoral factors, such as the chemical messengers known as hormones.

2. Visual Perception
2.1. Evolution and Probabilistic Processes

The processes of vision occupy about one-half of the cerebral cortex of the human
brain [19]. Similar to the many sensory forms of language processing in humans, vision
is a major source of input and recognition of the outside world. The complexity of the
sensory systems reveals an important aspect of the evolutionary process, as observed across
cellular life, along with their countless forms and novelties. Evolution depends on physical
processes, such as mutation and population exponentiality, along with a dependence on
geological time scales for building biological complexity, as observed at all scales of life.
These effects have also formed and shaped the biosphere of the Earth.

This vast complexity across living organisms is revealed by deconstruction of the
camera eye in animals. This novel form emerged over time from a simpler one, such as
an eye spot, and depended on a sequence of adaptations over time [20,21]. These rare and
unique events did not hinder the independent formation of the camera eye, as it occurs in
both the lineage of vertebrates and the unrelated lineage of cephalopods. This is an example
of evolution as a powerful generator of change in physical traits, although counterforces
restrict evolution from searching across an infinite number of possible novelties, including
constraints that are found in the genetic code and those of the physical processes that shape
these traits.

The evolution of cognition and neural systems are expected to occur by a similar prob-
abilistic process to that theorized in the origin and design of the camera eye. An alternative
to this bottom-up design in nature is to suggest a set of non-probabilistic processes and a
top-down design consistent with determinism. For the hypothesis of determinism in nature,
there is an expectation of true and perfect forms, as Plato theorized, but this hypothesis is
not favorable for descriptions of activity in the brain.

Therefore, with the probabilistic view of evolution and the force of natural selection,
the neural systems are expected to show a large degree of optimality in their design, as
observed across the other biological systems [22]—especially since neural systems co-adapt
with the sensory systems. However, this optimality is also constrained by the limits of
molecular, cellular, and population processes [23]. This is not an assertion that biological
systems are perfectly optimal, but that they are reasonably efficient in their structure and
function. This view is particularly supported by observations of anatomical features across
vertebrate species, and their adaptations for specific environments, such as those observed
in the skeletal design of whales versus horses.

2.2. Abstract Encoding of Sensory Input

“The biologically plausible mechanism of cognition originates from the high-dimensional
information in the outside world. In the case of vision, the sensory data consist of reflected
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light rays that are absorbed across a two-dimensional surface, the retinal cells of the eye.
These light rays may range across the electromagnetic spectra, but the retinal cells are
specific to a small subset of these light rays” [3].

Figure 1 shows the above view, in abstract form, as a sheet of neuronal cells that receive
sensory input from the outside world. The input is processed by cell surface receptors
and communicated downstream for neural system processing. The sensory neurons and
their receptors can be imagined as a set of activation values that are undergoing change
over time, and abstractly described as a dynamic system, in which change occurs in the
dimensions of space and time.
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Figure 1. An abstract representation of information that is received by a sensory organ, such as the
light rays absorbed by neuronal cells across the retinal surface of the camera eye [3].

The information processing of the sensory organs is tractable for scientific study,
but the downstream cognitive processes are less understood at a mechanistic level. The
cognitive processes include the generalizing of knowledge, also referred to as transfer
learning, which is a higher level of organization than that constructed from the sensory
input [7,24,25]. Transfer learning is dependent on segmentation (division) of the sensory
world and identification of sensory objects (such as visual or auditory) with resistance to
variation in viewpoint or perspective (Figure 2) [26].
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Figure 2. The first panel is a drawing of the digit nine (9), while the next panel is the same digit
transformed by rotation [3].

In computer science, there is a model [6] designed for the segmentation and robust
recognition of objects. This approach includes sampling of the sensory input, the identifica-
tion of the parts of sensory objects, and encoding of the information in an abstract form
for presentation to the downstream neural processes. The encoding scheme is expected to
include a set of discrete representational levels of unlabeled (unidentified) objects and then
uses a probabilistic approach for matching these representations to known objects in the
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memory. Without the potential for a labeled memory that describes an object, then there is
no opportunity for knowledge of the object and a basis for knowledge in general.

