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Abstract: In this paper, we analyse the classical action as a tool to reveal the phase space structure of
Hamiltonian systems simply and intuitively. We construct a scalar field using the values of the action
along the trajectories to analyse the phase space. The different behaviours of the trajectories around
important geometrical objects like normally hyperbolic invariant manifolds, their stable and unstable
manifolds, and KAM structures generate characteristic patterns in the scalar field generated by the
action. Also, we present a simple argument based on the conservation of energy and the behaviour of
the trajectories to understand the origin of the patterns in this scalar field. As examples, we study the
phase space of open Hamiltonian systems with two and three degrees of freedom.
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1. Introduction

The study of phase space structure is a fundamental problem in dynamical systems. It
is essential to understand the behaviour of the trajectories from a theoretical and practical
perspective. The traditional tools to visualise the phase space structure like the Poincaré
maps or projection of the trajectories in a plane are very useful to visualise and understand
diverse properties of the phase space with three dimensions. However, the study of the
phase space structure of multidimensional systems remains a challenging open problem
due to the difficulty of its visualisation.

Two basic approaches have been developed to study the multidimensional phase
space from two different and complementary perspectives: the statistical and geometrical
approaches. Some remarkable examples of the statistical approach based on time series anal-
ysis are Renormalization Group [1], Mutual Information [2,3], and Multifractal Metrics [4,5].
In the geometrical approach, new tools have been developed to study the phase space struc-
ture of multidimensional systems like Fast Lyapunov Exponents [6,7], Mean Exponential
Growth Factor of Nearby Orbits [8], Smaller Alignment Indices, generalised Alignment
Indices [9,10], Determinant of Scattering Functions [11,12], Delay Time [13], Shannon En-
tropy [14], Birkhof Averages [15], and based on Geometric properties of Hamiltonian
systems [16,17]. Those phase space structure indicators are scalar fields constructed with
the trajectories of the system. The differences in the values of the scalar fields give us
information about the phase space objects that intersect the set of trajectories considered.

A kind of phase space structure indicators recently developed is the Lagrangian
descriptors [18–20]. Some recent examples of systems analysed with this method can be
found in [21–27]. The most intuitive Lagrangian descriptors are based on trajectories’ arc
length. The differences in the arc length of the trajectories with nearby initial conditions
give us information about the phase space around them. In this work, we consider the
Maupertuis’ action S that defines a natural arc length for Hamiltonian systems. With
the action S, it is possible to construct a Lagrangian descriptor to reveal the phase space
structure of this kind of system.
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In Section 2, we explain in detail the principle behind the detection of phase space
objects in the phase space using the differences of arc length of nearby trajectories and the
construction of the Lagrangian descriptor based on the action. In Section 3, we study the
Lagrangian descriptor based on the action analytically and its behaviour when the trajecto-
ries are close to the hyperbolic periodic orbit of the quadratic normal form Hamiltonian
with two degrees of freedom (dof). We also explain this result using an intuitive argument
based on the conservation of the energy E and the behaviour of the trajectories around the
unstable hyperbolic periodic orbit. In Section 4, we explore the phase space of a three-dof
system with unbounded phase space. This system has a multidimensional generalisation
of a hyperbolic periodic orbit, a normally hyperbolic invariant manifold (NHIM). Finally,
in Section 5, we summarise our conclusions and remarks.

2. Relation between Lagrangian Descriptors and Classical Action S

The Lagrangian descriptors, like other phase space structure indicators, are scalar
fields constructed with the trajectories in the phase space. To calculate the trajectories,
usually, we take a set of initial conditions with one or two dimensions to visualise the
intersections of important objects in the phase space with the set of initial conditions. The
scalar field’s values are determined by the behaviour of the trajectories that cross the set of
initial conditions. In the next subsections, we review briefly: the ideas about the detection
of invariant objects in the phase space using scalar fields constructed with trajectories, the
definition of Lagrangian descriptors, and an important result to calculate the action S using
only the kinetic energy for some types of Hamiltonian systems.

