Enhancing Prostate and Bladder Cancer Treatment: Exploring the Synergistic Potential of Entecavir and 5-Fluorouracil Combinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Modeling of ADMET Properties
2.2. Cell Culture and Reagents
2.3. Cell Seeding
2.4. Cell Treatment
2.5. Morphological Analysis
2.6. MTT Assay
2.7. Statistical Analysis
3. Results
3.1. Pharmacokinetic Evaluation of the Combination of 5-FU and ETV
3.2. PC-3 Cells
3.2.1. Cytotoxicity of 5-FU
3.2.2. Cytotoxicity of ETV
3.2.3. Cytotoxicity of Combination Studies
3.3. UM-UC-5 Cells
3.3.1. Cytotoxicity of ETV
3.3.2. Cytotoxicity of Combination Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, V.K.; Ganeshan, D.; Jensen, C.T.; Devine, C.E. Imaging and Management of Bladder Cancer. Cancers 2021, 13, 1396. [Google Scholar] [CrossRef] [PubMed]
- Oeyen, E.; Hoekx, L.; De Wachter, S.; Baldewijns, M.; Ameye, F.; Mertens, I. Bladder Cancer Diagnosis and Follow-up: The Current Status and Possible Role of Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 821. [Google Scholar] [CrossRef] [PubMed]
- Aveta, A.; Cilio, S.; Contieri, R.; Spena, G.; Napolitano, L.; Manfredi, C.; Franco, A.; Crocerossa, F.; Cerrato, C.; Ferro, M.; et al. Urinary MicroRNAs as Biomarkers of Urological Cancers: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 10846. [Google Scholar] [CrossRef] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of Bladder Cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Muscle-Invasive and Metastatic Bladder Cancer. Available online: https://uroweb.org/guidelines/muscle-invasive-and-metastatic-bladder-cancer/chapter/disease-management (accessed on 2 March 2024).
- Hu, X.; Li, G.; Wu, S. Advances in Diagnosis and Therapy for Bladder Cancer. Cancers 2022, 14, 3181. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, T.; Vale, N. Pharmacological Efficacy of Repurposing Drugs in the Treatment of Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 4154. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.M.; Falagario, U.G.; D’Altilia, N.; Recchia, M.; Mancini, V.; Selvaggio, O.; Sanguedolce, F.; Del Giudice, F.; Maggi, M.; Ferro, M.; et al. PSA Density Help to Identify Patients With Elevated PSA Due to Prostate Cancer Rather Than Intraprostatic Inflammation: A Prospective Single Center Study. Front. Oncol. 2021, 11, 693684. [Google Scholar] [CrossRef]
- Cattrini, C.; Caffo, O.; Olmos, D.; Castro, E.; De Giorgi, U.; Mennitto, A.; Gennari, A. Apalutamide, Darolutamide and Enzalutamide for Nonmetastatic Castration-Resistant Prostate Cancer (NmCRPC): A Critical Review. Cancers 2022, 14, 1792. [Google Scholar] [CrossRef]
- Currin, S.; Flood, T.A.; Krishna, S.; Ansari, A.; McInnes, M.D.F.; Schieda, N. Intraductal Carcinoma of the Prostate (IDC-P) Lowers Apparent Diffusion Coefficient (ADC) Values among Intermediate Risk Prostate Cancers. J. Magn. Reson. Imaging 2019, 50, 279–287. [Google Scholar] [CrossRef]
- Pecoraro, M.; Del Giudice, F.; Magliocca, F.; Simone, G.; Flammia, S.; Leonardo, C.; Messina, E.; De Berardinis, E.; Cortesi, E.; Panebianco, V. Vesical Imaging-Reporting and Data System (VI-RADS) for Assessment of Response to Systemic Therapy for Bladder Cancer: Preliminary Report. Abdom. Radiol. 2022, 47, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Cancer. Available online: https://www.mayoclinic.org/diseases-conditions/cancer/diagnosis-treatment/drc-20370594 (accessed on 17 September 2023).
- Prostate Cancer. Available online: https://uroweb.org/guidelines/prostate-cancer/chapter/treatment (accessed on 2 March 2024).
