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Abstract: Background/Objectives: This study explores an optimization-based strategy for muscle
force estimation by employing simplified cost functions integrated with physiologically relevant
muscle models. Methods: Considering elbow flexion as a case study, we employ an inverse-dynamics
approach to estimate muscle forces for the biceps brachii, brachialis, and brachioradialis, utilizing
different combinations of cost functions and muscle constitutive models. Muscle force generation is
modeled by accounting for active and passive contractile behavior to varying degrees using Hill-type
models. In total, three separate cost functions (minimization of total muscle force, mechanical work,
and muscle stress) are evaluated with each muscle force model to represent potential neuromus-
cular control strategies without relying on electromyography (EMG) data, thereby characterizing
the interplay between muscle models and cost functions. Results: Among the evaluated models,
the Hill-type muscle model that incorporates both active and passive properties, combined with
the stress minimization cost function, provided the most accurate predictions of muscle activation
and force production for all three arm flexor muscles. Our results, validated against existing biome-
chanical data, demonstrate that even simplified cost functions, when paired with detailed muscle
models, can achieve high accuracy in predicting muscle forces. Conclusions: This approach offers a
versatile, EMG-free alternative for estimating muscle recruitment and force production, providing
a more accessible and adaptable tool for muscle force analysis. It has profound implications for
enhancing rehabilitation protocols and athletic training, not only broadening the applicability of
muscle force estimation in clinical and sports settings but also paving the way for future innovations
in biomechanical research.
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1. Introduction

Human motion is powered by the activation of the skeletal muscles, which respond
to electrochemical signals from the nervous system. The adult human musculoskeletal
system, consisting of approximately 350 joints and more than 650 named muscles, presents
a complex system for sharing muscle forces [1,2]. In particular, many muscle groups control
the same degree of freedom (DoF) across multiple joints, leading to an over-actuated system,
where an infinite number of possible muscle force distributions can generate the same net
torque forces at the joints. Therefore, estimating muscle forces solely based on torque data
at the joints poses a conceptual modeling challenge [3,4].

The brain plays a pivotal role in the activation of muscles, ensuring that they work
harmoniously to produce the desired movement. A fundamental question in musculoskele-
tal modeling is how the brain activates these muscles to manage such an over-actuated
system. Typically, researchers mimic this process through optimization strategies that
involve designing cost functions. The purpose of these cost functions is to reflect the
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role of the central nervous system in governing muscle recruitment, either by directly
representing physiological processes or using abstract mathematical formulas that are not
directly related to physiological functions to minimize or maximize some criterion [5].
These optimization strategies help address redundancy in muscle activation, approximat-
ing a strategy to distribute the torque contributions of each muscle based on predefined
assumptions [6,7]. Computational techniques such as static optimization [8] and muscle
synergy concepts [9,10] are employed to improve model accuracy.

The actual mechanisms by which the central nervous system controls muscle activa-
tion are still largely unknown. Consequently, various theoretical cost functions have been
proposed to approximate these neuromuscular control strategies [11–14]. Some of these
functions aim to simulate the complex biochemical pathways influencing muscle contrac-
tions [15], while others focus on minimizing mechanical energy across movements [16].
Although trends have evolved towards developing sophisticated cost functions, the rela-
tionship between the complexity of the cost functions and the accuracy of the results is not
definitive. In fact, simpler mechanics-based cost functions such as Sum of Muscle Forces,
Sum of Stresses and Sum of Work have also produced results that align closely with the
experimental data [17]. Furthermore, in contexts where speed, ease of implementation,
and clarity are crucial, such as educational uses, performance evaluations, or prelimi-
nary analyses, simpler, more intuitive cost functions may become necessary or at least be
more advantageous.

Recent work has proposed cost functions that leverage both kinematic and electromyo-
graphy (EMG) data to calculate the force distribution across muscle movements [18]. This
approach effectively minimizes mechanical stress and accounts for muscle co-contractions by
aligning model predictions closely with empirical EMG results. Although this methodology
has advanced our understanding of muscle dynamics, it does not consider alternative cost
function strategies that focus on minimizing individual muscle forces, muscle force per physi-
ological cross-sectional area (PCSA), or mechanical work produced by each muscle [19–22].
Furthermore, EMG measurements face challenges due to the inaccessibility of deep muscles
and the presence of signal noise, even for superficial muscles [23,24]. These limitations hinder
the practicality of EMG-based methods in many applications. Our study builds on the founda-
tional work on mechanics-based cost functions by examining simpler EMG-free alternatives
in conjunction with detailed muscle models, with the aim of enhancing both the accessibility
and applicability of muscle force estimation across various domains.