2.1. Detection of Invariant Manifolds in the Phase Space Using Scalar Fields Constructed
with Trajectories

To understand the basic principle behind the detection of objects in the phase space,
first, let us consider an unstable hyperbolic periodic orbit Γ in the phase space of a two-dof
Hamiltonian system. Two remarkable invariant surfaces intersect at Γ [28–30]. These two-
dimensional surfaces are called stable and unstable manifolds of the unstable hyperbolic
periodic orbit Γ. The invariance under the flow generated by the equations of motion means
that the trajectories starting on an invariant surface remain on the same surface forever.
The definition of the stable and unstable manifolds Ws/u(Γ) is the following:

Ws/u(Γ) = {X|X(t)→ Γ, t→ ±∞} . (1)

This means that the stable manifold Ws(Γ) is the union of all the trajectories that
converge to the periodic orbit Γ as the time t goes to +∞. The definition of the unstable
manifold Wu(Γ) is analogous. The unstable manifold is the set of trajectories converging to
the periodic orbit as the time t goes to −∞.

The phase space of a two-dof Hamiltonian system has four dimensions. For each fixed
value of the energy E, we can represent its dynamics in a three-dimensional constant energy
manifold. The stable and unstable manifolds Ws/u(Γ) have two dimensions and form
impenetrable barriers that divide the constant energy manifold [31–33]. If a stable manifold
Ws(Γ) and an unstable manifold Wu(Γ) intersect transversely at one point, then there is an
infinite number of transversal intersections between them. The structure generated by the
stable and unstable manifolds is called a chaotic tangle and defines tubes that direct the
dynamics in the phase space. A remarkable property of the dynamics is that the trajectories
in a tube never cross the boundaries of the tube. This essential fact is a consequence of
the uniqueness of the ODE solution and the codimension one of the stable and unstable
manifolds Ws/u(Γ) relative to the constant energy manifold.

The trajectories very close to the stable manifold Ws(Γ) have similar behaviour to the
trajectories contained in Ws(Γ) just for some finite time interval. However, those trajectories
diverge from the hyperbolic periodic orbit Γ after a while. This is a characteristic property of
the trajectories in a neighbourhood of an unstable hyperbolic periodic orbit. The arc length
of the trajectories on the stable manifold Ws(Γ) grows like the periodic orbit’s arc length
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when the trajectories are close to the unstable periodic orbit Γ. For the other trajectories
near Ws(Γ), the arc length grows similar only when the trajectories approach the unstable
periodic orbit Γ. After the transit close to the unstable periodic orbit Γ, the arc length grows
differently. This difference makes it possible to find the boundaries of phase space objects
like stable and unstable manifolds of unstable hyperbolic orbits.

Now, let us consider a trajectory near the boundary of an invariant KAM island. For
some time, the trajectory is similar to the trajectories contained in the KAM island, but after
that interval, it moves away from the neighbourhood of the KAM island. This different
behaviour between trajectories is manifested in a difference in their arc length that we can
visualise easily.

In practice, to visualise the different behaviour of the trajectories in the phase space,
we usually consider a set of initial conditions like a two-dimensional plane and construct a
scalar field with the arc length of the trajectories that cross the set of initial conditions. The
abrupt changes in the behaviour of the trajectories generate abrupt changes in the scalar
field of the arc length that we can identify with objects in the phase space. For example, the
intersection of the stable manifold Ws(Γ) with the plane of initial conditions is a segment
of a curve. We can appreciate the same line in the scalar field of the arc length evaluated on
the plane. Similar considerations follow for the boundary of a KAM island that gives us a
closed curve.

When we analyse a multidimensional Hamiltonian system with n-dof we can apply
the same principle to visualise objects in the phase space. We can consider a set of initial
conditions with two dimensions, calculate the trajectories that cross that set of initial condi-
tions, and construct a scalar field with the arc lengths of the trajectories. The intersections
of the multidimensional objects with the set of initial conditions are reflected in abrupt
changes in the scalar field defined in the two-dimensional set of initial conditions.

In order to obtain insights into the phase space of systems with a large number of
degrees of freedom using a scalar field, from the practical point of view, we just need to
be able to integrate the equations of motion for enough points in the two-dimensional set
of initial conditions to distinguish the characteristic patterns corresponding to important
phase space objects in the scalar field constructed. An example with a large number of
degrees of freedom is in the reference [34]. In that example, the phase space of a two-dof
Hamiltonian system coupled with a large thermal bath of oscillators is studied with a
Lagrangian descriptor technique.