- Zerbib, M.; Zelefsky, M.J.; Higano, C.S.; Carroll, P.R. Conventional Treatments of Localized Prostate Cancer. Urology 2008, 72, S25–S35. [Google Scholar] [CrossRef] [PubMed]
- Knipper, S.; Ott, S.; Schlemmer, H.P.; Grimm, M.O.; Graefen, M.; Wiegel, T. Options for Curative Treatment of Localized Prostate Cancer. Dtsch. Arztebl. Int. 2021, 118, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Sayyid, R.K.; Klotz, L.; Benton, J.Z.; Ma, M.; Woodruff, P.; Satkunasivam, R.; Terris, M.K.; Wallis, C.J.D.; Klaassen, Z. Active Surveillance in Favorable Intermediate-Risk Prostate Cancer Patients: Predictors of Deferred Intervention and Treatment Choice. Can. Urol. Assoc. J. 2021, 16, E7–E14. [Google Scholar] [CrossRef] [PubMed]
- Turanli, B.; Grøtli, M.; Boren, J.; Nielsen, J.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Drug Repositioning for Effective Prostate Cancer Treatment. Front. Physiol. 2018, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Vale, N. Antidepressant Drug Sertraline against Human Cancer Cells. Biomolecules 2022, 12, 1513. [Google Scholar] [CrossRef] [PubMed]
- Pantziarka, P.; Verbaanderd, C.; Sukhatme, V.; Capistrano, R.; Crispino, S.; Gyawali, B.; Rooman, I.; Van Nuffel, A.M.; Meheus, L.; Sukhatme, V.P.; et al. ReDO_DB: The Repurposing Drugs in Oncology Database. Ecancermedicalscience 2018, 12, 886. [Google Scholar] [CrossRef] [PubMed]
- Baraclude-Resumo Das Características Do Medicamento. Available online: https://www.ema.europa.eu/pt/documents/product-information/baraclude-epar-product-information_pt.pdf (accessed on 20 May 2023).
- Entecavir. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Entecavir (accessed on 20 May 2023).
- Lourenço, T.; Vale, N. Entecavir: A Review and Considerations for Its Application in Oncology. Pharmaceuticals 2023, 16, 1603. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Shenoy, G.G.; Rodrigues, G.S.; Kumar, N.A.N.; Munisamy, M.; Thomas, L.; Kolesar, J.; Rai, G.; Rao, P.P.N.; Rao, M. Histone Demethylase KDM5B as a Therapeutic Target for Cancer Therapy. Cancers 2020, 12, 2121. [Google Scholar] [CrossRef]
- Ewert de Oliveira, B.; Junqueira Amorim, O.H.; Lima, L.L.; Rezende, R.A.; Mestnik, N.C.; Bagatin, E.; Leonardi, G.R. 5-Fluorouracil, Innovative Drug Delivery Systems to Enhance Bioavailability for Topical Use. J. Drug Deliv. Sci. Technol. 2021, 61, 102155. [Google Scholar] [CrossRef]
- Pereira, M.; Vale, N. Repurposing Alone and in Combination of the Antiviral Saquinavir with 5-Fluorouracil in Prostate and Lung Cancer Cells. Int. J. Mol. Sci. 2022, 23, 12240. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; de Souza, T.; Coyle, L.; Di Piazza, M.; Herpers, B.; Ferreira, S.; Zhang, M.; Vappiani, J.; Sévin, D.C.; Gabor, A.; et al. New Insights into the Mechanisms Underlying 5-Fluorouracil-Induced Intestinal Toxicity Based on Transcriptomic and Metabolomic Responses in Human Intestinal Organoids. Arch. Toxicol. 2021, 95, 2691–2718. [Google Scholar] [CrossRef] [PubMed]
- Fluorouracilo Accord-Resumo Das Características Do Medicamento. Available online: https://extranet.infarmed.pt/INFOMED-fo/index.xhtml (accessed on 20 May 2023).
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) Resistance and the New Strategy to Enhance the Sensitivity against Cancer: Implication of DNA Repair Inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef] [PubMed]
- Calzetta, L.; Koziol-White, C. Pharmacological Interactions: Synergism, or Not Synergism, That Is the Question. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100046. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.; Vale, N. Understanding the Clinical Use of Levosimendan and Perspectives on Its Future in Oncology. Biomolecules 2023, 13, 1296. [Google Scholar] [CrossRef] [PubMed]
- MTT Assay Protocol for Cell Viability and Proliferation. Available online: https://www.sigmaaldrich.com/PT/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/cell-counting-and-health-analysis/cell-proliferation-kit-i-mtt (accessed on 30 July 2023).
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Fluorouracil. Available online: https://go.drugbank.com/drugs/DB00544 (accessed on 27 November 2023).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Entecavir. Available online: https://go.drugbank.com/drugs/DB00442 (accessed on 27 November 2023).