Information is the proximate cause of cognition, and the laws of thermodynamics
determine how information flows in any physical system, whether in a biological context
or an artificial analog [27]. At other spatial scales, the physical processes in the brain are
not homologous with an artificial neural network, such as at the level of neurons, where
the intricacies of cellular processes are not shared with an artificial one. However, our
history is filled with examples of engineers replicating the large-scale designs of nature,
including lakes, bridges, and the construction of underwater vessels. The designs are
similar at a physical scale because both natural and artificial forms are constrained by
physical processes.

3. General Cognition
3.1. Algorithmic Description

Experts have investigated the question of whether an algorithm can explain brain
computation [28]. They concluded that this is an unsolved problem, even though natural
processes are inherently representable by a quantitative model. However, information
flow in the brain is a product of a non-linear dynamical system, a complex phenomenon
that is analogous to the physics of fluid flow, a complexity that may exceed the limits of
computational work. Similarly, these systems are highly complex and not easily mirrored
by simple mathematical descriptions [28,29]. Experts recommend an empirical approach for
disentangling these kinds of complex systems, since they are not considered very tractable
at a theoretical level.

An artificial neural system, such as in the deep learning architectures, has strong
potential for testing hypotheses on higher cognition. The reason is that engineered systems
are built from parts and relationships that are known, whereas in nature, the origin and
history of the system is obscured by time and a large number of events; in this case,
acquiring scientific knowledge likely requires extensive experimentation that is often
confounded with error, including from sources that are known and unknown.

3.2. Encoding of Knowledge

It is possible to hypothesize about a model of object representation in the brain and its
artificial analog in the deep learning systems. First, these cognitive systems are expected to
encode objects by their parts, the basic elements of an object [5–7]. Second, it is expected
that the process is stochastic, a probabilistic process, as in all other natural processes.

The neural network system is, in its essence, a programmable system [30], encoded
with weight values along the connections in the network and activation values at the nodes.
It is expected that the brain functions analogously at the level of information processing,
since these systems are both based on non-linear dynamic principles of an interconnected
network of nodes and a distribution of the representations of objects [7,28,31,32]. Further-
more, the encoding schemes in the network are likely to be abstract and generated by
probabilistic processes.

Moreover, a physical interpretation of cognition requires the matching of patterns for
the generalization of knowledge. This is consistent with a view of cognition as a statistical
machine with a reliance on sampling for robust information processing [33]. With ad-
vancement in the deep learning methods, such as the invention of the transformer archi-
tecture [7,34,35], it is possible to sample and search for exceedingly complex patterns in a
sequence of information, including in the case of object detection across a visual scene [36].
This sampling of the world occurs across the sensory modalities, such as those in vision and
hearing, which are the sources of information for processing and constructing the internal
representations [37].
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3.3. Representation of Common-Sense Concepts

Microsoft Research released a deep learning method based on the transformer archi-
tecture, along with the inclusion of curated and structured data, to achieve some degree of
parity with people in common-sense reasoning [38]. Their example of this kind of reasoning
is described by a question on what people do while playing a guitar. The common-sense
answer is for people to sing. This association is not a naive one, since the concept of singing
is not a property of a guitar. Their achievement of parity with people is possible by the
addition of the curated and structured data.

Their finding showed that an online corpus by itself is insufficient for a full knowledge
of concepts. The conventional transformer architecture is dependent on and limited by the
information inherent in a sequence of data for downstream representation of conceptual
knowledge. In their case, the missing component was the curation and structure in the data,
and the results showed a competitive capability for building concepts from representations
as derived from input data.