2.2. Definition of Lagrangian Descriptors

Now, we review a definition of the Lagrangian descriptors. Let us consider a system
of ordinary differential equations given by

dX(t)
dt

= V(X(t)), X ∈ Rn , t ∈ R , (2)

where the vector field V(X) ∈ Ck (k ≥ 1) at the point X. The values of the Lagrangian
descriptor depend on the initial condition X0 = X(t0) and on the integration time interval
[t0 + τ−, t0 + τ+]. The Lagrangian descriptor M is defined by two integrals as

M(X0, t0, τ+, τ−) = M+(X0, t0, τ+) + M−(X0, t0, τ−)

=
∫ t0+τ+

t0

F(X(t)) dt +
∫ t0

t0+τ−
F(X(t)) dt , (3)

where, the function F is any positive function evaluated on the solutions X(t), X(t0) = X0,
and the extremes of the interval of integration τ+ and τ−. The integration time can change
between different initial conditions and allow us to stop the calculations once a trajectory
leaves a defined region in the phase space. In this manner, it is possible to reveal only the
phase space objects contained in the particular region considered.
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The function F is chosen as positive defined to accumulate the effects of the trajectories’
behaviour as the integration time is increased. A natural choice for the function F is the
infinitesimal arc length of the trajectories in the phase space. Let us notice that the first
integral in the Lagrangian descriptor’s definition is calculated with trajectories forward in
time. Then, it shows the presence of the phase space objects in the set of initial conditions
like stable manifolds. Meanwhile, the second integral is calculated with the backward time
and reveals objects like unstable manifolds.

In some situations, it is convenient to stop the calculation of the trajectories when
the trajectories leave one particular region in the phase space to avoid large values of
the integrals that define the Lagrangian descriptor M(X0, t0, τ+, τ−). In this way, the
Lagrangian descriptor M(X0, t0, τ+, τ−) reveals only the phase space structure in one
particular region. It is important to consider that stop of the calculation of the trajectories
to interpret correctly the abrupt changes in Lagrangian descriptors plots.

For the detection of phase space invariant objects like stable and unstable manifolds of
NHIMs or KAM structures, it is possible to use any scalar field generated by the trajectories
of the system like the final points of the trajectories in phase space or other quantities related.
For example, in scattering systems, the final asymptotic quantities, like final scattering
angle or momentum, are a natural choice to find invariant chaotic sets [11,35,36]. However,
for general systems, some quantities are easy to interpret like the arch length of trajectories.

Motivated by both ideas, the arc length and the final coordinate as phase space
structure indicators, we consider the action S of the trajectories a natural option to visualise
the phase space of Hamiltonian systems.

2.3. Maupertuis’ Action for Hamiltonian Systems

Let us consider a system of n-dof with a Lagrangian function

L(q1, . . . , qn, q̇1, . . . , q̇n) = T(q1, . . . , qn, q̇1, . . . , q̇n)−V(q1, . . . , qn)

=
n

∑
i,j=1

mij(q1, . . . , qn)

2
dqi
dt

dqj

dt
−V(q1, . . . , qn), (4)

where T is the kinetic energy and V is the potential energy.
The action S for the Hamiltonian H(q1, . . . , qn, p1, . . . , pn) function is defined as

S =
∫ q f

q0

n

∑
i=1

pidqi , (5)

where the momentum pi is defined in terms of the Lagrangian L as usual

pi ≡
∂L
∂q̇i

. (6)

Substituting this definition of momentum pi in the definition of S and using a change
of variable in the integration, it is possible to write the action S in terms of the kinetic
energy T as

S =
∫ q f

q0

n

∑
i=1

∂L
∂q̇i

q̇i dt = 2
∫ t f

t0

T dt . (7)

Now, let us consider briefly the geometrical framework of Hamiltonian dynamics.
Using the conservation of the energy E and the definition of the momentum in terms of the
generalised velocities q̇i, we can write the kinetic energy as

T =

√
(E−V)

n

∑
i=1

mij

2
dqi
dt

dqj

dt
. (8)
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Then, the action S is defined by the infinitesimal arc length ds given by

ds2 = 2(E−V)
n

∑
i,j=1

mijdqidqj , (9)

where the trajectories of the system are geodesics of the Riemannian manifold defined by
the metric corresponding to this arc length when the action S is minimal for the trajectories.

Taking all these considerations, we can consider the action S as a Lagrangian descriptor.
Using the expression for the action in terms of the kinetic energy, the definition for the
Lagrangian descriptor based on the action MS is given by

MS(x0, t0, τ+, τ−) = 2
∫ t0+τ+

t0

T dt + 2
∫ t0

t0+τ−
T dt

= S+ + S− , (10)

where, S+ is the action forward and S− the action backward. At this point, the reader
may ask: Why is it convenient to consider the action S in terms of the kinetic energy T to
visualise the phase space? To answer this question, there are two main reasons:

I. We can interpret the results using the conservation of the energy and the geometry of
the potential energy V. In this way, it is possible to find signatures of the presence of
some fundamental objects in the phase space like KAM tori and NHIMs.

