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Abstract: This article aims to develop a new Adaptive Proportional Integral Derivative (PID) Nonsin-
gular Dual Terminal Sliding Mode Control, designed for tracking the position of robot manipulators
under disturbances and uncertainties. Compared with existing PID Nonsingular Fast Terminal
Sliding Mode (PIDNFTSM) controllers, this work effectively avoids singularity problems in control
while significantly enhancing the convergence speed of errors. An adaptive reaching law is proposed
to estimate the bound information of the first derivative of lumped disturbance by regulating itself
based on sliding variables. The overall system stability is proven by using the Lyapunov approach.
Subsequent simulation results verify the effectiveness of the proposed controller regarding tracking
error reduction, energy efficiency enhancements, and singularity avoidance.

Keywords: adaptive sliding mode control; uncertainties; manipulator; nonsingular terminal sliding
mode; singularity; PID controller

1. Introduction

Sliding Mode Control (SMC) [1,2] is well known as an efficient nonlinear robust control
strategy employed to deal with nonlinearities, uncertainties, and disturbances. The core
principle of SMC involves driving and maintaining the system states on a predefined
sliding surface. In the context of conventional Linear Sliding Mode Controllers (LSMCs),
a linear hyperplane is utilized as the sliding surface, ensuring that the system states
asymptotically converge to zero once the sliding mode surface is reached [3]. In scenarios
where the switching gains of SMC are higher than the upper bound of the disturbances
and uncertainties term, the system states attain fast convergence. However, this comes
at the expense of demanding high control inputs, which can result in reaching actuator
saturation. Moreover, using large switching gains may cause undesired oscillations in the
control signal, known as the chattering problem [4,5].

To overcome the convergence problem in LSMCs, Zhihong [6] developed Terminal
Sliding Mode (TSM) controllers, a technique designed to achieve finite convergence without
requiring high control input. Compared to LSMCs, the TSM controller has gained popular-
ity in robust control because of its advantages, including faster time convergence and small
steady-state errors. However, early TSM controllers suffer from two primary drawbacks:
a slower convergence rate compared to LSMCs for states distant from the equilibrium
point, and a singularity problem, arising from negative power in its application [7]. The
singularity problem leads to an infinite control input, which is impracticable in applica-
tion [8]. To deal with the first problem, Yu [9] introduced Fast Terminal Sliding Mode
(FTSM) controllers to increase the convergence speed of the errors by combining TSM and
LSM controllers. In addition, Ma [10] also presented Dual Terminal Sliding Mode (DTSM)
controllers to improve the convergence speed of the system by incorporating nonlinear
terms into sliding surfaces. These approaches not only inherit the advantages of SMC
but also increase the stability performance of the system and accelerate the convergence
rate near the equilibrium point. Despite these advancements, singularity problems still
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exist in these methods. To handle the singularity problem and increase the convergence
speed, Refs. [11–13] introduced Nonsingular Terminal Sliding Mode (NTSM) controllers.
These controllers effectively eliminate the singular problem of the TSM controller; however,
they require more time for the states to reach the sliding surface. Therefore, TSM and
FTSM controllers have already been employed widely in practical applications [14], often
with the utilization of boundary layer approaches [15] or saturation techniques [16] to
circumvent the singularity issues. However, these controllers still produce unexpected
chattering [17], characterized by high-frequency switching in the control input. Chattering
causes undesired results such as a diminished control accuracy, increased heat loss in
electric circuits and heightened wear of moving parts [18]. In addition, it may stimulate un-
modeled dynamics and trigger unforeseen instability. There are several ways to deal with
this problem by reducing or softening chattering action. In [19], a boundary layer using a
saturation function was employed to alleviate the chattering of the control input. However,
this method degrades the robustness and system performance. A wide boundary layer
can result in a large steady-state error, while a narrow boundary layer may not efficiently
reduce the chattering phenomenon. Another effective control is to use High Order Sliding
Mode Control (HOSMC) [20,21], which hides the discontinuity of control in its higher
derivatives. Therefore, to enhance the robustness of controllers and reduce chattering,
Mobayen [22] developed a PID-based TSM controller. This idea was further developed by
Mien [23], where PID Nonsingular Fast Terminal Sliding Mode (PIDNFTSM) inherits the
advantages of both PID and Nonsingular Fast Terminal Sliding Mode (NFTSM) to increase
the finite time convergence of NFTSM. Zhong in [24] also combined the PID and FTSM to
enhance the performance of FTSM in redundant robots. These combinations significantly
improved the properties of SMC. However, in the control law [23], a singularity problem
arises due to the |ė(t)|1−p/q, p/q > 1 term at ė(t) = 0 in the control input. Similarly, in
the control law [24], there exists a singularity introduced by the term |e(t)|ω2−1, ω2 < 1 at
e(t) = 0 as well.