The use of a large sample of representations that correspond to an abstract or non-
abstract object or an event is expected to further increase robustness in a model of higher
cognition [39]. Our knowledge of concepts is expected to form in the same manner. If there
are incomplete or missing parts of a concept, then a person will have difficulty in forming
the whole concept and applying it during problem solving.

3.4. Future Directions in Cognitive Science
3.4.1. Dynamics of Cognition

Is higher cognition as interpretable as a deep learning system? This question arises
from the difficulty of disentangling the mechanisms of an animal neural system, whereas
it is possible to record the changing states of an artificial system, since its underlying
design is known. If the artificial system is analogous, then it is possible to gain insight into
the natural forms of cognition [7,40]. However, the assumption for this analogy may not
hold. For example, it is known that the mammalian brain is highly dynamic, such as in
the rates of sensory input and the downstream activation of internal representations [28].
These dynamic properties are not easily modeled in deep learning systems, a constraint
of hardware design and efficiency [28]. This has been an impediment to the design of an
artificial system that is approximate to higher cognition, although there are concepts for
modeling these dynamics, such as an architecture that includes “fast weights” and provides
a form of true recursion across a neural network [7,28]. This allows for a self-referential
system that can continue to adapt to new experience. Recently, there have been studies on
this architecture to address the performance problem [41,42].

The artificial neural networks continue to scale in size and efficiency. This work has
been accompanied by empirical approaches for exploring the sources of error in these
systems, and this effort is dependent on a thorough understanding about the construction
of the models. One avenue for increasing the robustness in the output is by combining
many sources of sensory data, such as from the visual domain and senses that are associated
with the natural language domains, where the communication of language is not restricted
to the written form. Another approach is to establish unbiased measures in the reliability
of model output [28,36]. Likewise, error in information processing is not resistant to bias in
animals, such as in human cognition, where there are well-documented biases in speech
perception [43].

These approaches are a foundation for emulating the modularity and breadth of
function in higher cognition. For achieving this aim, meta-learning methods can create a
formal, modular [44], and structured framework for combining disparate sources of data.
This scalable approach would lead to building complex information systems and reflect the
higher cognitive processes [45,46].
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3.4.2. Generalization of Knowledge

Another area of interest is the property of generalization in a model of higher cognition.
This property may be better understood by a study of the processes that form the internal
representations from sensory input [6,47,48]. Further, in an abstract context, generalizability
is based on the premise that information on the outside world is compressible, such as in
its repeatability of the patterns of sensory information, so that it is possible for any system
to classify objects and therefore obtain knowledge of the world.

There is also the question of how to reuse knowledge outside the environment where
it is learned, “being able to factorize knowledge into pieces which can easily be recombined
in a sequence of computational steps, and being able to manipulate abstract variables, types,
and instances” [7]. Therefore, it is relevant to have a model of cognition that includes the
higher-level representations based on the parts of objects, whether derived from sensory
input or internal to the neural network. However, the dynamic and various states of the
internal representations are also contributors to the processes of higher reasoning.

3.4.3. Embodiment in Cognition

Lastly, there is uncertainty on the dependence of cognition on the outside world.
This dependence has been characterized as the phenomenon of embodiment, i.e., that
the occurrence of cognition is dependent on an animal or similar form, so the natural
form of cognition is also an embodied cognition, even in the case where the world is a
machine simulation [28,49,50]. In essence, this is a property of a robotic and mechanical
system, where its functions are fully dependent on specific input and output from the
world. Although a natural system receives input, produces output, and learns at a time
scale constrained by the physical world, an artificial system is not as constrained, such as in
the case of reinforcement learning [50–52], a method that can also reconstruct sensorimotor
function in animals. Moreover, an artificial system is not restricted to a single bodily form
in its functions.