II. Using the kinetic T energy, is simple to calculate the action S numerically. When
we calculate the solutions of the Hamiltonian equations of motion, we just need to
solve simultaneously the integral of T with respect to the time t to calculate the action
S. Then, we only need to add this differential equation to the total ODE system to
solve numerically.

More details about the algorithm to calculate the Lagrangian descriptor based on the
action S and the visualisation of the multidimensional phase space are in Appendix A.

3. Phase Space Analysis of the Quadratic Normal Hamiltonian form Using MS

An important question for the study of phase space is the detection of hyperbolic
periodic orbits and their stable and unstable invariant manifolds. They constitute a funda-
mental component of the phase space. In this section, we study the Lagrangian descriptor’s
behaviour evaluated on a set of initial conditions around the stable and unstable manifolds
of an unstable hyperbolic periodic orbit. The next calculations are similar to the calculations
in [37] for a family of Lagrangian descriptors based on different norms. Let us consider
the most simple integrable two-dof Hamiltonian system as the first case for the analysis
of the Lagrangian descriptor based on action MS. The two-dof quadratic normal form
Hamiltonian is given by

H(x, y, px, py) = T(px, py) + V(x, y)

=
ω

2
(p2

x + x2) +
λ

2
(p2

y − y2) . (11)

The potential energy surface V(x, y) has an index-one saddle with an unstable equilib-
rium point at the origin, see Figures 1 and 2.

The motion in the x–component is oscillatory meanwhile the motion in the y–component
is unbounded. For this two-dof system exists only one unstable hyperbolic periodic orbit Γ
that oscillates on the x–direction on the line y = 0 for each value of the energy E > 0. The
orbit Γ is a Normally Hyperbolic Invariant Manifold (NHIM) and has stable and unstable
invariant manifolds. The periodic orbit Γ is given by

Γ = {(x, y, px, py) ∈ R4 | y = py = 0, E =
ω

2
(p2

x + x2)} . (12)
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Figure 1. Potential energy surface V(x, y) for the quadratic normal form Hamiltonian H with ω = 1
and λ = 1. V(x, y) has an index-one saddle point at the origin corresponding to an unstable
equilibrium point in the phase space.

Figure 2. The projection of the unstable hyperbolic periodic orbit Γ (red line) in the configuration
space. The projection of the trajectory γ (orange line) is close to the projection of Γ just for a finite
interval of time before escaping through the region with negative values of V(x, y) to infinity. The
potential energy V(x, y) is in colour scale on the background with equipotential lines on black.

In this integrable case, the unstable and stable invariant manifolds of the unstable
hyperbolic periodic orbit Γ are given by the analytical expressions:

Ws(Γ) = {(x, y, px, py) ∈ R4 | y = −py, E =
ω

2
(p2

x + x2)} ,

Wu(Γ) = {(x, y, px, py) ∈ R4 | y = py, E =
ω

2
(p2

x + x2)} . (13)

The Lagrangian descriptor based on the action MS for this two-dof separable system is

MS = Mx
S(x0, px0 , τ+) + My

S(y0, py0 , τ+)

= Sx
+ + Sx

− + Sy
+ + Sy

− , (14)
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where the terms Mx
S and My

S are Lagrangian descriptors corresponding to the motion in x
and y directions respectively. In this two-dof integrable system, Mx

S is the Lagrangian de-
scriptor associated with the elliptic motion and My

S is the Lagrangian descriptor associated
with the hyperbolic motion. Meanwhile, Sx

+, Sx
−, Sy

+, and Sy
− are the actions that form those

Lagrangian descriptors, like in the Equation (10). For the sake of simplicity, we consider the
extremes of the integration interval t0 = 0 and τ− = 0 for the next analytical calculations.

Let us start the analytical calculations for the Lagrangian descriptor My
S. The solutions

of the equations of motion for y and py are

y(t) =
py0

2
(eλt + e−λt) +

y0

2
(eλt − e−λt) ,

py(t) =
py0

2
(eλt − e−λt) +

y0

2
(eλt + e−λt) . (15)

In this example, the integral corresponding to action is

Sy
+ =

∫ τ+

0

λ

2
p2

y dt

=
∫ τ+

0

λ

2

( py0

2
(eλt − e−λt) +

y0

2
(eλt + e−λt)

)2
dt (16)

=
λ

2
(τ+(y2

0 − p2
y0
) + (py0 − y0)

2(e2λτ+ − 1) + (py0 + y0)
2(e−2λτ+ − 1)) .

