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Abstract: We develop a new formalism for constructing probabilities associated with the causal
ordering of events in quantum theory, where an event is defined as the emergence of a measurement
record on a detector. We start with constructing probabilities for the causal ordering events in classical
physics, where events are defined in terms of worldline coincidences. Then, we show how these
notions generalize to quantum systems, where there exists no fundamental notion of trajectory. The
probabilities constructed here are experimentally accessible, at least in principle. Our analysis here
clarifies that the existence of quantum orderings of events do not require quantum gravity effects:
it is a consequence of the quantum dynamics of matter, and it appears in the presence of a fixed
background spacetime.
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1. Introduction

A bet on any type of race (with humans, horses, chariots, or cars) is equivalent to
the assignment of probabilities to a causal ordering of events. The relevant events are the
crossings of the finish line by the runners, and the causal ordering of such events is the
results of the race. In this sense, assigning probabilities to causal orderings is both one of
the oldest applications of probabilistic thinking, dating at least to the ancient Olympics,
and one of the most common uses of probability theory today. In this paper, we describe
causal ordering of events (COoE) for quantum systems, where an event is defined as the
emergence of a macroscopic measurement record that is localized in space and in time [1,2].
We construct the probabilities for such causal orderings, and we suggest physical set-ups
where such probabilities can be measured, at least in principle.

1.1. Motivation

This work is partially motivated by the recent studies of indefinite causal ordering of
events in quantum computing [3,4]. In that context, the word “event" is used to denote an
operation on a quantum system, for example, a step in an algorithm. An indefinite sequence
of operations can arguably lead to significant advances in quantum computation and other
technologies [5–8]. The most common set-up to witness such phenomena involves the
quantum switch, that is, a quantum operation in which two or more quantum channels
act on a quantum system with the order of application determined by the state of another
quantum system. Systems that manifest indefinite causal order in this sense have been
realized in the laboratory [9–11].

This quantum informational notion of causal ordering differs and may even conflict
with relativistic causality—for a detailed analysis of this issue, see [12,13]. The meaning
of the term “event" is crucial in this context. In this paper, we employ a notion of event
that is similar to the crossing of the finishing line by a racer. This notion closely reflects the
notion of an event in relativity, where physical events are invariantly defined in terms of
worldline coincidences. Einstein emphasized this perspective in his first review of General
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Relativity [14], see also [15,16]. For example, a particle-detection event is defined as the
intersection of the particle’s and the detector’s worldlines. With this definition, we use
the lightcone structure of spacetime, in order to define causal relations between events.
Since events are defined in terms of trajectories, the dynamical behavior of trajectories
directly influences the properties of causal ordering. If the trajectories are stochastic, then
the ordering of events is also a stochastic variable.

Quantum theory does not admit trajectories as physical observables, so in quantum
systems, we have to define events and their causal ordering differently. We define an event
as the occurrence of a measurement outcome, that is, the emergence of a measurement
record on a detector. This is the most conservative definition of a quantum event. It is
also the most natural one in the Copenhagen interpretation [17], and the standard use of
the term in particle physics. If the quantum events can be embedded in spacetime, i.e., if
we can associate a spacetime point or region to the emergence of a measurement record,
then we can define quantum probabilities for the COoE that are natural analogues of the
classical ones.

Our definition of events as measurement records is certainly different from the defini-
tion in terms of operations, so no results that are based on the latter approach are relevant
here. We have to use identical terms, but the meaning is different. For example, when
we talk about an indefinite COoE, we mean the existence of superposition states of the
form ψ = ∑a caψa, where each ψa corresponds to a unique causal order of detection events.
Such states are generic by virtue of the superposition principle, and, as we will show,
they can be readily identified. This means that experiments to identify the existence of
indefinite causal order are relatively straightforward in our approach. The simplest set-up
requires time-of-arrival measurements in multi-particles systems; if any of the particles
is in a superposition state for position or momentum, then the experiment will record an
indefinite order of events.