Motivated by the above discussion and to the author’s best knowledge, this work may
be the first proposed controller integrating the PID and DTSM to improve the convergence
speed of DTSM controllers. Additionally, this integrated approach offers chattering-free
operation and addresses singularity problems. The proposed controller is implemented
in a robot manipulator, which is a benchmark of interest in developing and evaluating
new nonlinear controllers [25,26]. The main contributions of this article are summarized
as follows:

(1) This study introduces a new type of PID-based DTSM controller aimed at improving
the convergence and tracking accuracy of the DTSM controller. In contrast to the
existing PIDNFTSM [23,24], the proposed controller avoids the singularity problem
in control input. Compared to the DTSM and PIDNFTSM, the proposed controller
demonstrates superior robustness, enhanced tracking accuracy, chattering-free opera-
tion and effective singularity avoidance.

(2) The reaching law in [23] is a pure integrator which presents challenges in hardware
implementation [27]. Therefore, this work employs a continuous reaching law to
provide the smooth control input as a low pass filter.

(3) The continuous reaching law strictly requires the bound of the derivative of lumped
disturbances and uncertainties. Therefore, an adaptive continuous reaching law is
developed to estimate this crucial information. In this approach, obtaining knowledge
of disturbances is unnecessary for designing the proposed controller.

The structure of the remaining manuscript is organized as follows. Section 2 presents
the dynamic model of the robot manipulator and problem formulation. The proposed
controller is introduced in Section 3. Section 4 outlines simulation studies and comparisons.
Finally, the conclusions drawn from the study are encapsulated in Section 5.
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2. The Dynamic Model of the Robot Manipulator and Problem Formulation

The general dynamic model of the n-link robotic manipulator is described by the
following Euler–Lagrange formulation [11]:

H(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + G(q(t)) = τ(t) + τd(t), (1)

where q̈(t), q̇(t), q(t) ∈ Rn×1 denote the vector of acceleration, velocity and joint angular
position, respectively; H(q(t)) ∈ Rn×n is the inertia matrix; C(q(t), q̇(t)) ∈ Rn×n denotes
the centrifugal and Coriolis matrix; G(q(t)) ∈ Rn×1 contains gravitational forces; τ(t) ∈
Rn×1 is the control input; and τd(t) ∈ Rn×1 is the external disturbance.

In practice scenarios, the accurate values of these matrices H(q), C(q, q̇), G(q) are
difficult or impossible to obtain due to measurement errors, load variations and external
disturbances [28]. Therefore, only nominal values are available for control design, and the
actual parameters are assumed as follows:

H(q) = H0(q) +∆∆∆∆∆∆∆∆∆H(q), (2)

C(q, q̇) = C0(q, q̇) +∆∆∆C(q, q̇), (3)

G(q) = G0(q) +∆∆∆G(q), (4)

where H0(q), C0(q, q̇), G0(q) are nominal values. ∆∆∆H(q), ∆∆∆C(q, q̇), ∆∆∆G are uncertain val-
ues of these parameters. Thus, the dynamic model of the robot manipulator in (1) is
rewritten as

H0(q)q̈ + C0(q, q̇)q̇ + G0(q) =τ(t) + Fd(t), (5)

where Fd is a lumped disturbance, which is defined by

Fd(t) = −∆∆∆H(q)q̈−∆∆∆C(q, q̇)q̇−∆∆∆G(q) + τd(t). (6)

