Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Geometry, Microarchitecture, and Stiffness Properties of Bones
2.2. Module 2: Effective Design of Lattice Structures
2.3. Parametric Investigation of Lattice Structure Design
2.4. Materials and Fabrication of the Experimental Lattice Structures
2.5. Evaluation of Geometric Features of Printed Lattices
2.6. Characterization of Stiffness and Strength of Investigated Lattice Structures
3. Results and Discussion
3.1. Parametric Analysis of Design Parameter Effect on Lattice Microstructure
3.1.1. Surface Area
3.1.2. Pore Size
3.1.3. Porosity Distribution
3.2. Parametric Analysis of Structure Parameters’ Effects on Lattice Stiffness
Analysis of Variance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulrich, S.D.; Seyler, T.M.; Bennett, D.; Delanois, R.E.; Saleh, K.J.; Thongtrangan, I.; Kuskowski, M.; Cheng, E.Y.; Sharkey, P.F.; Parvizi, J.; et al. Total hip arthroplasties: What are the reasons for revision? Int. Orthop. 2008, 32, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2427–2431. [Google Scholar] [CrossRef]
- Van Bael, S.; Kerckhofs, G.; Moesen, M.; Pyka, G.; Schrooten, J.; Kruth, J.P. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater. Sci. Eng. A 2011, 528, 7423–7431. [Google Scholar] [CrossRef]
- Abdelrhman, Y.; Gepreel, M.A.-H.; Kobayashi, S.; Okano, S.; Okamoto, T. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Huiskes, R.; Weinans, H.; Van Rietbergen, B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 1992, 274, 124–134. [Google Scholar] [CrossRef]
- Mi, Z.R.; Shuib, S.; Hassan, A.Y.; Shorki, A.A.; Ibrahim, M.M. Problem of stress shielding and improvement to the hip implant designs: A review. J. Med. Sci. 2007, 7, 460–467. [Google Scholar] [CrossRef]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, A.; Dean, D. The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater. 2024, 173, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Dental Solutions|ZimVie America. Available online: https://www.zimmerbiometdental.com (accessed on 20 January 2017).
- Vaishya, R.; Chauhan, M.; Vaish, A. Bone cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Su, Y.; Yang, W.; Wu, K.; Du, R.; Zhong, Y. A Novel Design Method of Gradient Porous Structure for Stabilized and Lightweight Mandibular Prosthesis. Bioengineering 2022, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; El-Gizawy, A.S. Development of customized cellular structures to match the mechanical properties of human trabecular bone. In Proceedings of the 2018 Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 13–15 August 2018. [Google Scholar]
- El-Gizawy, A.S.; Ma, X.; Pfeiffer, F.; Schiffbauer, J.D.; Selly, T. Characterization of Microarchitectures, Stiffness and Strength of Human Trabecular Bone Using Micro-Computed Tomography (Micro-CT) Scans. BioMed 2023, 3, 89–100. [Google Scholar] [CrossRef]
- Next-Gen Engineering Design Software: nTop. Available online: www.ntop.com (accessed on 2 July 2017).
- Phadke, M.S. Quality Engineering Using Robust Design; Prentice Hall: Englewood, CA, USA, 1989. [Google Scholar]
- Arnone, J.A.; El-Gizawy, A.S.; Crist, B.D.; Della Rocca, G.J.; Ward, C.V. Computer-Aided Engineering Approach for Parametric Investigation of Locked Plating Systems Design. J. Med. Devices 2013, 7, 021001. [Google Scholar] [CrossRef]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed]
Factors (Design Parameters) | Levels | ||
---|---|---|---|
1 | 2 | 3 | |
Unit Cell Type (A) | Cube Vertex Centroid | Cubic Diamond | Cubic Fluorite |
Cell Size (B), mm | 1.2 | 1.4 | 1.6 |
Strut Shapes (C) | Square | Hexagon | Circle |
Strut Thickness (D), mm | 0.23 | 0.28 | 0.33 |
Experimental (Measurements)-Log | ||||
---|---|---|---|---|
Lattice Design (Experiment) # | Unit Cell Type A | Cell Size, mm B | Strut Shape C | Strut Thickness, mm D |