In this study, we use a simple one DoF bicep curl model to explore how different
muscle models and cost functions influence the distribution of muscle force. Our goal is to
demonstrate that even less complex cost functions can yield highly accurate muscle force
estimates when combined with detailed muscle models. We evaluated three muscle models
of increasing complexity: (a) a Simple force model with two contact points [6,17], (b) a Hill-
type muscle model incorporating active force–length and force–velocity relationships [25],
and (c) a Hill-type model that also includes passive force–length relationships [16]. We pair
these models with the minimization of three different cost functions that do not require
EMG data: (a) total muscle force [17,19,22], (b) total work performed by the muscles [20],
and (c) total stress developed in the muscles, where stress is the force per physiological
cross-sectional area (PCSA) of the muscle [12,17,21,22]. The choice of cost function is based
on its suitability for the specific muscles and tasks involved, as noted in the literature [6].
For example, minimizing total muscle force is appropriate for tasks aimed at reducing
fatigue, such as rehabilitation exercises, where preventing overuse of specific muscles is
crucial and stress minimization is often used in arm muscle modeling [6,18,26], whereas
energy expenditure minimization is preferred in leg muscles for gait analysis [6,15,27].
We evaluate the efficacy of each model and the cost function combination by comparing
the computed muscle and arm moments with the established elbow flexion data. This
comparison assesses the accuracy of our models and helps identify the most effective
strategies to simulate realistic muscle actions.
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2. Methodology

To explain our methodology, we begin by describing the biomechanical model for
the bicep curl motion with one degree of freedom (DoF) (see Section 2.1), which we
use to investigate the impact of different combinations of muscle activation models and
optimization strategies on muscle force estimation. Next, in Section 2.2, we detail the
process for calculating the forces and torque required at the elbow joint for the curling
motion. We then examine various muscle models (detailed in Section 2.3) and cost functions
(outlined in Section 2.4), which we employ to estimate the forces generated by the elbow
flexors, taking into account an applied load and the prescribed angular velocity of the curl.
Finally, Section 2.5 describes how we validated our model results.

2.1. Biomechanical Model

The biomechanical model of the arm was developed using MATLAB Simscape Multi-
body (version 4.16, The Mathworks, Natick, MA, USA), as a multibody system with two
linked segments representing the upper arm (humerus) and the forearm. The elbow joint,
comprising the radiohumeral, ulnohumeral, and proximal radioulnar joints, primarily
allows two degrees of freedom (DoF): flexion/extension (bending and unbending of the
elbow) and pronation/supination (twisting the forearm about its longitudinal axis) [28].
However, the bicep curl is dominated by flexion/extension and therefore in this study the
joint was approximated to have a single DoF, similar to a single-axis hinge.

The geometric and inertial parameters of the forearm were obtained from existing
literature [15,17] and are summarized in Table 1. The model includes the three primary
flexor muscles of the elbow: the biceps brachii (bic), brachialis (bra) and brachioradialis
(brd). The origins, insertions, and orientations of the muscles relative to the linked segments
are shown in Figure 1 and detailed in Table 1 [29–31]. The orientation of each muscle is
characterized by the parameter αi, where i refers to the muscles: bic, bra, or brd. This
parameter αi represents the acute angle between the line of action of the muscle force and
the longitudinal axis of the forearm. Angle αi determines the moment arm for each muscle,
influencing the calculation and behavior of the muscle forces during motion.

Table 1. Dimensions, Forearm Inertial Properties and Muscle Origin and Insertion Points.