Deepmind [50] developed artificial agents in a three-dimensional space that learn in a
continually changing world. The method uses a deep reinforcement learning method in
conjunction with dynamic generation of environments that lead to the unique arrangement
of each world. Each of the worlds contains artificial agents that learn to handle tasks and
receive rewards for completing specific objectives. An agent observes a pixel image of an
environment along with receiving a “text description of their goal” [50]. Task experience
is sufficiently generalizable that the agents are capable of adapting to tasks that are not
yet known from prior experience. This reflects an animal that is embodied in a world and
is learning interactively by the performance of physical tasks. It is known that animals
navigate and learn from the world around them, so the above approach is a meaningful
experiment within a virtual world. However, the above approach has fragility for tasks
outside of its distribution of prior learned experiences.

4. Abstract Reasoning
4.1. Abstract Reasoning as a Cognitive Process

Abstract reasoning is often associated with a process of thought, but the elements
of the process are ideally represented as physical processes. This restriction constrains
explanations of the emergence of abstract reasoning, as in the formation of new concepts
in an abstract world. Moreover, a process of abstract reasoning may be compared against
the more intuitive forms of cognition as found in vision and speech perception. Without
sensory input, the layers of the neural system are not expected to encode new information
by a pathway, as is expected in the recognition of visual objects. Therefore, it is expected
that any information system is dependent on an external input for learning, an essential
process for the formation of experiential knowledge.

It follows that abstract reasoning is formed from an input source as received by the
neural system. If there is no input that is relevant to a pathway of abstract reasoning, then
the system is not expected to encode that pathway. This also leads to the hypothesis of
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whether abstract reasoning is composed of one or more pathways, and the contribution
of other unrelated pathways in cognition. It is probable that there is no sharp division
between abstract reasoning and the other types of reasoning, and the likelihood that there is
more than one pathway of abstract reasoning, as exemplified in the case of solving puzzles
that require the manipulation of objects in the visual world.

Another hypothesis is on whether the main source of abstract objects is the internal
representations. If true, then a model of abstract reasoning would involve the true forms of
abstract objects, in contrast to the recognition of an object by reconstruction from sensory
input in the neural network system.

Since abstract reasoning is dependent on an input source, there is an expectation that
deep learning methods modeling the non-linear dynamics are sufficient to model one or
more pathways involved in abstract reasoning. This reasoning involves the recognition of
objects that are not necessarily sensory objects with definable properties and relationships.
As with the training process to learn sensory objects, it is expected that there is a training
process to learn about the forms and properties of abstract objects. This class of problem
is of interest, since the universe of abstract objects is boundless, and their properties and
interrelationships are not constrained by the essential limits of the physical world.

4.2. Models of Abstract Reasoning

A model of higher cognition includes abstract reasoning [7]. This is a pathway or
pathways that are expected to learn the higher-level representations of sensory objects,
such as from vision or hearing, and for which the input is processed and generative of a
generalizable rule set. These may include a single rule or a sequence of rules. One model is
for the deep learning system to learn the rule set, such as in the case of puzzles solvable
by a logical operation [53]. This is likely the basis for a person playing a chess game by
memorizing prior patterns of information and events on the game board, which lead to
general knowledge of the game system as a kind of world model.

Similarly, another kind of visual puzzle is the Rubik’s Cube. However, in this case, the
final state of the puzzle is known, where each face of the cube will share a single and unique
color. Likewise, if there is a detectable rule set, then there must be patterns of information
that allow the construction of a generalized rule set.

The pathway to a solution can include the repeated testing of potential rule sets against
an intermediate or final state of the puzzle. This iterative process may be approached by a
heuristic search algorithm [7]. However, these puzzles are typically low-dimensional as
compared with abstract verbal problems, as in inductive reasoning. The acquisition of rule
sets for verbal reasoning requires a search for patterns in a higher-dimensional space. In
either of these cases of pattern searching, whether complex or simple, they are dependent
on the detection of patterns that represent a set of rules.

It is simpler to imagine a logical operation as the pattern that offers a solution, but it
is expected that inductive reasoning involves higher-dimensional representations than a
simple operator that combines Boolean values. It is also probable that these representations
are dynamic, so there is potential to sample from a set of many valid representations.

