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Definition: Photoremovable protecting groups (PPGs) (also often called photocages in the literature)
are used for temporary inactivation of biologically active substrates. By photoirradiation the PPG
could be cleaved off and the biological activity could be restored on-demand, with a high spatiotempo-
ral precision. The on-site liberation of the biologically active substrate could be exploited for studying
dynamic biological processes or for designing targeted pharmacological interventions in vitro or
in vivo. Several chemical scaffolds have been described and tested as PPGs, operating at different
wavelengths. The scope of potential substrates is very broad, spanning from small molecules to
proteins. In a wider context, PPGs could be used for the design of various light-responsive materials
as well, for diverse applications.

Keywords: photoremovable protecting groups; photocages; photoactivation; uncaging; two-photon
irradiation; drug delivery

1. Introduction

Gaining spatiotemporal control over drug action or biological functions in a broader
sense is a long sought for goal for therapeutic or experimental interventions. Thus, dynamic
functions could be studied in vivo with high precision, ideally on a timescale relevant for
the process studied, or in a clinical setting, deleterious side effects could be avoided or
minimized. A possible approach towards this goal is to use materials/systems responding
to a specific internal or external stimulus [1]. Chemical, physical and biological stimuli (e.g.,
pH, enzymes, ionic microenvironment, temperature, ultrasound, magnetic field, light) have
been addressed in this respect. Of the various external stimuli, light has several potential
benefits [2]. At appropriate wavelengths, phototoxicity could be avoided and light could
be considered bioorthogonal (i.e., not interfering with biological signals or functioning).
The light pulse can be precisely tuned in its duration and intensity and, with this external
stimulus, extracellular regions or intracellular compartments could be selectively addressed,
as necessary [3]. Moreover, the external activation is independent of the microenvironment
vs. the case of endogenous approaches.

The operational mode of photoremovable protecting groups (PPGs, often referred to in
the literature with the illustrative (photo)cage name, expressing the concept of the biological
activity being trapped, although the term photolabile/photosensitive/photocleavable
(protecting group) are also in use) is to temporarily inactivate the biological action of a
given agent by linking a PPG to it. The action could be restored on-demand following a
photoactivation step: the cleavage of the PPG via the dissociation of a covalent bond and
the liberation of the parent biologically active compound (Figure 1). The activation step in
the case of PPGs is typically a one-way, irreversible process [4]. (A reversible process, based
on photoisomerisation occurs in the case of the so-called photoswitches [5]. The field of
photoswitches—also referred to as photopharmacology—has seen a considerable expansion
in the last decade with more elaborate applications emerging [6,7] that are, however, beyond
the scope of the present entry). The relative simplicity of the PPG approach has its benefits,
e.g., in terms of design, as the properties of an already optimized active agent could be
further modified via a PPG linked to it. However, the approach has its limits as well, such
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as the on-site release of the PPG in stoichiometric amounts, the irreversibility of the process
allowing only a one-time activation protocol, or the potential unwanted effects caused by
the parent effector molecules upon diffusion from the intended site of action.
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Figure 1. A simplified overview of the operation of PPGs for the release of biologically active sub-
strates (adapted from Korzycka et al. [8] and Piant et al. [9]). 

The application of PPGs in the biological context dates back to the 1970s, to the first 
studies of Engels and Schlaeger and Kaplan et al. with caged cAMP and ATP [10,11], fol-
lowing an earlier report by Barltrop and Schofield on the photorelease of glycine (Figure 
2) [12]. Although the present paper will focus on the biological applications of PPGs, syn-
thetic applications (although relatively less common in the literature vs. the biological 
ones) could also be envisaged [13,14]. A deprotection step carried out under mild condi-
tions and not requiring an additional reagent (i.e., light acting as a traceless reagent) is of 
considerable interest also for designing a (more complex/multi-step) synthesis pathway. 
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Figure 1. A simplified overview of the operation of PPGs for the release of biologically active
substrates (adapted from Korzycka et al. [8] and Piant et al. [9]).