Humerus Length (A0E), LH (cm) 29
Forearm Length (EB3), L (cm) 36
Forearm Center of Mass (EBcm), Lcg (cm)
(Distance from the Elbow Joint) 17.12

Forearm Mass, m (kg) 1.53
Forearm Moment of Inertia, µ (kg · m2)
(About its Center of Mass)

7.04 × 10−3

Origin (at Humerus) Insertion (at Forearm)
bic (cm) 1.21 (A0 A1) 4.84 (EB1)
bra (cm) 17.39 (A0 A2) 2.39 (EB2)
brd (cm) 7.31 (A0 A3) 36 (EB3)

In our simulation case study, we consider a range of forearm rotations, in which
the angle θ varies from 15◦ to 120◦ (see Figure 1). The forearm is considered to rotate at
a constant angular velocity ω while carrying a mass W = 30 N. The endpoints of each
muscle remain fixed, while their lengths and orientations change dynamically. Forces and
moments at the elbow joint were calculated using a dynamic multibody system formulation,
in which the upper arm (humerus) remains stationary in a vertical configuration and only
the forearm moves.



BioMed 2024, 4 353

Figure 1. Flexion of the elbow joint is actuated by the group of three muscles: Biceps brachii, brachialis,
and brachoradialis.

2.2. Calculation of Forces and Torque at the Elbow Joint

We perform an inverse dynamic analysis [32] to compute the unique joint forces and
moments at the elbow for the desired curl, which will then be used to estimate the muscle
force distribution. Although the joint moment has contributions solely from the muscles,
the joint forces include contributions both from the muscles and from interactions between
the bones.

The Newton–Euler equations governing the motion of the multi-body system are
generally encapsulated by

Mq̈ = G(q, q̇), (1)

where, in our case,

[M] =

m 0 0
0 m 0
0 0 µ

 (2)

is the inertia matrix (m is the mass of the forearm and µ is the moment of inertia specified
in Table 1), and

{q} =

 x
y
θ

 (3)

is the vector of generalized coordinates. Here x and y are the coordinates of the center of
mass (CM) of the forearm and θ is the angle that the body-fixed vector â1 makes with the
global vector ê1 as shown in Figure 1. Quantities q̇ and q̈ are the generalized velocities and
accelerations, respectively, and G(q, q̇) represents the generalized forces that make up the
equivalent force system at the center of mass, of the constraint (joint) forces and moment
that we intend to compute, as well as the applied loads. In our case,
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{G}=

 0
−mg − W

−W(L − Lcg) sin θ

+
 λ1

λ2
T − λ1Lcg cos θ − λ2Lcg sin θ

 , (4)

where the first part captures the contribution of the applied loads (the load W carried by
the arm and the weight mg of the forearm itself) and in the second part, the Lagrange
multipliers λ1 and λ2 are the forces at the elbow joint and T is the joint torque that we
intend to compute. Here L is the length of the forearm and Lcg is the distance of CM from
the elbow specified in Table 1. The elbow, considered a revolute joint, imposes a set of
constraints that are appended by a driving constraint of constant angular velocity ω = θ̇ of
the forearm. These constraints are described by the following set of expressions that are all
set to zero.

{Φ} =

 x − Lcg cos θ
y + Lcg sin θ
θ − ωt − θ◦

, (5)

where, θ◦ is the starting elbow angle, which is π
12 and t is the time. Setting each of the

expressions of {Φ} to zero, the generalized coordinates q that describe the arm configu-
ration are solved at each time instant. Then, the generalized velocities q̇ and generalized
accelerations q̈ are solved at each time instant using

q̇ = Φ−1
q Φt (6)

and
q̈ = Φ−1

q γ, (7)

where
γ = (Φqq)q q̇ + 2Φqt q̇ + Φtt, (8)

Φq = Jacobian(Φ, q) is the constraint Jacobian and likewise Φt = Jacobian(Φ, t),
Φqt = Jacobian

(
Φq, t

)
, and so on depending on the subscripts in the notation.

The time series of q, q̇ and q̈ solved using the above-mentioned steps are then sub-
stituted in Equation (1) to get time series of the joint forces λ1 and λ2 and the torque T.
To estimate the muscle forces that contribute to these joint forces and moment, the muscle
model needs to be considered, which are presented in the next section.

2.3. Muscle-Force Models

In this study, we evaluated the performance of three skeletal muscle force generation
models, listed below in order of increasing complexity and physiological accuracy:

1. Simple Force Model [33]:
This model considers muscle force as a vector directed from its insertion to its origin,
without considering the effects of the skeletal muscle’s force–length relationship or
the speed of muscle contraction. Since this model does not attempt to address the
physiological properties of skeletal muscle, it serves as a control from which the effects
of more complex models can be evaluated.