Our notion of events may be more appropriate when discussing gravitational effects
on quantum systems. For example, it can readily be employed in order to identify a gener-
alization of the equivalence principle for quantum systems [18–21], which also accounts
for effects such as superposition or entanglement. In absence of the notion of a quantum
trajectory, a formulation in terms of measurement records appears as the simplest option.
Furthermore, we expect that our description of COoE will enable us to analyze the temporal
and causal properties of multi-partite quantum systems interacting through gravity [22].
The analysis of such systems has gained increased prominence in recent years, since some
of their quantum properties may be experimentally accessible in the medium term [23,24].

We must note that throughout this paper, we use the word “causal” exclusively in
its temporal sense, namely, it denotes a temporal relation between two events, where one
is earlier than the other. It does not have the connotation of one event being a cause of
another, a concept that is ill defined in standard quantum theory.

1.2. Our Results

Our analysis of the causal order of quantum events requires the treatment of the time
associated with an event as a quantum observable. It is an old result by Pauli [25] that time
cannot be treated as a self-adjoint operator. The only way to have time as an observable
is to represent it by a Positive-Operator-Valued measure (POVM). To this end, we use the
Quantum Temporal Probabilities (QTP) approach that has been developed for constructing
probabilities for temporal observables [1,2,26,27].

The key idea in QTP is to distinguish between the time parameter of Schrödinger’s
equation and the time variable associated with particle detection [28,29]. The latter is then
treated as a macroscopic quasi-classical variable associated with the detector degrees of
freedom. A quasi-classical variable is a coarse-grained quantum variable that satisfies
appropriate decoherence conditions, so that its time evolution can be well approximated by
classical equations [30–32]. Hence, the detector admits a dual description: in microscopic
scales, it is described by quantum theory, but its macroscopic records are expressed in terms
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of classical spacetime coordinates. The key point here is that the spacetime coordinates of a
quantum event are random variables, and they can be used to define quantum probabilities
for the causal order of events.

The treatment of time as a random variable is the crucial difference of the QTP method
from the traditional description of quantum measurements that originates from von Neu-
mann [33]. In von Neumann’s theory, the time t of a measurement (or the time interval)
is fixed a priori. Hence, t is a parameter to the system, and not a random variable. Most
measurement schemes share this feature with von Neumann’s measurements, for example,
particle detection models [34], continuous-time measurements [35], or measurements for
stroboscopic tomography [36].

Since the time of a measurement is a random variable, we can straightforwardly
compare the detection times for different detectors, in order to define probabilities for the
COoE in multi-partite quantum systems. The COoEs are also treated as random variables,
described by POVMs, i.e., they are generalized quantum observables. We also show that
probabilities for quantum COoEs can also be defined even if there is no macroscopic record
about the time at which the events occur. To this end, we construct a simple detection model,
in which different orderings of events correspond to different measurement records. Hence,
the probabilities of such records coincide with probabilities for different causal orders.

It is important to emphasize that there is no relation between the COoE considered here
and a quantum causal structure of spacetime, as commonly postulated in quantum gravity
research. The quantum behavior of the COoE, considered here, is due to the quantum
nature of matter, and it coexists peacefully with a fixed background spacetime. In fact,
the background spacetime structure is essential for defining quantum probabilities for the
COoE. This is not particular to our definition of events: quantum gravity is not necessary
for an indefinite causal order even when events are defined in terms of operations [37].

The structure of this paper is the following. In Section 2, we provide a general
definition of the notion of an event, and explain how we can construct probabilities for the
causal order of events. In Section 3, we apply these definitions to classical physics, including
Hamiltonian mechanics and stochastic processes. In Section 4, we define probabilities for
the causal ordering of quantum events, using temporal observables. In Section 5, we
present a simple model for the quantum order of events in absence of records about
temporal observables. In Section 6, we summarize our results.

2. Main Concepts

In this section, we present a general characterization of events, and we identify the
mathematical properties that are satisfied by a causal order of events.

By “event”, we mean a uniquely identifiable occurrence with definite characteristics.
In classical mechanics, events are typically defined as the intersection of two worldlines.
For example, one worldline may correspond to a particle and the other to an observer with
a particle detector; their coincidence is a particle-detection event. We can improve on this
description, by defining an event as the first intersection of a worldline with a specific
time-like surface. We can consider, for example, the worldline of a runner crossing the
world tube of the finish line in a marathon.

However, in quantum theory, definite characteristics are attributed only to measure-
ment outcomes; trajectories are not observables. For this reason, we will define events in
terms of measurement records. For example, a detection event is the “click” of a particle
detector. Hence, we identify event with changes in a macroscopic apparatus that denote
the occurrence of a measurement.