From the last expression, it is easy to appreciate the exponential growth of Sy
+ as t

is increased. This integral has a minimum that converges to the initial conditions on the
stable manifold Ws(Γ) when τ+ → ∞.(

∂Sy
+

∂x0
,

∂Sy
+

∂y0

)
(x0c, y0c) = 0 =⇒ lim

τ+→∞
x0c = −y0c . (17)

An analogous result follows for the integration backwards on time and the initial
condition on the unstable manifold Wu(Γ).

Now we calculate the contribution associated with the motion in the x direction, the
elliptic part of the Lagrangian descriptor Mx

S. The solutions of the equations of motion for
harmonic oscillators are

x(t) = px0 sin(ωt) + x0 cos(ωt) ,

px(t) = px0 cos(ωt)− x0 sin(ωt) . (18)

Substituting this solution in the corresponding action, we obtain

Sx
+ =

∫ τ+

0

ω

2
p2

x dt

=
∫ τ+

0

ω

2
(px0 cos(ωt)− x0 sin(ωt))2 dt . (19)

Without loss of generality, we calculate the integral starting on the initial condition
px0 = 0 and x0 =

√
2Ex/ω. If we consider that px has period 2π/ω, then τ+ = 2Nπ/ω + r,

where N is an integer and r ∈ [0, 2π/ω]. This gives us

Sx
+ = NEx

∫ 2π

0
sin2 u du +

∫ r

0

ω

2
p2

x dt (20)

= 2πNEx +
∫ r

0

ω

2
p2

x dt .
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From the above equation, we see that the elliptic part Mx
S accumulates the same

value of action every oscillation period. In contrast, the hyperbolic component My
S grows

exponentially with the time.
Considering the results for the hyperbolic and elliptic components of the Lagrangian

descriptor based on the action, Mx
S and My

S, we conclude that MS has a minimum on
the stable and unstable manifolds Ws/u(Γ) of the hyperbolic periodic orbit Γ. Then, the
Lagrangian descriptor MS attains a global minimum on the periodic orbit Γ. We can
generalise this result to the neighbourhood of other nonintegrable systems with index-one
saddles of potential energies due to Moser’s theorem for nonlinear systems [38].

Intuitively, we understand this result considering the geometry of the potential energy
V(x, y) around the index-one saddle point. For energies E > 0, the unstable hyperbolic
periodic orbit Γ oscillates on x-direction, and its kinetic energy is a periodic function of
the time t. Almost any trajectory in a neighbourhood of Γ separate from it and its kinetic
energy grows due to the shape of V(x, y) on the y-direction and the conservation of E, see
Figures 2 and 3. However, the trajectories in the stable manifold Ws(Γ) converge to the
periodic orbit Γ and remain bounded. Thus, their kinetic energy T converges to a periodic
function and the action S+, is minimum for the trajectories on Ws(Γ). As a result, the
Lagrangian descriptor has a minimum in the stable and unstable invariant manifolds, and
the global minimum that reveals the position of their intersection at Γ, see Figure 4. To
avoid divergences of the MS, the calculation of the trajectories stops when integration time
is completed or when the particle reaches circumference in the configuration space with
radius r = 10 with the centre at the origin, see Figure 5.

Figure 3. Kinetic energy T(t) as a function of time t for the unstable hyperbolic periodic orbit Γ and
a divergent trajectory γ with slightly different initial conditions in the Figure 2. T(t) for Γ is also a
periodic function (red line). Meanwhile, T(t) for γ grows exponentially (orange line). The values of
the action S(t) for each trajectory are twice the area under their corresponding kinetic energy curve.

We can generalise the previous result for systems with a multidimensional index-one
saddle point in the potential energy hypersurface. In that case, the phase space of the
system has generalisation of a hyperbolic periodic orbit, a Normally Hyperbolic Invariant
Manifold (NHIM) associated with the index-one saddle point in the potential energy
hypersurface [31,33]. The Lagrangian descriptor based on the action MS has a minimum in
the stable and unstable manifolds of the NHIM, and a global minimum at the NHIM [37].
The proof of this result is a direct consequence of the previous one. We just need to add
more oscillatory degrees of freedom in the construction of the argument.
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(a) MS evaluated on the plane y0–py0 , x0 = 0, and E = 1 for integration times τ = 4.