2. Hill-Type Active Model [25]:
Hill-type models have been widely used as a foundational representation of skeletal
muscle mechanics, incorporating the effects of muscle fiber length and contraction
speed to estimate maximum force generation [25]. The muscle force equation is:

Fm(t) = Fiso
max · am(t) · fa(lm) · fv(lv), (9)

where Fiso
max represents maximum isometric force, am(t) is muscle activation, fa(lm)

captures the active force–length relationship and fv(lv) captures the force–velocity
relationship.
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3. Hill-Type Active and Passive [34]:
This comprehensive model builds on the Hill-Type Active model to represent both
active and passive muscle contraction behaviors [34]. The muscle force is given by:

Fm(t) = Fiso
max · [am(t) · fa(lm) · fv(lv) + fp(lm)]. (10)

Here, the additional term fp(lm) represents the passive force–length property, adding
another layer of complexity by considering the intrinsic force–length properties of
muscle fibers.

The active and passive force–length properties are expressed in [25,35] as

fa(lm) = e

(
c
∣∣∣∣ lm−lopt,m

lopt,mw

∣∣∣∣3
)

(11)

and

fp(lm) = e

(
10 lm

lopt,m
−15

)
(12)

respectively, where lm is the muscle fiber length, lopt,m is the optimum muscle fiber length
to produce maximum force, w determines the width and is set as 0.4 and c is a coefficient
set as ln (0.05).

The force–velocity property for muscle shortening is given as [35]:

fv(lv) =
−12lopt,m − ˙lm
−12lopt,m + K ˙lm

, ˙lm < 0 (13)

where l̇m is the muscle lengthening velocity and K is the curvature constant and is set
to 5. Both Active only and Active & Passive Hill-Type muscle models rely on the force–
length relationships of both muscle fibers as well as tendons. These relationships are
challenging to model due to their nonlinear nature and dynamic changes during contraction.
Accurately determining muscle fiber length at each time step is particularly challenging,
as the total muscle length includes both muscle fibers and tendons, which change non-
linearly. To address these issues, our approach uses known optimal muscle lengths and
angle αi as starting points to model muscle and tendon behavior.

Additionally, simplifications and assumptions regarding elasticity and stiffness are
applied to represent muscle and tendon behaviors. These modifications simplify the model
while retaining essential characteristics of the muscle-tendon system, thus allowing for the
development of models that can reasonably estimate muscle forces and their interactions
within the system, despite the complexities of nonlinear force–length relationships and
variable lengths during contraction. The following adaptations are often made to address
specific modeling challenges.

• Constant tendon length—In this approximation, muscle lengths exceed realistic
bounds, and force–length properties are inaccurately represented at the beginning and
end of the motion.

• Linear muscle contraction—In this adaptation, the muscle length is assumed to change
at a constant rate. As a result, however, the force–velocity value is constant and is not
correctly represented.

• Linear tendon length change—In this adaptation, while the rate of tendon length
change remains constant, muscle length changes non-linearly, providing more realistic
force–length and force–velocity values.

• Exponential tendon length change—In this one, the rate of change of tendon length
varies exponentially, offering the most accurate representation of the muscle model.

A comparative analysis between the Linear and Exponential Tendon Length approxi-
mations reveals that the force–length and force–velocity values closely match the actual
data observed during the bicep curl motion from 15◦ to 120◦ [36]. Consequently, we
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chose the Linear Tendon Length approximation for our simulation case study. This choice
simplifies the modeling process while still producing results that closely align with the ob-
served force–length and force–velocity characteristics during the curling motion, and thus
effectively balances accuracy with computational efficiency, making it suitable for our
intended purpose.