The main goal of this work is to introduce a new controller that embodies qualities
such as a higher tracking accuracy, a faster convergence speed, singularity avoidance
and a higher stability. Let qd(t), q̇d(t) and q̈d(t) be the desired position, velocity and
acceleration, respectively. Thus, the position error e(t) ∈ Rn×1, velocity error ė(t) ∈ Rn×1

and acceleration tracking error ë(t) ∈ Rn×1 are defined as

e(t) , q(t)− qd(t), (7)

ė(t) , q̇(t)− q̇d(t), (8)

ë(t) , q̈(t)− q̈d(t). (9)

3. Controller Design

The schematic control diagram of the proposed control for the robot manipulator is
given in Figure 1.
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Figure 1. Structure diagram of the overall control system.

The sliding surface of the proposed controller is described as [22]:

σ(t) , Kps(t) + Ki

∫ t

0
s(t) + Kdṡ(t), (10)

where Kp = diag(Kp1, Kp2, . . . , Kpn) ∈ Rn×n; Ki = diag(Ki1, Ki2, . . . , Kin) ∈ Rn×n; Kd =

diag(Kd1, Kd2, . . . , Kdn) ∈ Rn×n; σ ∈ Rn×1. If the condition σ̇(t) = 0 is satisfied, Kp, Ki and
Kd are selected to make Kpṡ(t) + Kis(t) + Kds̈(t) strictly Hurwitz [22], and the dynamic
sliding surface s(t) converges to zero exponentially.

s(t) ∈ Rn×1 is the DTSM taken from [10] and is explained as follows:

s(t) , ė(t) + K1(e(t)[α] + e3(t)) + K2e(t), (11)

where e(t)[α] ∈ Rn×1, with the elements ei(t)[α] = |ei(t)|αsign(ei(t)), i = 1, 2, . . . , n, where
α is a positive design parameter ranging in 0 < α < 1; K1 = diag(K11, K12, . . . , K1n) ∈
Rn×n; K2 = diag(K21, K22, . . . , K2n) ∈ Rn×n are diagonal positive definite matrices. The
detailed selection of K1 and K2 was provided in reference [10].

Taking the derivative of s(t) with respect to time, σ(t) is written as

σ(t) = Kps(t) + Ki

∫ t

0
s(t)+Kd

(
ë(t) + K1

(
αuf + 3e2(t) ◦ ė(t)

)
+ K2ė(t)

)
, (12)

where ◦ is the element-wise product, u f ∈ Rn×1, where the elements are given as follows:

u fi
(t) , |ei(t)|α−1 ėi(t) , i = 1, 2, . . . , n, (13)

where the subscript i denotes the ith row in the vector and the ith entry in the diagonal
matrix. Substituting (9) into (12), the sliding surface σ(t) becomes

σ(t) = Kps(t) + Ki

∫ t

0
s(t) + Kd(H−1

0 (q)(τ(t)−C0(q, q̇)q̇−G0(q) + Fd(t))

−q̈d + K1(αuf + 3e(t)2 ◦ ė(t)) + K2ė(t)).
(14)

To simplify σ(t), define ΓΓΓ(q, q̇, qd, q̇d, q̈d) ∈ Rn×1, φ(q) ∈ Rn×n, ΛΛΛ(q, Fd) ∈ Rn×1

as follows:

ΓΓΓ(q, q̇, qd, q̇d, q̈d) , Kps(t) + Ki

∫ t

0
s(t) + Kd(H−1

0 (q)(−C0(q, q̇)q̇−G0(q))

−q̈d + K1(αuf + 3e2(t) ◦ ė(t)) + K2ė(t)).
(15)

φ(q) , KdH−1
0 (q). (16)



Dynamics 2023, 3 660

ΛΛΛ(q, Fd) , KdH−1
0 (q)Fd(t). (17)

Then, σ(t) is constructed as

σ(t) = ΓΓΓ(q, q̇, qd, q̇d, q̈d)+ φ(q)τ(t) +ΛΛΛ(q, Fd). (18)

Assumption 1 ([29]). The time derivative of ΛΛΛ(q, Fd) in system (18) is bounded by

| d
dt

ΛΛΛ(q, Fd)i| ≤ Υdi
, i = 1, 2, . . . , n, (19)

where Υdi
> 0 is a constant. This upper bound is assumed to be unknown.