The application of PPGs in the biological context dates back to the 1970s, to the first studies
of Engels and Schlaeger and Kaplan et al. with caged cAMP and ATP [10,11], following an earlier
report by Barltrop and Schofield on the photorelease of glycine (Figure 2) [12]. Although the
present paper will focus on the biological applications of PPGs, synthetic applications (although
relatively less common in the literature vs. the biological ones) could also be envisaged [13,14].
A deprotection step carried out under mild conditions and not requiring an additional reagent
(i.e., light acting as a traceless reagent) is of considerable interest also for designing a (more
complex/multi-step) synthesis pathway.
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ATP [11].

2. Design and Applications of PPGs
2.1. The Substrate Scope of PPGs

Since the 1970s, a considerable effort has been dedicated both to the development
of novel photoactivatable chemical probes and their applications in various experimen-
tal studies. Regarding the scope of PPG applications, the caged substrate could be as
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simple as a proton or an inorganic species or ion (e.g., Ca2+ [15], Zn2+ [16], CO [17],
NO [18], H2S [19]), it could be a small molecule (e.g., second messenger (such as inositol-
1,4,5-triphosphate (IP3) [20]), neurotransmitter (notably GABA and glutamate [21,22]),
nucleotide [23], peptide [24], drug molecule [25] (such as antibiotics [26], analgesics [27]
or anticancer agents [28]) or a more complex biomolecule (e.g., enzymes [29], RNA [30] or
DNA [31]) (Figure 3).
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with photoactivatable EGTA [32], (B) neurotransmitter glutamate caging with MNI [21], (C) caging
the anticancer agent vemurafenib with a nitrobenzyl PPG [33], (D) a coumarin PPG-caged antibiotic
agent [34], (E) a coumarin PPG-caged analgesic [27].

2.2. Preparation of PPG-Substrate Constructs

With some exceptions, typically the PPG is linked with a covalent bond to the substrate.
In the case of, e.g., Ca2+, instead of forming a covalent bond directly with the substrate, via
photocleavage the affinity of calcium chelating agents (e.g., ethylene glycol tetraacetic acid
(EGTA), 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA)), is compro-
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mised irreversibly [15]. Binding the PPG to its substrate is possible via different functional
groups, offering sufficient flexibility of design (binding is possible via, e.g., ester, ether,
carbamate or amide bonds). Choosing the appropriate site (i.e., one where binding a
PPG efficiently masks the biological activity) for introducing the PPG is often directed
by computational studies [33]. Having sufficient structural and SAR information on the
target concerned, the site(s) critical for biological activity could be judiciously addressed.
However, more elaborate chemical modification(s) of the substrate could necessitate a
collaboration of biologists and synthetic chemists and, therefore, the biological applica-
tions described are often based on a limited array of commercially available PPGs, despite
the continuously growing number of alternative caging scaffolds (Figure 4 shows a non-
exhaustive selection of the most important PPGs described so far) [35]. Besides a more
efficient communication and collaboration between distinct scientific fields, application-
driven photocage development could also contribute in the future to the transition from
studies under laboratory settings towards (therapeutic) applications.
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2.3. Application Criteria for PPGs

For their intended use, PPG-substrate constructs should comply with several criteria
(such properties were considered by Lester and Nerbonne in 1982 [38]), some of them
related to photophysics and photochemistry, some to the living system itself. Application
criteria include good aqueous solubility (or solubility in the experimental medium); stabil-
ity to hydrolysis (to avoid residual activity from the unmasked substrate, e.g., the often
used ester bonds could be sensitive to hydrolysis); an efficient photorelease process (suffi-
ciently rapid vs. the kinetics of the process to be studied, high yielding and not resulting
in unwanted side products); photostability of the photolysis products; efficient masking
of the biological activity with the PPG (the construct should be inactive prior to photoac-
tivation); compatibility of the applied irradiation with the biological system in terms of
wavelength and light intensity; and compatibility and non-reactivity of the PPG with the
biological system to be studied/treated [35]. Additionally, a straightforward synthesis
and purification process for the PPG itself and the PPG-substrate construct is necessary.
To name a specific challenge, from a synthetic point of view, higher polarity molecules
(e.g., molecules containing a number of hydrophilic groups such as sulfonates [39]) with
better aqueous solubility could require aqueous synthesis and purification conditions, not
typically used for organic synthesis. Upon choosing a chemical probe, often not all criteria
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of an ideal PPG are met. However, depending on the application, some shortcomings could
still be tolerated.