(b) MS evaluated on the plane x0–px0 , y0 = 0, and E = 1 for integration times τ = 2.

Figure 4. Lagrangian descriptor MS for the quadratic normal form Hamiltonian evaluated on the
2 canonical conjugate planes. The initial conditions in each plane are determined by the conservation
of the Energy E. In panel (a), the intersection of the cyan lines corresponds to the intersection of the
initial conditions with the unstable hyperbolic periodic orbit Γ. The cyan lines with the minimum
value of MS are the intersection with the stable manifold Ws(Γ) at py0 = −y0 and unstable manifold
Wu(Γ) at py0 = y0. In panel (b), the boundary of the circle in dark blue with a minimal value of MS

corresponds to Γ.
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Figure 5. Lagrangian descriptor MS evaluated on a segment of the line with py0 = 2 and x0 = 0 for
different integration times τ. The minimum values are intersections of the stable manifold Wu(Γ)
with the initial conditions. To avoid large values of MS, the calculation of the trajectories stops when
integration time is τ or the particle rich a distance in the configuration space r = 10 from the origin.
For integration times τ > 4 the extremes of the curves do not change because their corresponding
trajectories reach r = 10 before the end of the integration time.

4. Exploring the Phase Space of a Three-Dof Open System Using MS

In this section, we consider a three-dof Hamiltonian model as a nonlinear example.
The phase space of this model has a NHIM and KAM structures. We visualise these objects
in phase space using the Lagrangian descriptor based on the action MS. The model is an
extension of a two-dof model proposed to study the yield of products in an ultra-cold
exothermic reaction [39] and studied from the phase space perspective with detain using
the action S in [40]. More examples of the action S as a phase space structure indicator for
two-dof chaotic closed systems can be found in the references [41–43].

Two features determine the dynamics of this model: a van der Waals force and a
short-range force associated with the many-body interactions. Random Gaussian bumps
have been added to the van der Waals potential energy to simulate the short-range effects
between the particles close to the minimum of the van der Waals potential energy. The
phase space of the system has a KAM tori close to the minimum of the van der Waals
potential and the stable and unstable manifolds of the NHIM are associated with the
maximum of the effective potential energy.

The model considers two-body interactions. The dominant interaction related to the
asymptotic motion is a van der Waals force. The potential energy associated with the van
der Waals force is given by

V0(r) = −
C

(β|r|2 + α)3
, (21)

where r = (x, y, z) is the position from the origin, and the numerical values of the constants
in this example are α = 110 a.u, β = 2.9 a.u, and C = 16, 130 a.u. The potential energy
function V0(r) is negative defined and approaches 0 asymptotically. For E < 0, the phase
space is bounded and the particles are confined. Meanwhile, for E > 0, the phase space is
unbounded, and some particles can escape to infinity.

Due to the rotational symmetry of V0(r), the dynamics is integrable and it is possible to
reduce the dynamics and decompose the motion in radial and angular motion. The effective
potential energy as a function of the radio r parameterised by the constant magnitude of
the angular momentum L given by

Ve f f (r, L) = V0(r) +
L

2mr2 . (22)
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Figure 6 shows the effective potential Ve f f (r, L) for L ≈ 109. For each maximum of
Ve f f (r, L), there exists an unstable fixed point for the dynamics in r-direction. Associated
with this unstable fixed point there is a circular unstable hyperbolic periodic orbit ΓL with
radius equal to the critical radius corresponding to the maximum of Ve f f (r, L) and energy
E equal to the maximum. For every direction in the configuration space, the system has a
periodic orbit like ΓL. If we consider the union of all those periodic orbits, we can construct
a NHIMME defined as

ME =
⋃
θ,φ

ΓL , (23)

where the angles θ, φ parametrise the sphere in the configuration space. It is clear thatME
is a three-dimensional sphere S3 by construction. This type of NHIM is characteristic of
three-dof Hamiltonian systems with a maximum in its effective potential Ve f f (r, L).

Figure 6. The effective potential Ve f f (r, L) for L ≈ 109. For the maximum of Ve f f (r, L), there is an
unstable hyperbolic periodic orbit associated ΓL in the phase space of the three-dof system.

Analogously, we can construct the stable and unstable manifolds of the NHIMME
taking the union of the stable and unstable manifolds of the hyperbolic periodic orbit ΓL.