The control input τ(t) ∈ Rn×1 consists of the equivalent control τeq(t) ∈ Rn×1 and
switching control τsw(t) ∈ Rn×1. The proposed controller is suggested as [24]

τ(t) , −φ−1(q)(τeq(t)− τsw(t)), (20)

where the equivalent control τeq(t) in the controller is used to reach the nominal stability
of the closed control system in the absence of the lumped disturbance while the switching
control τsw(t) is used to ensure the discontinuity of the control law across a sliding surface
σ(t) and provide additional control for dealing with presence of a lumped disturbance [30].

The equivalent control is determined as [24]

τeq(t) = ΓΓΓ(q, q̇, qd, q̇d, q̈d). (21)

The switching control τsw is chosen as the continuous reaching law [27] and its
elements are expressed as

τ̇swi (t) + kτswi (t) = hi, i = 1, 2, . . . , n, (22)

hi = −(Υdi
+ Υti + ξ)sign(σi(t)), (23)

where τswi (0) = 0; ξ is a small positive constant; Υdi
is a constant defined in (19); and the

two constants, k > 0 and Υti , are selected to satisfy the following condition:

Υti ≥ kΥdi
. (24)

In designing switching control (22)–(24), it is difficult to determine Υdi
in (19), which

results from uncertainties and disturbances. Therefore, the adaptive continuous reaching
law is proposed as follows:

τ̇swi (t) + kτswi (t) = hi, i = 1, 2, . . . , n, (25)

hi = −(Υ̂i(t) + ξ)sign(σi(t)), (26)

where Υ̂i(t) is a time-varying scalar term which estimates the bounded constant Υdi
+ Υti ,

and is adopted as

˙̂Υi(t) =
1
κ
|σi(t)|, i = 1, 2, . . . , n. (27)

Then, the estimated error Υ̃i(t) is defined as

Υ̃i(t) , Υ̂i(t)− (Υdi
+ Υti ), i = 1, 2, . . . , n. (28)
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Remark 1. From (21), (15) and (13), the singularity of equivalent control τeq(t) appears in term
uf when ei(t) = 0 and ėi(t) 6= 0. Therefore, the u fi

term in (13) is alternated by a saturation func-
tion [16] sat(u fi

, us) to avoid the singularity problem. The saturation function [16] is explained as

sat(u fi
, us) =


us, u fi

≥ us,
u fi

, −us < u fi
< us,

−us, u fi
≤ −us,

(29)

with us > 0. The system (5) stabilizes in finite time without singularity problems occurring during
the regulation process. The proof is similar to the graphical analysis in [16].

Remark 2. In the proposed controller, Kps(t) maintains the properties of conventional DTSM [10].
Ki
∫ t

0 s(t) increases the robustness of the controller-like integral in SMC. Kdṡ(t) reduces the
chattering similar to HOSMC [23]. Therefore, the proposed PIDDTSM has simultaneously inherited
the benefits of HOSMC, DTSM and integral SMC.

Remark 3. Switching control is obtained in (25)–(27) by the integral of switching control. There-
fore, chattering caused by the sign function in (26) is eliminated. Moreover, the knowledge of the
upper bound in Assumption 1 is relaxed by applying adaptive adjustment law (27).

Remark 4. q̇(t) is required in the proposed controller, which is difficult to measure directly. In
general, differential signals are calculated directly by numerical difference. However, if the signal
contains random noise, direct differentiation cannot be applied directly in the controller due to its
noise sensitivity. Therefore, numerical differentiation could be used for the position signal q(t) with
the low pass filter to avoid the effects of noise measurement [31].

Remark 5. The main difference between the proposed controller and [23] is that the singularity
of control is avoided by Remark 1. In addition, the proposed controller improves the convergence
speed of DTSM, which has a higher convergence speed than TSM. The adaptive reaching law of the
proposed work works as the low-pass filter in practical experiments [12].