2.4. Muscle-Force Constraints and Cost Functions

The single DoF of elbow flexion represented by angle θ is controlled by three muscles
(bic, bra, brd) which independently exert forces to produce torque around the elbow joint.
This setup allows infinite combinations of muscle force distributions to achieve the same
movement. This over-actuation presents a challenge in uniquely identifying the muscle
forces that must undergo some constrained optimization. Although the net joint torque T
required to perform the motion can be uniquely derived from the way θ evolves using the
inverse dynamic approach, identifying the specific contributions to the torque of the forces
exerted by each muscle group on the forearm (F⃗bic, F⃗bra, F⃗brd) is challenging due to the lack
of sufficient equations. These forces are related to the torque T as follows:

r⃗bic × F⃗bic + r⃗bra × F⃗bra + r⃗brd × F⃗brd = Tê3, (14)

where each term is a cross-product of position vector r⃗i of i-th muscle’s insertion point on
the forearm relative to the elbow joint with the corresponding muscle force. To solve the
inverse problem of finding muscle forces from the above equation, optimization approaches
and constraints that appropriately narrow down the range of possible force combinations
are needed.

One constraint applied in this study involves the maximum isometric force that each
muscle can produce, which sets upper limits for muscle forces. This constraint is expressed
through the inequality:

0 ≤ |F⃗i| ≤ Fmax,i ; i ∈ [bic, bra, brd], (15)

where Fmax,i represents the maximum force that the i-th muscle can exert. The values for
the maximum isometric forces for the bic, bra, and brd muscles were taken from existing
literature [34]. Depending on the muscle model used, additional constraints on muscle
force combinations vary: (a) for the Simple Force Model, no further constraints are applied;
(b) for the Active Hill-Type Model, muscle forces are constrained by active force–length and
force–velocity relationships, as specified in Equations (11) and (12); (c) for the Active and
Passive Hill-Type Model, the constraints include active force–length, passive force–length,
and force–velocity properties, detailed in Equations (11)–(13).

These constraints restrict the range of possible solutions, and so a cost function must
be applied to find a unique solution. This study evaluates the three different cost functions
listed in Table 2: J1, which captures the total muscle force exerted [17,19,22], J2, which
defines the total work done by the muscles [20], and J3, which is the total stress developed
in the muscles, the stress being the force per physiological cross-sectional area (PCSA) of
each muscle [12,17,21,22]. The values for PCSAm,i were obtained from references [37,38],
ensuring that the calculations are based on established biomechanical data. Cost function J1
is minimized via linear least-squares approach using MATLAB command lsqlin [39], while
J2 and J3 are minimized as constrained nonlinear multivariable functions using MATLAB
command fmincon [40].
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Table 2. List of cost-functions, to predict the individual muscle force

Cost Function Description

J1 = ∑ F2
m,i Sum of Force criterion

J2 =
√

∑
(

Fm,i∆lm,i
)2 Sum of Work criterion

J3 =

√
∑
(

Fm,i
PCSAm,i

)2 Sum of Stress criterion

Fm,i : magnitude of force exerted by the ith muscle; ∆lm,i : change in length of the ith muscle; PCSAm,i : physiological
cross-sectional area of the ith muscle.

2.5. Model Validation

For this study, we conducted validation by comparing the calculated moment arms and
muscle moments for each muscle with data from previously published studies. In particular,
the comparison utilized moment arm data from a diverse subject pool (both male and
female) captured during elbow flexion movements, starting from 25◦ and extending to 110◦

as documented in reference [41]. Additionally, muscle moment data spanning an extended
range of elbow flexion from 0◦ to 120◦ were used for further validation [42]. Our model
specifically simulates elbow flexion from 15◦ to 120◦, making it compatible with the ranges
used in these studies for a comprehensive comparative analysis. The angular velocity of
the elbow joint within our model simulation was held constant at ω = 1.5 rad/s, which is
slow enough to reduce dynamic effects and expect the results to be in the ballpark with the
benchmarks cited above.

To get an effective dimensionless comparisons between the results, the moment arm
and muscle moments were normalized.

3. Results

This section details the results of our simulations, analyzing the generated joint torques
and muscle forces during elbow flexion. We begin by exploring the torque dynamics re-
quired to rotate the elbow from 15◦ to 120◦ in Section 3.1, highlighting changes throughout
the motion. Subsequently, in Section 3.2 we evaluate muscle forces under three modeling
scenarios: the Simple Force Model, which serves as a baseline; the Hill-Type Active Model,
which incorporates active force–length relationships for a more realistic muscle behavior;
and the Hill-Type Active and Passive Model, which further integrates passive force proper-
ties to enhance model accuracy. In Section 3.3, we validate our model by comparing our
predictions with published data, focusing on muscle moments and their moment arm. This
comprehensive analysis not only confirms the efficacy of the employed models and cost
functions but also highlights their practical implications in clinical and sports applications
as discussed in Section 4.