- Christians, U.; Schmitz, V.; Haschke, M. Functional Interactions between P-Glycoprotein and CYP3A in Drug Metabolism. Expert Opin. Drug Metab. Toxicol. 2005, 1, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Sikka, R.; Magauran, B.; Ulrich, A.; Shannon, M. Bench to Bedside: Pharmacogenomics, Adverse Drug Interactions, and the Cytochrome P450 System. Acad. Emerg. Med. 2005, 12, 1227–1235. [Google Scholar] [CrossRef]
- Nebert, D.W.; Russell, D.W. Clinical Importance of the Cytochromes P450. Lancet 2002, 360, 1155–1162. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Transporter-Mediated Drug-Drug Interactions and Their Significance. Adv. Exp. Med. Biol. 2019, 1141, 241–291. [Google Scholar] [PubMed]
- Lin, J.H.; Lu, A.Y. Inhibition and Induction of Cytochrome P450 and the Clinical Implications. Clin. Pharmacokinet. 1998, 35, 361–390. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H. Predictive Diagnostics in Colorectal Cancer: Impact of Genetic Polymorphisms on Individual Outcomes and Treatment with Fluoropyrimidine-Based Chemotherapy. EPMA J. 2010, 1, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kim, K.A. Inhibitory Effect of 5-Fluorouracil on Human Cytochrome P450 Isoforms in Human Liver Microsomes. Eur. J. Clin. Pharmacol. 2003, 59, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Fromm, M.F. Transporter-Mediated Drug-Drug Interactions. Pharmacogenomics 2011, 12, 1017–1037. [Google Scholar] [CrossRef] [PubMed]
- BCRP/ABCG2 Substrates. Available online: https://go.drugbank.com/categories/DBCAT002663 (accessed on 27 November 2023).
- Xu, Q.; Wang, C.; Meng, Q.; Liu, Q.; Sun, H.; Peng, J.; Ma, X.; Kaku, T.; Liu, K. OAT1 and OAT3: Targets of Drug-Drug Interaction between Entecavir and JBP485. Eur. J. Pharm. Sci. 2013, 48, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Mandíková, J.; Volková, M.; Pávek, P.; Navrátilová, L.; Hyršová, L.; Janeba, Z.; Pavlík, J.; Bárta, P.; Trejtnar, F. Entecavir Interacts with Influx Transporters HOAT1, HCNT2, HCNT3, but Not with HOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug-Drug Interactions. Front. Pharmacol. 2016, 6, 304. [Google Scholar] [CrossRef] [PubMed]
- Berrouet, C.; Dorilas, N.; Rejniak, K.A.; Tuncer, N. Comparison of Drug Inhibitory Effects (IC 50) in Monolayer and Spheroid Cultures. Bull. Math. Biol. 2020, 82, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Holden-Wiltse, J.; Wang, J.; Liang, H. A Strategy to Model Nonmonotonic Dose-Response Curve and Estimate IC50. PLoS ONE 2013, 8, e69301. [Google Scholar] [CrossRef]
- FDA Antiviral Drug Advisory Committee Recommends Unanymously to Approve Entecavir for Hepatitis B. Available online: https://www.natap.org/2005/HBV/031505_02.htm (accessed on 15 September 2023).
- Congregado, B.; Rivero, I.; Osmán, I.; Sáez, C.; López, R.M. PARP Inhibitors: A New Horizon for Patients with Prostate Cancer. Biomedicines 2022, 10, 1416. [Google Scholar] [CrossRef] [PubMed]
- Branco, C.; Paredes, J. PARP Inhibitors: From the Mechanism of Action to Clinical Practice. Acta Med. Port. 2022, 35, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research: Lonsurf (Trifluridine and Tipiracil). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207981Orig1s000PharmR.pdf (accessed on 15 September 2023).