Remark 6. In practice, σ(.) cannot be exactly driven to zero for all times due to measurement
noise and time delays. Therefore, the adaptive law Υ̂(.) in (27) increases boundlessly, which causes
a large overshoot and unwanted oscillation in the controller. The dead zone technique could be
employed to solve this problem [32]. The design adaptive law (27) is rewritten as{ ˙̂Υi(t) = 1

κ |σi(t)| if σi(t) > υ,
˙̂Υi(t) = 0 if σi(t) ≤ υ ,

(30)

where υ > 0. When the sliding surface σi(t) > υi, the adaptive parameters ˙̂Υi(t) increase until they
are large enough to cancel the disturbances and uncertainties ΛΛΛ(q, Fd)i. The adaptive parameters
are unchanged when the sliding surface σi(t) < υi.

Remark 7. The choice of υ is essential. If υ is too small, σi(t) cannot be lower than υ, which makes
Υ̂i(t) increase boundlessly. The control accuracy is reduced if υ is too large.

Theorem 1. For the manipulator system (5), if the control laws are designed as (20–30), then the
tracking errors of system e(t) converge to zero in a finite time.

Proof. Insert the proposed control (20) to the sliding surface (18). This yields

σ(t) = ΓΓΓ(q, q̇, qd, q̇d, q̈d)− φ(q)(φ−1(q)(τeq(t) + τsw(t)) +ΛΛΛ(q, Fd). (31)

σ(t) = τsw(t) +ΛΛΛ(q, Fd). (32)
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The solution of the continuous reaching law (22) is [27]

τswi (t) = (τswi (t0) +
1
k

Υdi
+ Υti + ξ)sign(σi(t))e

t−t0
i − 1

k
(Υdi

+ Υti + ξ)sign(σi(t)). (33)

Considering (23), (31), (33) and the initial condition τswi (0) = 0, the following inequal-
ities are obtained [27]:

Υti ≥ kΥdi
≥ k|τswi (t)|max ≥ k|τswi (t)|. (34)

The positive-definite Lyapunov function is selected as follows:

V(t) ,
1
2

σT(t)σ(t) +
1
2

κ
n

∑
i=1

Υ̃i(t)Υ̃i(t). (35)

Then, the time derivative of V(t) is obtained with the help of (28)

V̇(t) = σT(t)σ̇(t) + κ
n

∑
i=1

(
Υ̂i(t)− (Υdi

+ Υti )
) ˙̃Υi(t). (36)

The time derivative of (32) yields

σ̇(t) = τ̇sw(t) + Λ̇ΛΛ(q, Fd). (37)

Consequently, substituting (37) into (36) produces

V̇(t) = σT(t)(τ̇sw(t) + Λ̇ΛΛ(q, Fd)) + κ
n

∑
i=1

(
Υ̂i(t)− (Υdi

+ Υti )
) ˙̃Υi(t). (38)

Substituting (27) into (38), the time derivative of V̇(t) is

V̇(t) = σT(t)(τ̇sw(t) + Λ̇ΛΛ(q, Fd)) +
n

∑
i=1

(
Υ̂i(t)− (Υdi

+ Υti )
)
|σi(t)|. (39)

According to (19), (22) and (23), V̇(t) is obtained as

V̇(t) ≤ −
n

∑
i=1
|σi(t)|(Υ̂i(t) + ξ)−

n

∑
i=1

σi(t)kτswi (t) +
n

∑
i=1

σi(t)Υdi

+
n

∑
i=1

(
Υ̂i(t)− (Υdi

+ Υti )
)
|σi(t)|.