4.3. Future Directions in Abstract Reasoning
4.3.1. Embodiment in a Virtual and Abstract World

While the phenomenon of embodiment refers to an occupant of the three-dimensional
world, this is not necessarily a complete model for reasoning on abstract concepts. However,
it is plausible that at least some abstract concepts are solvable in a virtual three-dimensional
world. Similarly, Deepmind showed a solution to visual problems across a generated set of
three-dimensional worlds [50].

A population and distribution of tasks are also elements in Deepmind’s approach.
They show that learning a task distribution leads to knowledge for solving tasks outside
the prior task distribution [50,51]. This leads to the potential for generalizability in solving
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tasks, along with the promise that increased complexity across the worlds would lead to
further expansion in the knowledge of tasks.

However, the problem of abstract concepts extends beyond the conventional sensory
representations as formed by higher cognition. Examples include visual puzzles with
solutions that are abstract and require the association of patterns that extend beyond the
visual realm, along with the symbolic representations from the areas of mathematics [54,55].

By combining these two approaches, it is possible to construct a world that is not
a reflection of the three-dimensional space as inhabited by animals, but to construct a
virtual world of abstract objects and sets of tasks instead [51]. The visual and symbolic
puzzles, such as in the case of chess and related boardgames [52], are solvable by deep
learning approaches, but the machine reasoning is not generalized across a space of abstract
environments and objects.

The question is whether the abstract patterns used to solve chess are also useful in
solving other kinds of puzzles. It seems a valid hypothesis that there is at least some
overlap in the use of abstract reasoning between these visual puzzles and the synthesis
of knowledge from other abstract objects and their interactions [50], such as in solving
problems by the use of mathematical symbols and their operators [55,56]. Since humans
are capable of abstract thought, it is plausible that the generation of a distribution of
general abstract tasks would lead to a working system for solving a wider set of abstract
problems [57].

If, instead of a dynamic generation of three-dimensional worlds and objects, there is a
vast and dynamic generation of abstract puzzles, for example, then the deep reinforcement
learning approach could be trained on solving these problems and acquiring knowledge of
these tasks [50]. The question is whether the distribution of these applicable tasks is gener-
alizable to an unknown set of problems (those unrelated to the original task distribution),
and the compressibility of the space of tasks. This hypothesis is further supported by a
recent study [57].

4.3.2. Reinforcement Learning and Generalizability

Google Research showed that an unmodified reinforcement learning approach is not
necessarily robust for acquiring knowledge of tasks outside the trained task distribution [51].
Therefore, they introduced an approach that incorporates a measurement of similarity
among worlds that are generated by a reinforcement learning procedure. This similarity
measure is estimated by behavioral similarity, corresponding to the salient features by
which an agent finds success in any given world. Given that these salient features are
shared among the worlds, the agents have a path for generalizing knowledge for success
in worlds outside their experience. Procedurally, the salient features are acquired by a
contrastive learning procedure, i.e., a method for unlabeled clustering of samples, and
embeds these values of behavioral similarity in the neural network itself [58].

This reinforcement learning approach is dependent on both a deep learning framework
and an input data source. The source of input is typically in a two- or three-dimensional ar-
tificial environment where an artificial agent learns to accomplish tasks within the confines
of the worlds and their rules [50,51]. One approach is to represent the salient features of
tasks and the worlds in a neural network. As Google Research showed [51], the process
requires an additional step in extracting the salient information for creating better models
of the tasks and worlds. They found that this method was more robust in the generalization
of tasks. Similarly, in higher cognition, it is expected that the salient features used to
generalize tasks are stored in the neuronal network.