- Sun, W.; Sanderson, P.; Zheng, W. Drug Combination Therapy Increases Successful Drug Repositioning. Drug Discov. Today 2016, 21, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
Drug | Physicochemical Properties | Predicted Value | Optimized Value | Reference |
---|---|---|---|---|
5-FU | LogP | −0.783 | −0.798 | [33] |
pKa | 11.08 | 8.02 | [34] | |
Molecular Weight (g/mol) | 130.08 | 130.08 | [33,35] | |
Water Solubility (mg/mL) | 11.46 | 5.86 | [34] | |
Diff. Coeff. (cm2/s·105) | 1.462 | ND | ND | |
Peff (cm/s·104) | 2.705 | ND | ND | |
BBB penetration | High | Low | [35] | |
ETV | LogP | −1.076 | −0.823 | [33,35,36] |
pKa | 9.59 | 12.00 | [36] | |
Molecular Weight (g/mol) | 277.28 | 277.28 | [33,35,36] | |
Water Solubility (mg/mL) | 2.065 | 2.400 | [36] | |
Diff. Coeff. (cm2/s·105) | 0.842 | ND | ND | |
Peff | 0.321 | ND | ND | |
BBB penetration | Low | Low | [35] |
Drug | CYP Enzyme | Inhibitor | Substrate | Km | Vmax | CL | Sites of Metabolism |
---|---|---|---|---|---|---|---|
5-FU | 1A2 | No (96%) | Yes (91%) | 3193.026 | 1.620 | 0.026 | C6 |
2A6 | No (93%) | Yes (42%) | ND | ND | ND | ND | |
2B6 | Yes (% ND) | No (98%) | NS | NS | NS | NS | |
2C8 | No (97%) | No (94%) | NS | NS | NS | NS | |
2C9 | No (97%) | No (75%) | NS | NS | NS | NS | |
2C19 | No (96%) | No (81%) | NS | NS | NS | NS | |
2D6 | No (97%) | No (84%) | NS | NS | NS | NS | |
2E1 | No (% ND) | Yes (43%) | ND | ND | ND | ND | |
3A4 | No (96%) | No (83%) | NS | NS | NS | NS | |
ETV | 1A2 | No (96%) | No (72%) | NS | NS | NS | NS |
2A6 | No (99%) | No (98%) | NS | NS | NS | NS | |
2B6 | Yes (44%) | No (98%) | NS | NS | NS | NS | |
2C8 | No (88%) | No (98%) | NS | NS | NS | NS | |
2C9 | No (97%) | No (99%) | NS | NS | NS | NS | |
2C19 | No (96%) | No (95%) | NS | NS | NS | NS | |
2D6 | No (97%) | No (95%) | NS | NS | NS | NS | |
2E1 | No (89%) | No (98%) | NS | NS | NS | NS | |
3A4 | No (96%) | Yes (72%) | 82.119 | 100.244 | 135.499 | C6, C3, C2, N19, C5 |
Drug Transporter | Drug | Inhibitor | Substrate |
---|---|---|---|
Pgp | 5-FU | No (93%) | Yes (83%) |
ETV | No (93%) | Yes (99%) | |
BCRP | 5-FU | No (96%) | Yes (88%) |
ETV | No (96%) | Yes (98%) | |
OATP1B1 | 5-FU | No (79%) | No (98%) |
ETV | No (79%) | No (98%) | |
OATP1B3 | 5-FU | No (92%) | No (96%) |
ETV | Yes (72%) | No (96%) | |
OAT1 | 5-FU | No (98%) | Yes (98%) |
ETV | No (98%) | Yes (67%) | |
OAT3 | 5-FU | No (95%) | Yes (59%) |
ETV | No (95%) | Yes (99%) | |
OCT2 | 5-FU | No (99%) | Yes (75%) |
ETV | No (99%) | Yes (95%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, T.; Marques, L.; Ribeiro, E.; Vale, N. Enhancing Prostate and Bladder Cancer Treatment: Exploring the Synergistic Potential of Entecavir and 5-Fluorouracil Combinations. BioMed 2024, 4, 185-202. https://doi.org/10.3390/biomed4020015
Lourenço T, Marques L, Ribeiro E, Vale N. Enhancing Prostate and Bladder Cancer Treatment: Exploring the Synergistic Potential of Entecavir and 5-Fluorouracil Combinations. BioMed. 2024; 4(2):185-202. https://doi.org/10.3390/biomed4020015
Chicago/Turabian StyleLourenço, Tânia, Lara Marques, Eduarda Ribeiro, and Nuno Vale. 2024. "Enhancing Prostate and Bladder Cancer Treatment: Exploring the Synergistic Potential of Entecavir and 5-Fluorouracil Combinations" BioMed 4, no. 2: 185-202. https://doi.org/10.3390/biomed4020015
APA StyleLourenço, T., Marques, L., Ribeiro, E., & Vale, N. (2024). Enhancing Prostate and Bladder Cancer Treatment: Exploring the Synergistic Potential of Entecavir and 5-Fluorouracil Combinations. BioMed, 4(2), 185-202. https://doi.org/10.3390/biomed4020015