(40)

Applying (34) to (40) yields

V̇(t) ≤
n

∑
i=1
−|σi(t)|ξ. (41)

It can be seen that V̇(t) ≤ 0. Moreover V̇(t) = 0 when σi(t) = 0. According to the
LaSalle theorem [33], one can conclude that limt→∞ σi(t) = 0. When σ(t) converges to zero
after time tri , i = 1, 2, . . . , n , then s(t) converges to zero, and (11) results in

0 = ėi(t) + K1i (ei(t)[α] + ei(t)3) + K2i ei(t), i = 1, 2, . . . , n. (42)

From (42), the time taken from ei(tri ) 6= 0 to reach ei(tri + tsi ) = 0, i = 1, 2, . . . , n is
determined as follows [34]:

When |ei(t)| > 1, the term ei(t)[α] is significantly small due to α < 1, then

ėi(t) ≈ −K1i ei(t)3 − K2i ei(t), i = 1, 2, . . . , n. (43)
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The time t1i taken from ei(tri ) to the intermediate state ei(t) = 1 can be calculated
using the Bernoulli method

t1i =
1

2K2i

ln
(K1i + K2i )e

2
i (tri )

(K2i + K1i )e
2
i (tri )

, i = 1, 2, . . . , n. (44)

When |ei(t)| < 1, the term ei(t)3 is significantly small, then

ėi(t) ≈ −K1i ei(t)[α] − K2i ei(t), i = 1, 2, . . . , n. (45)

The time t2i taken from ei(t) = 1 to the equilibrium point ei(t) = 0 can be determined
by using the Bernoulli method:

t2i =
1

(α− 1)K2i

ln
K1i

(K1i + K2i )
, i = 1, 2, . . . , n. (46)

Therefore, the total time tsi taken from ei(tri ) 6= 0 to the equilibrium point ei(tri + tsi ) =
0 can be determined as follows:

tsi ≤ t1i + t2i =
1

2K2i

ln
(K1i + K2i )e

2
i (tri )

K2i + K1i e
2
i (tri )

+
1

(α− 1)K2i

ln
K1i

K1i + K2i

, i = 1, 2, . . . , n. (47)

End of proof.

Based on the above analysis, the steps for implementing the proposed controller can
be summarized as follows:

Step 1. Define the position and velocity errors of joints using (7) and (8).
Step 2. Obtain the sliding surface using (10) and (11).
Step 3. Compute τeq(t) using (21) and (15), and τsw(t) using (25)–(27).
Step 4. Determine the control signal using (20).

4. Simulation Results

The proposed controller, PIDNFTSM [23] and DTSM [10] have been developed for a
two-link robot manipulator depicted in Figure 2 [11], enabling a performance comparison
between them.

The dynamic model of two-link robotic manipulators given in (5) is described as
follows [11]:

H0(q) =
[

p1 + 2p2cos(q2) p3 + p2cos(q2)
p3 + p2cos(q2) p4

]
, (48)

C0(q, q̇) =
[
−p2sin(q2)q̇1 −2p2sin(q2)q̇1

0 p2sin(q2)q̇2

]
, (49)

G0(q) =
[

p5cos(q1) + p6cos(q1 + q2)
p6cos(q1 + q2)

]
, (50)

where p1 = (m1 + m2)r2
1 + m2r2

2 + J1; p2 = m2r1r2; p3 = m2r2
2; p4 = p3 + J2; p5 = (m1 +

m2)r1g1; p6 = m2r2g1. The parameters are given in SI units and set as m1 = 0.5; m2 = 1.5;
r1 = 1; r2 = 0.85; J1 = 5; J2 = 5; g1 = 9.8 [12]. The lumped disturbance, including friction
torques and uncertainties, is expressed as [35]

Fd(t) =
[

0.5q̇1 + sin(3q1) + 0.5sin(q̇1)
1.3q̇2 − 1.8sin(2q2) + 1.1sin(q̇2)

]
. (51)
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The initial states are chosen as follows: qd(0) = [0 − 0.1]T (rad), and q̇d(0) =
[0 0]T (rad/s) [36]. The desired reference trajectories are given as follows [36]:

qd(t) =
[

0.2cos(0.7t) + 0.2cos(0.5t− 0.2)
0.2cos(0.5t− 0.2)− 0.2cos(0.7t)

]
. (52)

The simulations are performed using the ODE-45 solver in MATLAB SIMULINK. The
sampling period and simulation time are 0.001 s and 30 s, respectively. The corresponding
parameters of different control systems will be set with the same values [37]. The parameters
Kp, Ki, Kd of the proposed controller have the same values as those of the PIDNFTSM
controller for each corresponding pair. The parameters α, K1 and K2 of the proposed
controller are equal to those of the DTSM controller. Other parameters are selected based
on the required conditions to achieve optimal performance. The parameters of controllers
used in this simulation are given in Table 1.