3.1. Joint Torque

Figure 2 illustrates the torque required to rotate the elbow with a constant angular
velocity from 15◦ of to 120◦ of flexion over 1.22 s. The torque increases with increasing
elbow flexion until the arm reaches 90◦, where the external load W becomes orthogonal
to the forearm. The torque then decreases as the joint rotates past 90◦ to its final position
as expected.
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Figure 2. Elbow joint torque during curl (15◦ ≤ θ ≤ 120◦).

3.2. Muscle Forces

This subsection evaluates muscle forces during elbow flexion in three muscle models,
highlighting the impact of small changes in tendon length. We start with the Simple Force
Model, assessing basic force generation, then advance to the Hill-Type Active Model which
integrates active force–length relationships, highlighting how slight tendon variations
affect muscle dynamics. Finally, the Hill-Type Active and Passive Model incorporates
passive properties, demonstrating detailed effects of tendon adjustments on overall muscle
force accuracy.

3.2.1. Simple Force Model

By disregarding the constraints on muscle force generation imposed by the physiolog-
ical force–length relationship, the Simple Force Model assumes that each muscle is capable
of producing as much force as is necessary to drive the joint throughout the full range of
elbow flexion. Therefore, the Simple Force Model allows us to assess how the choice of
cost function exclusively influences the muscle force distribution. In particular it reveals
that the choice of cost function significantly influences the distribution of muscle forces in
biomechanical simulations as described below.

The results of the Simple Force Model, as shown in Figure 3a, indicate that minimizing
the Sum of Forces (cost function J1), the brachioradialis (brd) produces the largest forces,
followed by the biceps brachii (bic), and then the brachialis (bra). Figure 4 illustrates that
these force magnitudes are directly related to their respective moment arms. This outcome
is predictable because muscles with longer moment arms have a mechanical advantage
in generating torque. Consequently, these muscles tend to bear a larger share of the load,
as increasing force in muscles with shorter moment arms contributes less effectively to the
overall torque, making them less efficient in terms of torque production.

The Sum of Work cost function (J2) aims to minimize the total mechanical work done
by the muscles. Given that work is the product of force and the muscle’s change in length,
muscles that change length less will need to exert more force. This function shows how
biomechanical efficiency can be modeled and optimized by balancing force output against
changes in muscle length. Among the three muscle groups, bra is the shortest, and so is the
change in its length during flexion, followed by bic and brd. Hence, as seen in Figure 3a,
bra exerts the greatest force, with bic next, and brd exerting the least.

The Sum of Stress cost function (J3) aims to minimize total stress, where the stress in
each muscle is defined as the force exerted by it per unit of physiological cross-sectional
area (PCSA) of the muscle. Muscles with larger PCSAs can therefore sustain higher forces.
This cost function is particularly useful for understanding how structural muscle properties
like PCSA influence the biomechanical performance and force capabilities of different
muscles. Among the three muscle groups, bra has the largest PCSA (5.6 cm2), closely
followed by bic (5.1 cm2), and brd (1.2 cm2) [37,38]. Since the PCSA for bra and bic are



BioMed 2024, 4 359

comparable, the muscle with the longest moment arm, bic, is leveraged to exert the highest
force, followed by bra, and brd, as shown in Figure 3a.

Overall, using the Simple Force Model to evaluate these cost functions illustrates
how each function impacts muscle force predictions differently based on mechanical and
physiological principles.

Figure 3. The forces exerted by the three muscle groups (bic, bra and brd) on the forearm as a function
of angle of flexion as estimated by employing three different muscle models (a–c) along with the three
cost functions J1, J2 and J3 (arranged column-wise). For the two Hill-type models (b,c), the muscle
activations are also shown. TL refers to linear tendon length change approximation.
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Figure 4. Moment arm variation of muscles groups during the curling motion (15◦ ≤ θ ≤ 120◦).