Let E be a set of events in the physical system under study. Events are discrete
occurrences, so E is a discrete set. We will denote events by Greek letters, α, β, and so on.

The events in the set E may be ordered causally. We say that α ≺ β, if event α occurs
prior to an event β. A causal order on E is the consistent assignment of the order relation
≺ to pairs of elements of E. A causal order satisfies the properties of a partial-order
relation, namely:
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1. Irreflexivity: It is never true that α ≺ α.
2. Asymmetry: If α ≺ β, then β ≺ α is false.
3. Transitivity: If α ≺ β and β ≺ γ, then α ≺ γ.

In a partial order, it is not necessary that all pairs of elements are related with the order
relation. Physically, we can distinguish two cases. Some elements may be simultaneous,
in which case we write α ∼ β. Or they may be uncomparable, in which case we write
α|β. Therefore, we define a causal order as a partial order that also include the distinction
between simultaneous and incomparable pairs of elements.

We will denote the set of all possible causal orders on E by CO(E). We will denote
elements of CO(E) by capital Greek letters. For example, in a set E that consists of two
distinct elements α and β, there are four possible causal orders:

• M1 = {α ≺ β};
• M2 = {β ≺ α, };
• M3 = {α|β};
• M4 = {α ∼ β}.

We say that a causal order defines a time order on E, if there exist no pair α, β ∈ E such
that α|β. We will denote the set of all time orders on E by TO(E). Clearly, TO(E) ⊂ CO(E).

Ever since Newton, we define the causal ordering of physical events in terms of the
spacetime causal structure. That is, we consider a four-dimensional manifold M with points
(x0, x1, x2, x3) that is equipped with a partial ordering relation < that defines the causal
structure of spacetime.

• In non-relativistic physics, x < y if x0 < y0, and x ∼ y if x0 = y0. There are no
incomparable elements.

• In relativistic physics, x < y, if y lies in the future lightcone of x, and x|y if x is
spacelike separated from y. Spacelike separated events are incomparable; there are no
simultaneous events.

Since all physical events occur in spacetime, we consider embeddings X of the set of
events E into spacetime, that is, onto maps X : E→ M. Then, the pullback of the spacetime
causal structure with respect to X defines a causal order on E, that is:

α ≺ β, if X(α) < X(β) (1)

Hence, the physical COoE reflects the causal structure on spacetime. Here, we associ-
ated events with spacetime points—a more general analysis should associate events with
spacetime regions, but this will not be needed in this paper.

It is imperative to distinguish COoEs from the causal structure of spacetime. As long
as we ignore gravitational interactions, the latter is fixed and unchanging. It is defined by
the lightcone structure of Minkowski spacetime, or of any other background spacetime.
However, COoEs are not fixed: they can be stochastic or quantum variables. This is because
they depend on the embeddings X, which are themselves stochastic or quantum variables.
The quantum behavior of the COoEs does not require a quantum behavior of spacetime, as
postulated in quantum gravity theories. As a matter of fact, in quantum gravity proper, we
expect to have no external spacetime causal structure, hence, the definitions of the COoEs
given here do not work. The difficulties that arise from this fact are known as the problem of
time in quantum gravity [38–40].

3. COoE in Classical Physics

In this section, we construct probabilities for the COoEs for classical systems, namely,
for Hamiltonian systems and for systems described by stochastic processes.
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3.1. Classical Mechanics

Let Γ be the state space of a classical system; we will denote the elements of Γ by ξ. By
Hamilton’s equation, a system found at ξ at time t = 0, will evolve to a point σt(ξ) at time
t. The map σt is a diffeomorphism.

An event in classical mechanics corresponds to the first intersection of a state space
trajectory with a surface on Γ. Surfaces of codimension s are locally determined by the
vanishing of s functions on Γ, hence, we can represent an event α by a set of s functions
Fi

α, where i = 1, 2, . . . s. A set E of n events consists n such families. For simplicity, we will
consider only surfaces of codimension one in this paper, so that one event corresponds to a
single function on Γ.