 

q1 

q2 

m1 

m2 

r1 

 r2 

x 

y 

Figure 2. Two-link robot manipulator.

Table 1. Parameter setting of each controller.

Controller Tuning Parameters

DTSM [10] α = 7/9; K2 = diag(0.5, 0.5); K1 = diag(3, 3); k = 1; κ = 0.01.

Proposed controller
α = 7/9; K2 = diag(0.5, 0.5); K1 = diag(3, 3); Kp = diag(2, 2);
Ki = diag(1, 1); Kd = diag(0.5, 0.5); k = 1; κ = 0.01.

PIDNFTSM [23]
p/q = 9/7; λ = 1.5; K2 = diag(0.5, 0.5); K1 = diag(3, 3);
Kp = diag(2, 2); Ki = diag(1, 1); Kd = diag(0.5, 0.5); k = 1; κ = 0.01
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Remark 8. Generally, in practical implementation, the maximum torques of the first and second
joints generated by the motor and reducer are typically limited. Therefore, in this work, the maximum
torques given by the first and second joint are 100 Nm and 50 Nm, respectively.

Remark 9. The parameters are frequently chosen by trial and error to have the best performance.
Therefore, this could be the limitation of this work. In future work, researchers can employ sys-
tem identification to develop an accurate simulation model. With this improved model, offline
optimization can be performed to determine the optimal controller parameters.

In this section, two simulation cases demonstrate the superiority of the proposed
controller.

Case 1: the proposed controller, PIDNFTSM [23], and DTSM [10] are applied to
system (5) in the presence of the lumped disturbance (51).

Figure 3 shows the position tracking of each joint corresponding to three different con-
trollers. Three controllers enable each manipulator joint to move on the desired trajectory
after different transient times. However, the overall tracking positions of the PIDNFTSM
controller and the proposed controller are better than the DTDM controller. The proposed
controller takes less transient time to track the desired profile, at about 6 s for both the
first and second joint. The proposed controller and the PIDNFTSM controller achieve fast
responses; however, the PIDNFTSM controller causes the largest overshoot in the initial
stage and fluctuation in the tracking steady-state error. The tracking errors of each joint are
determined between the actual trajectory and desired trajectory in Figure 4. The proposed
controller drives the actual trajectory of the manipulator to track the desired trajectory
without fluctuation. At the same time, there are small oscillations in PIDNFTSM and
DTSM controllers. The proposed controller adjusts the positions of the joints to the desired
trajectory in finite time with the small steady-state errors of 7× 10−4 rad and 2× 10−5 rad
for the first joint and second joint, respectively, which are the highest tracking accuracies
of the three controllers. The largest errors of the three controllers occur in the initial stage,
caused by the initial condition of q(t). The tracking errors of the proposed controller enter
the region of steady-state error after about 4 s for two joints and maintain a relatively small
error. After the transition time of different controllers, the position errors of each joint
converge to zero. The results indicate that the proposed controller achieves the highest
accuracy and lower fluctuation errors than other controllers. For further quantitative analy-
sis, the root mean square errors (RMSEs) of position tracking are given in Figure 5. The
RMSE reflects how much the measured value deviates from desired values; the smaller the
RMSE, the higher the accuracy. The proposed controller has the lowest RMSEs in the first
and second joints of 0.03808 rad and 0.00889 rad, respectively. The actual control inputs
are given in Figure 6, limited within 100 Nm and 50 Nm in the first and second joints,
respectively. The proposed controller provides smooth control inputs and less oscillation
than other controllers.