2.4. UV and VIS (One-Photon) Activation of PPGs, Design Aspects

Regarding the activation signal used, phototoxicity of shorter (UV) wavelengths [40]
and the tissue penetration of the light trigger are important factors when considering bio-
logical applications. The optical window of tissues (the wavelength region offering the best
tissue penetration for light) spans the 650–900 nm (NIR) region [41,42], limited at the two
extremities by the absorption of hemoglobin (<650 nm) and water (>900 nm). (Targeting
this particular wavelength region is crucial also for in vivo optical imaging techniques.)
Most of the PPGs used in experimental settings at present operate, however, outside this
range (i.e., often at 350–450 nm). Work is ongoing for the development of PPGs operating
at higher (visible/NIR) wavelengths (such as boron dipyrromethene (BODIPY) [36] or
heptamethine cyanine derivatives [43]), that are more advantageous for in vivo operations.
A straightforward approach is the modification of PPGs with moieties increasing the ab-
sorption wavelength (typically by creating systems with extended conjugation) [44]. To
illustrate the optimization work around a specific scaffold, Figure 5 presents modifications
of coumarin PPGs for obtaining probes operating at higher wavelengths. The modifications
include extended conjugation with push-pull substituent patterns, application of conforma-
tionally locked electron-donating groups and a combination of π-extension with cationic
moieties [45–48]. Of note, however, the different properties of PPGs are often difficult to
fine-tune separately and the optimization of one characteristic could be detrimental for
another (e.g., extended conjugation or the introduction of hydrophilic groups could alter
the pharmacokinetics or the aqueous solubility of the construct).
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2.5. NIR (Two-Photon) Activation of PPGs, Design Aspects. Characterization of PPGs

Alternatively, NIR wavelengths could be exploited for the photoactivation via a
nonlinear optical process, the two-photon absorption (TPA) [51]. Whereas in this case the
simultaneous absorption of two lower energy photons leads to excitation and consequent
photoreaction, the process has a quadratic dependence on the light intensity (Figure 6). The
excitation in this case necessitates on the one hand a maximum light intensity typically
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achieved at the focal point of the irradiation and, on the other hand, for practical purposes,
a specific instrumentation. Two-photon (TP) activation has several advantages over the
conventional one-photon (OP) activation. The longer wavelength used for TP activation
is less phototoxic, has a deeper tissue penetration and the activation could be confined
more efficiently, due to the inherent criteria of the process (i.e., a better resolution could
be achieved).
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Desce [51]).

PPGs are typically characterized by their absorption maxima and molar extinction
coefficients (i.e., their light absorption properties), fluorescence, hydrolytic stability (crucial
for avoiding unwanted release of the substrate prior to photoirradiation) and aqueous
solubility. The quantum yield of the photolysis reaction (Φu—‘uncaging’ quantum yield)
expresses the number of molecules liberated from the PPG-substrate construct vs. the
photons absorbed. The overall photocleavage efficiency at a given wavelength depends
also on the light-absorbing property of the construct (extinction coefficient—ε—in the
case of a OP process or two-photon absorption cross-section—σ2—for a TP process). The
OP and TP uncaging cross sections could be expressed as the product of the quantum
yield and the respective extinction coefficient (ε, in M−1 cm−1 or two-photon absorption
cross-section σ2, in GM (Göppert–Mayer), where 1 GM = 10−50 cm4 s photons−1) [51].
The quantitative cross section values reported in the literature could be used for a first
evaluation and comparison of the novel PPGs disclosed. One-photon quantum yield
measurements necessitate a monochromatic light source, that is often a mercury lamp or
a LED/OLED source. Two-photon uncaging measurements require femtosecond pulsed
infrared (Ti:Sapphire) lasers. The photolysis is often quantified by HPLC monitoring of the
liberated substrate and the remaining fraction of the PPG-substrate construct [52]. With
more sensitive chemical probes, a lower light intensity could be used, avoiding thereby
phototoxicity. The minimal requirements regarding the uncaging performance of the probe
are governed, however, by the studied system and the intended effect [53].