The causal ordering in the set of events is defined through the parameter of time
evolution t, which is assumed to coincide with the Newtonian absolute time. For any event
α, we define the null set Nα of α, as the set of all ξ ∈ Γ, such that the equation Fα[σt(ξ)] = 0
has no solution for all t ≥ 0. Then, we define the time Tα of the event α, as a function
Tα : Γ−Nα → R+, such that Tα(ξ) is the smallest positive value of t that solves the equation
Fα[σt(ξ)] = 0. This means that Tα(ξ) is the time it takes a trajectory that starts at ξ to cross
the surface Fα = 0 for the first time.

Suppose that the initial state of the system corresponds to a probability distribution
ρ(ξ). Then, we can construct joint probability distributions for the times of events:

p(t1, t2, . . . , tn) =
∫

dξρ(ξ)δ[T1(ξ)− t1]δ[T2(ξ)− t2] . . . δ[Tn(ξ)− tn]. (2)

These probability densities are not normalized to unity. For proper normalization, we have
to include the probability densities for no events, which corresponds to the null sets Nα.
For example, for n = 2, we have the probability densities p(t1, t2) as above, together with
the probability densities:

p(N1, t2) =
∫

dξχN1(ξ)δ[T2(ξ)− t2] (3)

p(t1, N2) =
∫

dξχN2(ξ)δ[T1(ξ)− t1] (4)

p(N1, N2) =
∫

dξχN1(ξ)χN2(ξ). (5)

where χC is the characteristic function of a set C.
We can define the following four causal orders for the two events:

• M1 = {1 ≺ 2} corresponds to t1 < t2, or N2 together with finite t1.
• M2 = {2 ≺ 1} corresponds to t2 < t1, or N1 together with finite t2.
• M3 = {1|2} corresponds to N1 and N2.
• M4 = {1 ∼ 2} corresponds to t1 = t2.

Then, we obtain the associated probabilities:

p(M1) =
∫ ∞

0 dt1
∫ t1

0 dt2 p(t1, t2) +
∫ ∞

0 dt1 p(t1, N2)

p(M2) =
∫ ∞

0 dt2
∫ t2

0 dt1 p(t1, t2) +
∫ ∞

0 dt2 p(N1, t2)
p(M3) = p(N1, N2)
p(M4) =

∫ ∞
0 dtp(t, t).

(6)

This procedure is straightforwardly generalized to n events.
As an illustration, consider a system of two free particles of mass m in one dimension,

with state space Γ = {x1, x2, p1, p2}. We restrict to x1 ≤ 0 and x2 ≤ 0, and we consider
the pair of events that correspond to either of the two particles crossing the line x = 0.
Hence, the two functions that define events are F1 = x1 and F2 = x2. The equations of
motion are x1(t) = x1 + p1t/m and x2(t) = x2 + p2t/m. We straightforwardly find that
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N1 = {(x1, x2, p1, p2)|p1 ≤ 0} and N2 = {(x1, x2, p1, p2)|p2 ≤ 0}, that is, the particles
never cross the line x = 0 if they have non-positive momentum. Similarly, we compute the
time functions T1 = −mx1/p1 and T2 = −mx2/p2.

It is simple to identify the subsets of Γ that correspond to the different causal orders:

M1 = {(x1, x2, p1, p2)|p1 > 0, p2 > 0, x1 p2 > x2 p1} ∪ {(x1, x2, p1, p2)|p1 > 0, p2 ≤ 0},
M2 = {(x1, x2, p1, p2)|p1 > 0, p2 > 0, x2 p1 > x1 p2} ∪ {(x1, x2, p1, p2)|p1 ≤ 0, p1 > 0},
M3 = {(x1, x2, p1, p2)|p1 ≤ 0, p2 ≤ 0},
M4 = {(x1, x2, p1, p2)|p1 > 0, p2 > 0, x2 p1 = x1 p2}.

(7)

The associated probabilities are simply p(Mi) =
∫

dξχMi (ξ)ρ(ξ). Note that M4 is a set of
measure zero, so, in general, the associated probability vanishes.

Suppose, for example, that both particles start from x0 < 0, and that they have the
same momentum distribution f (p), so that:

ρ(x1, x2, p1, p2) = δ(x1 − x0)δ(x2 − x0) f (p1) f (p2). (8)

Then, we compute, p(M1) = p(M2) = w+ − 1
2 w2

+, and p(M3) = (1 − w+)2, where
w+ =

∫ ∞
0 dp f (p) is the fraction of particles with positive momentum.