Therefore, a naive input of visual data from a two-dimensional environment is not an
efficient means of coding tasks that consistently generalize across environments. To capture
the high-dimensional information in a set of related tasks, Google Research extended the
reinforcement learning approach to better capture the task distribution [51], and it may be
possible to mimic this approach by similar methods. These task distributions provide struc-
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tured data for representing the dynamics of tasks among worlds, and therefore generalize
and encode the high-dimensional and dynamic features in a low-dimensional form.

It is difficult to imagine the relationship between two different environments. The game
of checkers and that of chess appear as different game systems. Encoding the dynamics of
each of these in a deep learning framework may show that they relate in an unintuitive and
abstract way [50]. This concept is expressed in the article cited above [51], indicating that
short paths of a larger pathway may provide the salient and generalizable features. In the
case of boardgames, the salient features may not correspond to a naive perception of visual
relatedness. Likewise, our natural form of abstract reasoning shows that patterns are cap-
tured in these boardgames, and these patterns are not entirely recognized by a single rule
set at the level of our awareness, but, instead, are likely represented at a high-dimensional
level in the neural network itself.

For emulation of a process of reasoning, extracting the salient features from a pixel im-
age is a complex problem, and the pathway may involve many sources of error. Converting
images to a low-dimensional form, particularly for the salient subtasks, allows for a greater
expectation of the generalization and repeatability in the patterns of objects and events.
Where it is difficult to extract the salient features of a system, it is possible to translate and
reduce the objects and events in the system to text-based descriptors, a process that has
been studied and lends itself to interpretation [57–60].

Lastly, since the higher cognitive processes involve the widespread use of dynamic
representations, it is plausible that the tasks are not merely generalizable but may originate
in the varied sensory and memory systems. Therefore, the tasks would be expressed
by the different sensory forms, although the low-dimensional representations are more
generalizable, providing a better substrate for the recognition of patterns, and are essential
for a process of abstract reasoning.

5. Conceptual Knowledge
5.1. Knowledge by Pattern Combination and Recognition

In the 18th century, the philosopher Immanuel Kant suggested that the synthesis of
prior knowledge leads to new knowledge [61]. This theory of knowledge extended the
concept of objects from a set of perfect forms to a recombination of forms, leading to a
boundless number of mental representations. This was the missing concept to explain the
act of knowing. Therefore, the forces of knowledge were no longer dependent on descrip-
tion outside the realm of matter, or on hypotheses based on an unbounded complexity of
material interactions.

It is possible to divide these objects and forms of knowledge into two categories:
sensory and abstract. The sensory objects are ideally constructed from sensory input, even
though this assumption is not universal. Instead, perception may refer to the construction
of these sensory objects, along with any error occurring in their associated pathways. In
comparison, the abstract object is ideally a true form. An ideal example is a mathematical
symbol, such as an operator for the addition of numbers [55]. However, an abstract object
may coincide with sensory objects, such as an animal and its taxonomic relationship to
other forms of animals.

Therefore, one hypothesis is that the objects of knowledge are instead a single category,
but that the input used to form the object is from at least two sources, including sensations
from the outside world and the representation of objects as stored in the memory.

A hypothetical example is from chess. A person is not able to calculate each game
piece and position given all events on the board. Instead, the decision-making is largely
dependent on boardgame patterns with respect to the pieces and positions. However,
the observable patterns as compared with all possible patterns is strongly bounded. One
solution is in the hypothesis that the patterns also exist as internal representations that are
synthesized and formed into new patterns not yet observed. Evidence for this hypothesis
is in the predictive coding of sensory input, namely that this compensatory action allows
a person to perceive elements of a visual scene or speech a short time prior to its occur-
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rence [33]. This same predictive coding pathway may apply to internal representations,
such as in chess gameboard patterns, and the ability to recombine prior objects of knowl-
edge. The process of creating new forms and patterns would allow a person to greatly
expand upon the number of observable patterns in a world.