Particularly for TP PPGs, rational engineering and optimization of TP uncaging effi-
ciency, i.e., predicting the effect of structural modifications on the uncaging process is still
problematic, despite successful strategies for increasing the TP absorption itself [51,53]. To
circumvent the issues related to the design of novel TP PPGs, modular approaches were
suggested [54]: the light-harvesting and the cargo-releasing moieties of the probe are decou-
pled, by designing antenna-sensitized tandem systems operating via different mechanisms
(such as triplet-energy transfer, photoinduced electron transfer or Förster resonance energy
transfer sensitization—Figure 7) in which the two units could be optimized independently
from each other.
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transfer (PET) or Förster resonance energy transfer (FRET) between the branches of the construct [8,55].
In the former case, upon TP excitation the TP-absorbing unit donates an electron to the pyridinium
PPG unit (* referring to the photoexcited state), leading to a photochemical reaction and the release
of the cargo [8]. The latter example is based on an appropriately selected FRET donor-acceptor
pair (emission of the donor in sufficient overlap with the absorption of the acceptor) linked by a
thiophosphoryl unit [55].

2.6. Selected Applications of PPGs

PPGs via masking the toxicity or altering the physicochemical properties could enable
harnessing drug molecules with a suboptimal ADMET profile. Dcona et al. attached a
cell impermeable (sulfonated) small molecule to an anticancer drug (doxorubicin) via a
nitroveratryl PPG linker [56]. While the construct itself could not enter the cells, upon
photorelease the cell permeability as well as the consequent cytotoxic effect were restored
(called ‘photocaged permeability’ by the authors).

Besides the on-site activation of a biological agent (i.e., prodrug applications), PPG-
substrate constructs could be endowed with further (e.g., theranostic) functions, such as
monitoring the distribution of the probe or the photorelease process (typically via a turn-on
fluorescence phenomenon). In this respect, Wu et al. designed a construct composed of a
coumarin PPG, an anticancer drug as a cargo (camptothecin), a cleavable linker unit and a
NIR fluorescent dye (dicyanomethylene-4H-pyran) [57]. In the construct, the fluorescence
of the drug molecule and the PPG is quenched by the dye unit via fluorescence energy
transfer. The cellular uptake of the construct and its intracellular distribution could be
monitored using the fluorescence of the NIR dye (red emission). Upon OP or TP activation,
following a reaction cascade, the release of the drug molecule could be visualized via its
restored fluorescence (besides observing its pharmacological–cytotoxic–action). Addition-
ally, cell- or site-selective targeting units could be integrated into the construct. Singh et al.
developed a mitochondria-targeting system (using an alkyltriphenylphosphonium (TPP)
targeting moiety) with an o-hydroxycinnamate PPG, releasing doxorubicin upon light
irradiation [58] (Figure 8). Although the o-hydroxycinnamate PPG itself is not fluorescent,
upon its photoinduced isomerization and cyclization a fluorescent coumarin derivative is
formed, that could be exploited for the real-time monitoring of the release process. In an
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in vivo setting, drug release monitoring options (besides a targeting functionality) could
consequently allow more precise (local) dosing and optimization of the side effect profile.
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PPGs allow the design of more elaborate photorelease scenarios, with the liberation
of several substrates. Namely, by applying a selection of PPGs activatable at different
wavelengths, a sequential photorelease protocol could be devised (‘chromatic orthogonal-
ity’ [59,60]), as illustrated on Figure 9 with a wavelength-selective uncaging approach for
oligonucleotides using four different PPGs [61].
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Figure 9. Four layer wavelength-selective uncaging approach for oligonucleotides using four different
PPGs: 7-diethylaminocoumarin-4-yl)methyl (DEACM), 1-(3-nitrodibenzofuran-1-yl)ethyl (NDBF), 2-(o-
nitrophenyl)propyl (NPP) and p-hydroxyphenacyl (pHP) (adapted from Rodrigues-Correia et al. [61]).