3.2. Stochastic Processes

The analysis of Section 3.1 passes with little change to classical stochastic systems.
Consider a system characterized by a state space Γ with elements ξ. Let us denote by P(Γ)
the space of paths on Γ, that is, of continuous maps from the time interval [0, T] to Γ. Here,
we are restricting to paths between an initial time t = 0, and a final time t = T. A stochastic
system is described by a probability measure µ on P(Γ), such that the expectation of any
function A of P(Γ) is given by:

〈A〉 =
∫

dµ[ξ(·)]A[ξ(·)] (9)

Again, an event α is defined by the first intersection of a path with a surface, and it
can be represented by a function Fα on Γ. We can still define a null space Nα, and a time
function Tα; however, in absence of a deterministic evolution law, these objects are defined
on the space of paths P(Γ), and not on Γ. In particular, we define by Nα the subset of P(Γ)
that consists of paths ξ(·) for which the equation Fα(ξ(t)) = 0 has no solution for any
t ∈ [0, T]; we will denote the complement of Nα by N̄α. We also define the time function
Tα for any path ξ(·) ∈ N̄α by setting the value Tα[ξ(·)] on a path ξ(·) equal to the smallest
value of t such that Fα(ξ(t)) = 0.

The definition of joint probabilities for the times of events proceeds in a similar way to
Section 2. For example, the joint probability distribution for n events is:

p(t1, t2, . . . , tn) =
∫

dµ[ξ(·)]δ(t1 − T1(ξ(·))δ(t2 − T2(ξ(·)) . . . δ(tn − Tn(ξ(·)). (10)

The space of paths P(Γ) is split into mutually exclusive and exhaustive subsets, each
corresponding to an element of CO(E). For two events, we have four elements of CO(E),
which correspond to the following subsets:

M1 = {γ ∈ P(Γ)|T1[γ] < T2[γ]} ∪ (N2 ∩ N̄1),
M2 = {γ ∈ P(Γ)|T2[γ] < T1[γ]} ∪ (N1 ∩ N̄2),
M3 = N1 ∩ N2,
M4 = {γ ∈ P(Γ)|T1[γ] = T2[γ]}.

(11)
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As an example, consider the case of a Wiener process. We have two particles undergo-
ing Brownian motion, that is, each particle is described by the evolution of a single-time
probability density ρ on R, by:

∂ρ

∂t
=

D
2

∂2ρ

∂x2 , (12)

where D is the diffusion constant. For a particle that starts at x0 = −L, the probability
density of crossing the line x = 0 is:

f (t) =
1√

2πDt
L
2t

e−
L2

2Dt , (13)

with the probability of not crossing x = 0 for any t ∈ [0, ∞) equal to 1
2 .

We assume that the two particles move independently, and that the associated diffusion
constants are different, D1 and D2 (this is possible, for example, if the particle masses are
different). The joint probability density that the first crosses x = 0 at time t1 and the second
at time t2 is simply f1(t1) f2(t2), where fi is the probability density (13), with diffusion
constant Di. Then, we evaluate:

p(M1) = 1
2π arctan

(√
D1/D2

)
+ 1

4 ,
p(M2) = 1

2π arctan
(√

D2/D1
)
+ 1

4 ,
p(M3) = 1

4 ,
(14)

where we ignored M4, as it is of measure zero.

4. COoE in Quantum Systems

In this section, we define probabilities for the COoE in quantum systems.

4.1. Probability Assignment

For quantum systems, the definition of events in terms of paths crossing a surface
does not work, because paths are not physical observables in quantum theory. The only
meaningful observables are measurement outcomes. In the most common measurement
scheme, namely, von Neumann measurements, the timing of the measurement events is
fixed a priori. Hence, the causal order of events is also fixed.

We need a measurement scheme that treats the time of an event as a random variable,
if we are to treat the causal order of events as a random variable quantum mechanically.
This is achieved by the QTP approach that was described in the introduction.