Ws/u(ME) =
⋃
θ,φ

Ws/u(ΓL) . (24)

Each of these invariant manifolds is a four-dimensional spherical cylinder S3 × R
and can divide the five-dimensional constant energy manifold. In this integrable case,
Ws/u(ME) form a multidimensional homoclinic connection.

For the nonintegrable case, the short-range interactions act close to the minimum
of the potential V0(r). In [39], a force to mimic the many-body interaction breaking the
rotational symmetry is proposed. This proposal consists of adding to the potential V0(r)
some random Gaussian bumps scattered inside around the minimum of V0(r). In this
numerical example, the bumps have r < 5. This kind of perturbation has been used in
closed quantum systems to break the degeneracy in the energy spectrum associated with
the rotational symmetry [44,45]. In this case, the potential energy for the perturbed model is

V(r) = V0(r) +
n

∑
i=1

Ae−B|r−ri |2 , (25)

where A and B = 10 are the coefficients that define the Gaussian bumps, and ri are
the position of their centres. The height of the bumps defined by A is the perturbation
parameter in this numerical example.

We calculate the Lagrangian descriptor MS for two different values of the parameter
perturbation A = 0, 0.005 for the same energy E = 14, see Figure 7. For the first case, A = 0,
the system is integrable and we can see the regularity in the KAM structure, in yellow and
green, bound by the stable and unstable manifolds Ws/u(ME). The intersection of the
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NHIMME with the set of initial conditions is around r0 = 15 and pr0 = 0, see Figure 8a. In
the second case, the system is not integrable and the dynamics becomes chaotic. However,
the NHIMME and its invariant manifolds Ws/u(ME) are robust under perturbations due
to the persistence theorem [31,46].

(a) Lagrangian descriptor for the integrable case, A = 0.

(b) Lagrangian descriptor the nonintegrable case, A = 0.005.

Figure 7. Lagrangian descriptor MS evaluated on the canonical plane r0–pr0 , θ0 = π/2, φ = 0,
pθ0 = 0, pφ0 = 0, E = 14 and integration time τ = 106. The value of initial momentum pr0 is defined
using the conservation of the energy and the other initial values. Panel (a) shows the result for the
spherically symmetric integrable system, A = 0, we can appreciate the regular structure of the phase
space. In panel (b), the Lagrangian descriptor shows the important changes in the patterns and
the break of symmetry due to the chaos induced by the bumps in the potential energy V(r) with
A = 0.005.

The stable and unstable manifolds Ws/u(ME) intersect transversally and form a
complicated pattern, see Figures 7b and 8b. This structure is a homoclinic tangle ofME
and is a generalisation of the two-dimentional Smale horseshoes. Like in the two-dof this
geometrical structure generates a complicated behaviour for the trajectories that escape
to infinity. This behaviour is an example of transient chaos. More details about transient
chaos and examples are in the references [47–49].
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(a) Lagrangian descriptor for the integrable case, A = 0.

(b) Lagrangian descriptor the nonintegrable case, A = 0.005.

Figure 8. Magnification of the Lagrangian descriptor MS plots in Figure 7. Panel (a) shows a
point in the NHIM ME at the corner of the dark blue triangle around (r0 = 15, pr0 = 0) for
the spherically symmetric integrable system. In panel (b), the Lagrangian descriptor shows the
transversal intersections between Ws/u(ME) that originates transient chaos. Due to the numerical
instabilities of this model, we calculate the solutions using a Taylor integrator order 25 implemented
in Julia programming language [50,51].

Also, we appreciate a region with large values of MS in yellow and green in Figure 9,
which contains a KAM structure associated with the minimum of V, where the values of
kinetic energy T of the trajectories are bigger than in the regions with bigger values of V.
In panel (a), we can appreciate the regular concentric KAM tori. Meanwhile, in panel (b),
we see how the KAM structure is deformed due to the perturbation and a chaotic sea
created around it. For the three-dof Hamiltonian systems, the KAM torus does not have
the necessary dimension to divide the phase space. For this system, the dimension of a
KAM torus is three, but the constant energy manifold has five dimensions. However, the
time necessary to escape to infinity is usually very large, that phenomenon is called Arnold
diffusion. This is an important difference between the two-dof and three-dof Hamiltonian
systems. Nevertheless, we can find the KAM structure in the phase space because of the
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different behaviours of the trajectories in the chaotic sea around it, and we can appreciate a
complicated chaotic tangle around the KAM structure.

(a) Lagrangian descriptor for the integrable case, A = 0.