3.2.2. Hill-Type Active

The addition of the active force–length relationship of skeletal muscle to the model
introduces a physiologically relevant limit on the maximum force that each muscle can exert
during contraction. As seen in Figure 5, when accounting for the force–length relationship
for each muscle, the bic, bra, and brd can produce maximum active force at approximately
95◦, 90◦, and 50◦ of elbow flexion, respectively. As muscle length shortens (higher flexion
angles) or lengthens (lower flexion angles) relative to this optimum length, the maximum
possible force that each muscle can produce decreases accordingly (Figure 6). For small
flexion angles, the limits on maximum force production are much more pronounced for the
bic and bra muscles than for the brd.

Figure 5. Variations in normalized muscle lengths during the elbow curl.

Indeed, when compared to the Simple Force model, the forces produced at the start
of each Hill-type active simulation are significantly lower for the bic and bra muscles for
all three cost functions, despite both muscles exhibiting relatively high levels of activation.
These effects are particularly pronounced for the Sum of Work and Sum of Stress cost
functions, where the bic and bra muscles are at maximum activation as shown in Figure 3b.
On the contrary, the brd forces are higher than predicted by the cost functions alone at these
angles even while experiencing less than 20% activation.

The effects of force–length relationships on muscle recruitment continue throughout
the curling motion. As the flexion angle approaches the 90◦ where the bic and bra are
nearer their optimal length, their force production increases even as their activation level
decreases. At the same time, the brd shortens past its optimal length so that its force-
producing capabilities drastically decrease. As such, the brd rapidly approaches maximum
activation, its force production levels, and eventually drops. The sudden decrease in
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brd force production coincides with rapid increases in bic and bra force production as
they approach their optimal length, and the applied moment about the elbow reaches
a maximum.

Figure 6. Force Length Relationship (both active and passive) for the arm muscles as a function of
their stretch ratio. Both active ( fa(lm)) and passive ( fp(lm)) forces are normalized by the maximum
isometric force at optimal length for each muscle. Normalized lengths for each muscle are expressed
relative to its optimum length.

3.2.3. Hill-Type Active and Passive

The passive force-length relationship further tunes the initial results by including
additional force potential in the fully extended arm position, similar to an extended spring,
as shown in Figure 6. The addition of the passive force–length relationship of each muscle
plays an important role in muscle forces and activation, especially as the stretch ratios
moves beyond 1.1. When the arm is in a fully extended position, all three muscles are in a
stretched configuration that generates large passive forces seeking to contract the muscle.
The passive component exponentially decrease to low values as the muscles approach their
optimum length. The addition of this passive force changes the total force trends exhibited
by the bic and bra muscles, increasing the forces produced for the sum of work and the
sum of stress cost functions, where these muscle forces dominate (Figure 3c). Similarly,
the decrease in muscle activation of the bic and bra muscles at small flexion angles is
partially due to the large passive restoring forces at these angles. Once each muscle has
shortened past its optimum length, where the passive force component approaches zero
(Figure 6) the force and muscle activation trends become similar to the active-only model.
The inclusion of both active and passive components allows the model to capture the
complex, nonlinear behavior of muscles, which became the deliberate choice for further
analysis and validation.

3.3. Model Validation

The comparisons between the normalized moment arm data Figure 7 reveal a sim-
ilar trend of change in moment arm for each muscle with respect to the angle of elbow
flexion. The normalized moment arm for the three elbow flexors gradually increases to
its maximum, around 90◦ where the moment is at its peak, then decreases. We suspect
that the slight variation arose from the variation of muscle length, PCSA value, muscle
placement, and relative orientation among the individual subjects taken into account from
the literature. In Figure 8c, the energy cost function (J1), the work cost function (J2) and
the stress cost function (J3) provide normalized moments that align well with the observed
moments for the brd muscle. For the bra muscle (Figure 8b), the work and stress cost
functions show fewer deviations from the results in [42] compared to the force criterion.
Regarding the estimation of muscle moment, the stress cost function for the bic muscle
(Figure 8a) appears to show the closest agreement with the findings in [42].
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Figure 7. Comparison of Estimated Normalized Moment arm of (a) Bicep, (b) Brachialis and (c) Bra-
choradialis for an Elbow flexion with the calculated moments by Wendy et al. [41] for a male and
female subject and with their 3D-Computer model.