Suppose that we have a particle detector located at a fixed region in space. Then, via
QTP, we can construct a set of positive Π̂(t), such that the probability density of detection
at time t > 0 is p(t) = Tr(ρ̂0Π̂(t)), where ρ̂0 is the initial state if the particle. Together with
the positive operator Π̂(N) of no detection, the operators Π̂t define a POVM.

For example, we can construct a POVM for the time of arrival of a particle of mass
m. We assume that the particle moves at a line and that the particle detector is located at
x = L. In the momentum basis:

〈k|Π̂(t)|k′〉 =
∫ dkdk′

2π
S(k, k′)

√
vkvk′ e

i(k−k′)L−i(εk−εk′ )t, (15)

where εk =
√

m2 + k2 is the particle’s energy, vk is the particle’s velocity, and S(k, k′) is
the localization operator, which is an operator that determines the irreducible spread of the
detection record.

The sharpest localization is achieved for S(k, k′) = 1. The operators Π̂(t) are not
normalized to unity for t ∈ [0, ∞). However, if we restrict to quantum states with strictly
positive momentum content, the contribution to the total probability from negative values
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of t is negligible, and we can consider the normalization of Π̂(t) in the full real line. In this
case: ∫ ∞

−∞
dtΠ̂(t) = Î. (16)

The derivation of Equation (15) from a detailed modelling of system-apparatus coupling is
provided in Ref. [27]. Equation (15) for S(k, k′) = 1 was earlier derived in Ref. [41], as a
generalization of Kijowski’s POVM for the time of arrival of non-relativistic particles [42].

For n independent detectors, each detecting a different particle, we can identify a
POVM Π̂(t1, t2, . . . , tn) = Π̂1(t1) ⊗ Π̂2(t2) ⊗ . . . ⊗ Π̂n(tn), where Π̂i(ti) corresponds to
the POVM for the i-th detector. In general, the detectors are different, so the localiza-
tion operators Si(k, k′) are different for each detector. Thus, we can define probability
densities p(t1, t2, . . . , tn) for the n measurement events, and we can follow the same pro-
cedure as in Section 3, in order to obtain probabilities for different causal orders of n
measurement events.

For example, for two events, 1 and 2, we have the three COoEs M1 = {1 ≺ 2},
M2 = {2 ≺ 1}, and M3 = {1||2}. The following positive operators define a POVM for the
causal orders:

Ê(M1) =
∫ ∞

0 dt2
∫ t2

0 dt1Π̂1(t1)⊗ Π̂2(t2) + [ Î − Π̂1(N)]⊗ Π̂2(N),
Ê(M2) =

∫ ∞
0 dt1

∫ t1
0 dt2Π̂1(t1)⊗ Π̂2(t2) + Π̂1(N)[ Î − Π̂2(N)],

Ê(M3) = Π̂1(N)⊗ Π̂2(N),
(17)

Assume that the two events correspond to the detection of identical particles with the
two detectors located at x1 = L1 and x2 = L2 from the source—see Figure 1. We use the
POVM (15) for both Π̂1(t) and Π̂2(t). Taking −∞ for the lower bound in the time integral,
we find:

Ê(M1) =
1
2

Î + B̂ (18)

Ê(M2) =
1
2

Î − B̂ (19)

Ê(M3) = 0 (20)

where the operator B̂ is defined as:

B̂ =
1
2

∫ ∞

−∞
dt1

∫ ∞

−∞
[θ(t1 − t2)− θ(t2 − t1)]Π̂1(t1)Π̂2(t2). (21)

Any initial state that does not lie in an eigenspace of the operator B̂ defines an indefinite
COoE.

We employ Equation (15), to compute the matrix elements of B̂:

〈k1, k2|B̂|k′1, k′2〉 = iS1(k1, k′1)S2(k2, k′2)
√vk1 vk2 vk′1

vk′2
× ei(k1−k′1)L1+i(k2−k′2)L2 δ(εk1 + εk2 − εk′1

− εk′2
) PV 1

εk2
−εk′2

. (22)

where PV stands for the Cauchy principal value.
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Figure 1. A set-up by which to measure the causal order of two events that correspond to detections
at detectors 1 and 2.