RMSE =

√√√√ N

∑
k=1

e2
k

N
, (53)

where ek is the kth sampling position error and n is the size of the position error vector.
The RMSE values of the proposed controller decreased by 25% and 50% for the first

joint and 46% and 65% for the second joint, respectively, compared to the PIDNFTSM
controller and the DTSM controller.
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Figure 3. Position tracking performance. (a) Position tracking performance of the first joint. (b) Posi-
tion tracking performance of the second joint.
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Figure 4. Position tracking error of the second joint. (a) Position tracking error of the first joint.
(b) Position tracking error of the second joint.
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Figure 6. Cont.
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Figure 6. Control inputs of manipulator. (a) Control input of the first joint. (b) Control input of the
second joint.

To evaluate the energy consumption of each controller, energy control inputs (ECI) are
designed as follows:

ECI =
1
N

N

∑
k=1
|τi(k)|, (54)

where τi(k) is the k(th) sampling control input of joint i and N is the size of the control
input of the joint i vector.

In Figure 7, the ECI values of the proposed controller are smaller than the PIDNFTSM
in the first joint and second joint. Therefore, the proposed controller uses less energy than
PIDNFTSM. However, the ECI of the proposed controller is slightly higher than DTSM in
the second joint, whereas smaller than in the first joint.
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Figure 7. Energy control input of each controller.

Case 2: To verify the robustness of the proposed controller, besides the presence of
the lumped disturbance (51), the mass of the second joint m2 can be assumed to increase
to 2 kg after t ≥ 15 s. This is a sudden load variation involved in picking an object of the
manipulator.

From Figures 8 and 9, it can be seen that the DTSM suffers unsatisfactory tracking
performance under sudden loads, where the PIDNFTSM and the proposed controller
quickly return to a steady state. The proposed controller requires about 4 s for both the first
joint and second joint to reach the desired position profiles again, whereas the time recovery
of other controllers is larger than the proposed controller in both joints. Moreover, the
errors of both joints using the proposed controller are the smallest of the three controllers
under the lumped disturbance and sudden load. Thus, the proposed controller is more
robust, accurate and stable than other controllers. The RMSEs of the three controllers
given in Figure 10 indicate that the proposed controller has the highest accuracy of the
three controllers, where the RMSEs of the first joint and second joint are 0.03827 rad and
0.00903 rad, respectively.
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Figure 8. Position tracking performance under sudden load. (a) Position tracking performance of the
first joint. (b) Position tracking performance of the second joint.
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Figure 9. Position tracking errors under sudden load. (a) Position tracking error of the first joint.
(b) Position tracking error of the second joint.
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Figure 10. Root mean square tracking error.

The control inputs of each controller are given in Figure 11. The control inputs of
two joints using the PIDNFTSM controller are nearly identical to those of the proposed
controller in the steady state. However, the singularity of the PIDNFTSM controller occurs
frequently, resulting in sudden increases in the control signals. These sudden increases in
control inputs cause oscillations in the tracking position and elevate steady-state errors.
Figure 12 illustrates the energy consumption ECIs of each controller. Compared with
PIDNFTSM, the proposed controller uses less energy in both joints. This can be explained
by singularity avoidance in the proposed controller, which significantly reduces the control
signal energy.
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Figure 11. Control inputs of manipulator. (a) Control input of the first joint. (b) Control input of the
second joint.
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Figure 12. Energy control inputs of each controller.

5. Conclusions

This paper proposes a novel controller that inherits the characteristics of both PID and
DTSM controllers. Through its new design, the proposed controller avoids the singularity
of DTSM and PIDNFTSM and guarantees the finite convergence of the tracking manipula-
tor. The incorporation of an adaptive reaching law is designed to mitigate the requirement
for precise knowledge of the derivative of the lumped disturbance. The proposed controller
demonstrates rapid convergence, high accuracy and smooth control signals compared to
DTSM and PIDNFTSM controllers. However, it should be noted that the present work
is limited to simulation investigation solely. In order to show the feasibility of the ap-
proach and prove it from a theoretical perspective, experimental verification should be
conducted in the course of the ongoing and future research, along with controller parameter
optimization for a given particular problem considering modeling uncertainties.
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