1 | Cube Vertex Centroid | 1.2 | Square | 0.23 |
2 | Cube Vertex Centroid | 1.4 | Hexagon | 0.28 |
3 | Cube Vertex Centroid | 1.6 | Circle | 0.33 |
4 | Cubic Diamond | 1.2 | Hexagon | 0.33 |
5 | Cubic Diamond | 1.4 | Circle | 0.23 |
6 | Cubic Diamond | 1.6 | Square | 0.28 |
7 | Cubic Fluorite | 1.2 | Circle | 0.28 |
8 | Cubic Fluorite | 1.4 | Square | 0.33 |
9 | Cubic Fluorite | 1.6 | Hexagon | 0.23 |
EOS Ti64 Material Composition | ||||||||
---|---|---|---|---|---|---|---|---|
Element | Ti | Al | V | O | N | C | H | Fe |
wt% | balance | 5.5–6.75 | 3.5–4.5 | <0.2 | <0.05 | <0.08 | <0.015 | <0.3 |
Expe. (Design) # | Sample # | As Designed Porosity (%) | Measured Modulus (MPa) | Mean Modulus (MPa) | SD Modulus | Measured Yield Strength (MPa) | Mean Strength (MPa) | SD Strength |
---|---|---|---|---|---|---|---|---|
Exp. #6 | Sample #1 | 85.0 | 992.0 | 1124.4 | 164.3 | 22.8 | 25.6 | 5.1 |
Sample #2 | 1072.9 | 22.6 | ||||||
Sample #3 | 1308.3 | 31.5 |
Lattice Design # | Surface Area, mm2 | Pore Size, mm | Porosity, % | Compression Testing | |
---|---|---|---|---|---|
Elastic Modulus, MPa | Yield Strength, MPa | ||||
Exp#1 | 21,344.55 | 1.23 | 83.5 | 708.1 | 17.0 |
Exp#2 | 18,352.45 | 1.41 | 80.9 | 706.9 | 19.6 |
Exp#3 | 14,264.43 | 1.58 | 83.5 | 616.5 | 16.8 |
Exp#4 | 25,367.25 | 0.74 | 69.2 | 2513.3 | 58.2 |
Exp#5 | 15,098.33 | 1.08 | 89.0 | 688.1 | 16.8 |
Exp#6 | 15,296.34 | 1.12 | 85.0 | 1124.4 | 25.6 |
Exp#7 | 33,566.66 | 0.74 | 61.4 | 3345.9 | 99.6 |
Exp#8 | 31,190.34 | 0.72 | 52.3 | 5357.4 | 77.4 |
Exp#9 | 21,075.15 | 1.17 | 81.1 | 1248.5 | 30.3 |
Experimental (Measurements)—Log | Mean Modulus/Mpa | Standard Deviation Modulus | ||||
---|---|---|---|---|---|---|
Lattice Design # | Unit Cell Type | Cell Size, mm | Strut Shape | Strut Thickness, mm | µ | σ |
1 | Cube Vertex Centroid | 1.2 | Square | 0.23 | 708.1 | 76.5 |
2 | Cube Vertex Centroid | 1.4 | Hexagon | 0.28 | 706.9 | 56.2 |
3 | Cube Vertex Centroid | 1.6 | Circle | 0.33 | 616.5 | 50.9 |
4 | Cubic Diamond | 1.2 | Hexagon | 0.33 | 2513.3 | 398.3 |
5 | Cubic Diamond | 1.4 | Circle | 0.23 | 688.1 | 73.4 |
6 | Cubic Diamond | 1.6 | Square | 0.28 | 1124.4 | 164.3 |
7 | Cubic Fluorite | 1.2 | Circle | 0.28 | 3345.9 | 861.3 |
8 | Cubic Fluorite | 1.4 | Square | 0.33 | 5357.4 | 3055.8 |
9 | Cubic Fluorite | 1.6 | Hexagon | 0.23 | 1248.5 | 135.4 |
ANOVA Table for Modulus of Elasticity | |||||
---|---|---|---|---|---|
Source | Degrees of Freedom D.F | Sum of Squares, Sx | Mean Square Vx = Sx/D.F | Variance Ratio, F | Percentage Contribution, ϱ (%) |
Unit Cell Type A | 2 | 3,863,449 | 1,931,724 | 2.5 | 27 |
Cell Size B | 2 | 2,999,370 | 1,499,685 | 1.94 | 21 |
Strut Shape C | 2 | 1,542,907 | 771,454 | 1.0 | 11 |
Strut Thickness D | 2 | 5,722,752 | 2,816,371 | 3.65 | 41 |
Totals | 8 | 14,128,478 | 1,766,059 | 100 | |
(Error) | (2) | (1,542,907) | (771,454) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gizawy, A.S.; Ma, X.; Arnone, J.C.; Melaibari, A.A. Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications. BioMed 2024, 4, 171-184. https://doi.org/10.3390/biomed4020014
El-Gizawy AS, Ma X, Arnone JC, Melaibari AA. Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications. BioMed. 2024; 4(2):171-184. https://doi.org/10.3390/biomed4020014
Chicago/Turabian StyleEl-Gizawy, Ahmed Sherif, Xuewei Ma, Joshua C. Arnone, and Ammar A. Melaibari. 2024. "Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications" BioMed 4, no. 2: 171-184. https://doi.org/10.3390/biomed4020014
APA StyleEl-Gizawy, A. S., Ma, X., Arnone, J. C., & Melaibari, A. A. (2024). Customized Lattice Structures Tailored to Mimic Patients’ Bone Anisotropic Properties and Microarchitecture for Joint Reconstruction Applications. BioMed, 4(2), 171-184. https://doi.org/10.3390/biomed4020014