Consider a general initial state of the form |ψ〉 = ∑i ci|ψ1i〉 ⊗ |ψ2i〉. The probability
densities associated with the three orders are:

p(M1) =
1
2
+ w, p(M2) =

1
2
− w, p(M3) = 0, (23)

where w = 〈ψ|B̂|ψ〉.
By expressing the delta function in Equation (22) as an integral (2π)−1

∫ ∞
−∞ ds exp[−i(εk1 +

εk2 − εk′1
− εk′2

)s], we can bring the asymmetry w into a form that is convenient for calculations:

w = ∑
ij

cic∗j
∫ ∞

−∞
ds [α(1)ij (s)α̇(2)ij (s)− α̇

(1)
ij (s)α(2)ij (s)]. (24)

Here, we wrote:

α
(a)
ij (s) =

∫ dkdk′

2π
ψai(k)ψ∗aj(k

′)Sa(k, k′)
√

vkvk′ e
i(k−k′)La−i(εk−εk′ )s PV

1
εk − εk′

, (25)

where a = 1, 2.

4.2. Examples

We analyze the case of massless particles, m = 0, and ideal detector, S(k, k′) = 1. For
two particles prepared in the same state ψ0(k), that is centered around x = 0. However,
the distances traveled by the two particles may be different, L1 6= L2. We take for ψ0 a
Gaussian centered around k0:

ψ0(k) = (2πσ2)−1/4 exp
[
(k− k0)

2/(4σ2)
]
. (26)

Then, we find that w in Equation (24) equals Q1[σ(L1 − L2)], where:

Q1(δ) =
1√
2π

∫ ∞

−∞
dxe−2(x−δ)2

erf
(√

2x
)

. (27)

The dependence of the function Q on δ is plotted in Figure 2. As expected, w vanishes
for L1 = L2 and tends to ± 1

2 for large differences between L1 and L2, in which case the
ordering of the events is almost certain.
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Figure 2. The function Q1 of Equation (27) (solid) and the function Q2 of Equation (30) (dashed) as a
function of δ.

The probabilities in the example above could have been derived from a classical theory.
To see quantum behavior, we consider an superposition state for the first particle:

ψ(k1, k2) =
1√

2(1 + ν)
ψ0(k1)

[
1 + eik1`

]
ψ0(k2), (28)

where ` is a path difference for the first particle in one component of the superposition and
ν =

∫
dk1dk2|ψ0(k)|2 cos(k`). For the Gaussian (26), ν = e−σ2`2/2 cos(k0`). For this initial

state:

w =
Q1(δ) + 2Q2(δ) cos

(
k0
σ δ
)

2
[
1 + e−δ2/2 cos

(
k0
σ δ
)] , (29)

where δ = σ`, and the following function is plotted in Figure 2:

Q2(δ) =
1√
2π

∫ ∞

−∞
dxe−x2−(x−δ)2

erf
(√

2x
)

, (30)

In Figure 3, we plot w as a function of δ and of k0/σ. The quantum nature of the
system is manifested in the oscillatory behavior of the probabilities.

Figure 3. The asymmetry w of Equation (29) as a function of δ for constant k0/σ = 10 (left) and as a
function of k0/σ for constant δ = 1 (right).

4.3. Causal Orders for Several Events

As a demonstration, we show how the analysis above works for three events, say, 1, 2,
and 3. We have the following causal orders:

• Six total orders that correspond to t1 < t2 < t3 and all permutations of the indices.
• Six orders of the form t1|t2, t1 < t3, t2 < t3 and t1|t2, t3 < t1, t3 < t2, with all

permutations of the indices.
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• Six orders for the form t1|t2, t2|t3, t1 < t3 and t1|t2, t2||t3, t3 < t1, modulo all permuta-
tions of the indices.

• A single order for t1|t2, t2|t3, t1|t3.

Here, we ignored the case of simultaneity, because in the particle detection model, the
corresponding events are of measure zero.