Figure 8. Normalized moment plots of (a) Biceps, (b) Brachialis and (c) Brachoradialis muscles,
obtained from the three optimization techniques, J1 (Force criterion), J2 (Work criterion) and J3 (Stress
criterion), considering Hill-Type Active and Passive muscle model, compared with muscle moments
obtained from a computational model using ADAMS Software by Ilbeigi et al. [42].

It is worth noting that the stress cost function captures the increasing trend of the
muscle moment with greater accuracy for all the muscles. This observation is quantified
in Table 3 with the Mean Squared Errors calculated with respect to the muscle moments
(red dashed curves in Figure 8) computed using MSE ADAMS 2010 [42]. The stress cost
function (J3) has the least mean squared error for the bicep and brachoradialis, while the
work cost function (J2) has the least error for the brachialis muscle. The mean squared error
of J3 is the least, second to J2 for Brachialis.

Table 3. Statistical Analysis of the Plots.

Mean Squared Error

Muscle J1 J2 J3

Bicep 0.1926 0.0792 0.0029

Brachialis 0.1612 0.0147 0.0089

Brachoradialis 0.0989 0.0645 0.0207

4. Discussion

Our analysis revealed that all three simple cost functions are reasonably accurate in
estimating muscle forces for brachioradialis, while for brachialis, the work and stress cost
functions gave a fair estimate and the stress cost function provided a fitting estimate for
the bicep. Overall, the combination of stress cost function along with the Hill-type muscle
model with active and passive force length relationship provides the most reliable estima-
tion of muscle forces for the three muscle groups during an elbow flexion. This simple
cost function sensibly captures the increase in muscle force to its peak. The deviations
observed beyond the peaks can be attributed to variations in the task configurations and
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the estimated muscle parameters for different subjects. The trend of increasing muscle
force is an essential muscle behavior, and its estimation can be beneficial in the aforemen-
tioned domains where accurate force measurements are not the primary focus, such as
performance evaluation, injury prevention, muscle activation assessment, etc.

Our approach focuses on achieving a delicate balance between accuracy and usability,
acknowledging that the pursuit of the utmost precision is not always paramount. This
equilibrium drives us to explore scenarios where a reasonable level of accuracy suffices
without necessitating the use of highly complex models. This balance or trade-off is useful
in situations where incorporating EMG data could introduce complexity or when these data
are simply not accessible. Furthermore, because this approach to muscle force estimation
obviates the need for intricate EMG data, it not only simplifies exploration with various
combinations of muscle models and cost functions but also allows for easier customization
to accommodate a diverse range of demographics and populations, encompassing different
age groups, genders, and health conditions. This ease of exploration and customization
holds significant value in practical applications where a detailed biomechanical analysis
may not be the primary focus, making the integration of muscle force estimation readily
feasible in such scenarios. For example: (a) Physical Therapy and Rehabilitation moni-
toring, where the primary goal may be to monitor patient progress and track changes in
muscle activation rather than achieving precise muscle force estimation; (b) Exploratory
studies of biomechanical research, specifically while developing new methodologies for
muscle activation patterns and trends exploration; (c) Athletic Training and Performance
Assessment, where the focus may be on performance assessment, movement optimization,
and injury prevention, and (d) Basic Physiology and Exercise Science. In future work,
this study can be extended to formulate models for other body segments or joints and for
different motions, such as knee extensions, abduction, adduction, rotation, etc.

5. Conclusions

This study demonstrates that the use of simple cost functions does not significantly
compromise the accuracy of muscle force estimates, provided that they are combined with
a sufficiently representative muscle model. The choice of the physiological muscle model
is more important than the cost function since a more accurate muscle model captures
the nonlinear behavior of the muscle, and the cost function provides an optimal strategy.
Relatively simple mathematical cost functions can drive muscle force optimization and
capture the essential aspects of muscle behavior, excluding the requirement for EMG data.
This approach is highly beneficial in cases where the respective EMG data are simply not
accessible. It can be effective and favorable for estimating the behavior of deep muscles,
as EMG data for these muscles are difficult to obtain and prone to measurement errors.
Furthermore, separately considering the cost function optimization and the muscle model
allows for evaluation of their impact independently on the forces estimation as well as their
combined effects.
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