(b) Lagrangian descriptor the nonintegrable case, A = 0.005.

Figure 9. Magnification of the Lagrangian descriptor MS plots in Figure 7. Panel (a) shows concentric
KAM tori for the spherically symmetric integrable system. In panel (b), the Lagrangian descriptor
shows the changes in the KAM tori due to the perturbation. The boundary of the KAM structure is
defined by the abrupt changes in values of MS that correspond to the chaotic sea around it.

5. Conclusions and Remarks

We construct a natural phase space structure indicator for multidimensional Hamilto-
nian systems based on action S. An easy way to calculate this Lagrangian descriptor MS
is with the integral of the kinetic energy T with respect to the time of the trajectories. It is
possible to generalise this result when the kinetic energy is a quadratic function of the gen-
eralised velocities, and its potential energy is only a function of the generalised coordinates.

The Lagrangian descriptor MS is a convenient tool for studying the phase space of
open Hamiltonian systems. Using the conservation of the energy, we can easily interpret
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the values of MS and link them with the geometry potential energy V in an intuitive way.
The trajectories that spend time in regions with large values of V have smaller MS than
trajectories that spend time in regions with smaller values of V.

Using MS it is possible to identify regular regions, unbounded regions, KAM structures
and the transient chaotic sea around them formed by homoclinic and heteroclinic tangles.
For the KAM islands, where the dynamics is confined to a finite region on the phase space,
the values of MS change very smoothly for large integration times. Nevertheless, is its
always possible to find stable periodic orbits on the KAM islands’ centres using the Poincaré
map. The Lagrangian descriptors and the Poincaré maps are complementary tools to reveal
the phase space structure.

Let us notice that we can apply this method to Hamiltonian systems with a large num-
ber of degrees of freedom. The only necessary condition is to be able to solve Hamilton’s
equations of motion for a grid of initial conditions dense enough to find the boundary of
the intersection of the objects in the phase space with the set of initial conditions. In this
way, we can visualise those objects in the multidimensional phase space.

We find that MS has a minimum value on their stable and unstable manifolds of the
hyperbolic periodic orbits. On the other hand, this Lagrangian descriptor has a maximal
value for the stable and unstable manifolds for the inverse hyperbolic periodic orbits,
see [41]. These results are intuitive considering the conservation of the energy and the tra-
jectories’ behaviour in the neighbourhood of the periodic orbits. It is possible to generalise
immediately these results for NHIMs and their stable and unstable manifolds in systems
with more dimensions just by adding more oscillatory degrees of freedom and considering
its contribution to MS.

The classical action S has a fundamental role in the path integral formulation the
quantum mechanics. Considering the stationary phase approximation of the Feynman path
integral and the phase space of the classical system associated, the results presented here
about the action S should have consequences for the evolution of wave packets near the
stable and unstable manifolds of NHIMs and centres of KAM structures.

In the case that we want to visualise the phase space of more general systems that are
not Hamiltonian, we can use an analogous algorithm. We replace the Hamilton equations
of motion for the ODE system that we want to analyse and also replace the differential
equation for the derivative with respect to the time of the action S with the equation for the
infinitesimal arc length in the phase space. In this way, we can construct a scalar field that
contains information about the trajectories that intersect the set of initial conditions.
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Appendix A. Algorithm to Calculate the Lagrangian Descriptor Based on the Action S

The basic algorithm to calculate the Lagrangian descriptor MS evaluated in a set of
initial conditions in the phase space of a multidimensional Hamiltonian system defined by
H(q1, . . . qn, p1, . . . , pn) is as follows:

I. Define the set of initial conditions in the phase space that we want to study. Typically,
we chose initial conditions on a curve or a two-dimensional surface that intersects
important objects in the phase space like periodic orbits, KAM structures, NHIMs or
their invariant manifolds.

II. Calculate the actions S+ and S− integrating the Hamiltonian equation forward and
backwards, respectively, with respect to the time t. The ODE system to solve numeri-
cally is
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q̇i =
∂H
∂pi

,

ṗi = −∂H
∂qi

,

Ṡ =
n

∑
i=1

pi q̇i = 2 T .

III. Construct the scalar field MS = S+ + S− for the initial conditions considered and plot
the result using a colour map.

For the Lagrangian descriptor plots in this work, we use a rectangular grid of 400 × 400
initial conditions. It is possible to obtain preliminary results using fewer initial conditions
and reducing the error tolerance of the numerical integration.
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