PPGs could be used in the design of more complex, nanoparticle-based drug delivery
systems as well. In their structure, a PPG could be integrated in different manners to
orchestrate the targeting or the drug release [62]. To address targeting, a straightforward
approach is to modify directly the targeting ligands (anchored typically on the surface of
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the nanoparticles) with PPGs to block their interactions with their target. Alternatively,
targeting ligands could be anchored within nanoparticles using PPG units, their photolysis
resulting in the surface exposure of the ligands. Integrating the PPGs into the structure of
nanocarriers, the photolysis could lead to their dissociation and the consequent release of
their payload. The dissociation could be the result of various processes, as hydrophobicity
change or photocleavage at the block junction of block copolymers [62]. Of the potential
nanocarrier systems, photodisruption of liposomes was studied by several groups, using
various photocleavable synthetic amphiphilic lipids. Bayer et al. placed a 2-nitrobenzyl
PPG into the sn-2 acyl chain of the naturally occurring phosphatidylcholine, the photolysis
of which leads to a nonbilayer lipid (upon release of the succinimide linker) and consequent
membrane destabilization [63]. An analogue system was reported, based on a NIR-sensitive
coumarin PPG (Figure 10), better suited for in vivo applications [64].
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3. Practical Issues and Future Directions

The previous section aimed to elucidate the essential features of PPGs, besides high-
lighting some of their interesting applications. Despite the growing number of elegant
studies using PPGs, there are still several obstacles to overcome to be able to exploit their
full potential even in therapeutic/clinical settings. To address the therapeutic potential of
photoresponsive systems, Lerch et al. recently introduced the concept of ‘photodrugga-
bility’ [65]. As for other externally addressable systems, critical aspects encompass tissue
penetration of the trigger, delivery to and retention at the active site of the light-responsive
constructs (small molecules or nanocarriers), precise control of the activation signal under
in vivo conditions, availability and complexity of the necessary instrumentation, availabil-
ity of translational models and safety [66]. For addressing the tissue penetration issue (less
relevant however for superficial locations, such as the skin or the eyes) in the case of PPGs,
structural modifications leading to higher operational wavelengths [44], exploiting TP
activation with specifically designed probes [51] or specific formulations/alternative light
sources have been studied (e.g., upconversion nanoparticles [67] or Cherenkov-radiation
initiated uncaging [68]). Alternatively, endoscopy or surgical interventions could be en-
visaged for targeting otherwise not accessible, deeper lying organs [65]. Regarding the
instrumentation, the field of PPGs could build on systems developed for other light-driven
approaches, such as sophisticated implantable devices for photoswitches [69,70] or light
sources for photodynamic therapy [71], as well as the previously cited optical fibers or
endoscopic setups. The availability of in vivo results is a major bottleneck of the field at
present. Many studies discussing novel PPGs are focusing on the organic synthesis and
the photophysical-photochemical properties of the novel probes and are not going beyond
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proof of concept studies. Although not yet imminent, the regulation and approval for
therapy of PPG-substrate constructs would need further consideration and experimental
(safety) data vs. conventional small-molecule drugs. However, given the well-established
application of PPGs particularly in neurophysiological studies and their potential for di-
verse research areas (e.g., materials science), a further expansion and diversification of
the field could be expected, offering novel chemical probes with improved properties and
innovative systems for addressing research and clinical needs.
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