To summarize, the process of predictive coding of sensory information should also
apply to the reformation of internal representations. This is a force of recombination that
is expected to lead to a very large number of forms in the memory, and is used for the
detection of objects and forms that have not yet been observed. Knowledge by synthesis of
priors has the potential to generate a multitude of forms that are consistent with the extent
of human thought. In this case, the cognitive ether of immeasurability or incomputability
is not necessary for explaining higher cognition and its processes.

5.2. Models of Generalized Knowledge

Evidence is mounting in support of a deep learning model, namely the transformer, for
sampling data and constructing high-dimensional representations [35,46,55,57,58,60,62–64].
A study by Google Research employed a decision transformer architecture to show transfer
learning in tasks that occurred in a fixed and controlled setting (Atari) [58]. This work
supports the concept that generalized patterns occur in an environment with the potential
for resampling those patterns in other environments. The experimental control of the
environmental properties is somewhat analogous to the cognitive processes that originate
in a single embodied source [49,50]. Altogether, the sampling of patterns is from the
population of all possible patterns that occur in the system. A sufficiently large sample of
tasks is expected to lead to knowledge of the system. The system may be thought of as a
physical system; in this case, it is a visual space of two dimensions.

In another study, Deepmind questioned whether task-based learning can occur across
multiple embodied sources, such as the patterns derived from torque-based tasks (a robot
arm) and those from a set of captioned images [57]. Their results showed evidence of
transfer learning across heterogeneous sources, and indicated that their model is expected
to scale in power with an increase in data and model size.

These studies are complemented by Chan and others [62]. This insightful work
showed convincing evidence of the superior performance of the transformer architecture
in handling a sequence data model. They further revealed the importance of distributional
qualities and dynamics in the training dataset, and its relationship to the properties of
natural language data [62].

These computational studies illustrate proof that model performance continues to scale
with model size [57,58]. These models for generalized task learning occur in a particular
setting. It is possible to consider the setting as a physical system, such as in a particular
simulation or in our physical world [50,64–66]. With a robust sampling of tasks in a controlled
physical system, it is possible to learn the system and transfer the knowledge of tasks from
the known to those unknown [50,64–66]. This is a form of pattern sampling that is robust
in its representation of the population of all patterns that occur in a system. Deepmind has
searched for these patterns in a system by deep reinforcement learning while optimizing the
approach by simultaneously searching for the shortest path toward learning the system [65].
This method is, in essence, learning a world model and forming a base set of cognitive
processes for downstream use.

Since images with text descriptors lead to generalized task learning [64], then video
with text descriptors [63] is expected to enhance the model with a temporal dimension, and
reflect tasks that are dynamic in time [66]. OpenAI developed a deep learning method that
receives input as video data, but with a minimal number of associated text labels, and is as
capable as a person in learning tasks and modeling a world (Minecraft) [66]. There is also
a question on the difference between simple and complex tasks. However, the tasks may
be decomposed into their parts and patterns, although OpenAI’s reinforcement learning
system is achieving this aim without prior identification of these patterns [66].
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5.3. Knowledge as a Physical Process

The informational processes in machine systems are analogous to those in the brain.
They are both systems constrained by the physical world and its rules. While the machine
systems are tractable for empirical studies of information flow and the acquisition of knowl-
edge, the biological systems are not nearly as tractable. There is limited understanding of
the specifics of how neurons work and how they organize to encode information, such as
in memory formation in mammals [18].

For example, biology is dependent on the instruments of neurobiology for capturing
the dynamics of a single neuronal cell’s activity, while a quantifiable behavior or action is
observed over time [8,9,67]. The biological studies also require extensive experimentation
for verification and insight; otherwise, a single experiment or a few experiments will result
in unsupported interpretations and conclusions on the dynamic pathway or pathways of the
neural system [68,69]. As in the history of studies in ecology, phenomenological approaches
are better replaced by those built on theory and quantitative models, along with prudence
in forming robust hypotheses, not mere questions, in the natural sciences. This problem is
not restricted to natural science, but also applies to the science of engineering [35].
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