A system of three distinguishable particles is described by a quantum state ψ(k1, k2, k3).
Suppose that the particles are detected at distances L1, L2, and L3 from the source, respec-
tively. We assume that the momentum content of the states is positive for all particles. Then,
there is zero probability of no-detection events, and only the probabilities for the six total
orders are non-vanishing. The associated positive operators are as follows:

〈k1, k2, k3|Π̂(ta < tb < tc)|k′1, k′2, k′3〉 = −S1(k1, k′1)S2(k2, k′2)S3(k3, k′3)
√vk1 vk2 vk3 vk′1

vk′2
vk′3

× ei(k1−k′1)L1+i(k2−k′2)L2+i(k3−k′3)L3 δ(εk1 + εk2 + εk3 − εk′1
− εk′2

− εk′3
)PV

[
1

(εka−εk′a
)(εkc−εk′c

)

]
,

where (a, b, c) is a permutation of (1, 2, 3). Note that the positive operator for a causal order
and its inverse coincide, Π̂(t1 < t2 < t3) = Π̂(t3 < t2 < t1). The generalization for an
arbitrary number of events is straightforward.

5. Probabilities for the COoE via a Detection Model

In the examples of Section 4, the measurements of the causal ordering of events are
coarse-grained. This means that the measuring apparatuses record the time of detection
events, and the probabilities for the causal order of events are obtained by integrating
over detection times. The construction is formally similar to that of classical physics, even
if there are no paths at the fundamental level. In either context, coarse-graining means
that we have ignored significant information, pertaining to the detection time of each
individual particle.

However, in quantum theory, it may be possible to define probabilities for causal
ordering of events as fine-grained observables. This means that we can define the COoE
even if the apparatus makes no record of the times of individual events. In this section, we
will present a simple model that provides such probabilities for the case of two potential
events, and which can be straightforwardly generalized for n events.

5.1. The Model

The key idea is to direct a pair of particles towards a detector that can record either
of them, but not both. As an example, we consider a three-level system (3LS), with states
|0〉, |1〉, and |2〉. Suppose that particle 1 can excite only the transition 0→ 1, and particle 2
only the transition 0→ 2. If after the interaction of the particles with the three-level system,
we find the system in state |1〉, we can surmise that particle 1 was detected first and particle
2 was not detected, and vice versa.

To conform with our definition of an event with a measurement record, we must
place an identical 3LS after the first, in which the particle not absorbed by the first can be
detected. However, this is superfluous for identifying the COoE in this system. If particle 1
is recorded in the first 3LS, particle 2 will either be recorded in the second 3LS, or it will
not be recorded at all. Both cases correspond to the same order of events: the record of 1 is
prior to the record of 2. Hence, as far as the COoE is concerned, the presence of the second
3LS makes no difference. Hence, for two events, a single 3LS suffices.

This set-up is straightforwardly generalized for determining the probabilities for n
events. We require n particles that can be sharply distinguished by their energies and n− 1
systems with n + 1 energy levels, so that the detection of each particle can be associated
with a single transition.

To implement our model, we assume that the incoming particles are described by a free
scalar field φ̂(x) with mass m. The two particles are distinguished by their initial energies;
we can assume that they are prepared from different sources. The particles interact with
one 3LS, which we take to be located at x = 0.
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The total Hamiltonian is a sum of three terms Ĥφ + Ĥ3LS + Ĥint, where Ĥφ is the field
Hamiltonian, expressed in terms of field creation and annihilation operators:

Ĥφ =
∫

dkεk â†
k âk, (31)

where dk stands for d3k/(2π)3;

Ĥ3LS = Ω1|1〉〈1|+ Ω2|2〉〈2| (32)

is the 3LS Hamiltonian, and the following interaction Hamiltonian:

Ĥint =
2

∑
a=1

λa

∫ dk√
2ωk

(âkûa+ + â†
kûa−), (33)

describes a dipole coupling between the field and the 3LS. Here, λa is the coupling constants
associated with the transition 0 → a, ûa+ = |a〉〈0| and ûa− = |0〉〈a|; a = 1, 2. This
Hamiltonian is a variation of Lee’s Hamiltonian that is commonly employed in the study
of spontaneous decay [32].

5.2. Time Evolution

To derive the time evolution law for this model, we work in the interaction picture.
Then, the quantum state satisfies the equation:

i
∂

∂t
|ψ(t)〉 =

2

∑
a=1

λa

∫ dk√
2ωk

(âkûa+e−i(εk−Ωa)t + â†
kûa−ei(εk−Ωa)t)|ψ(t)〉. (34)

We assume an initial two-particle state for the field and the ground state for the 3LS. The
Hamiltonian employed here causes transitions only to one-particles states with an excited
state for the 3LS. Hence, the state is of the form

|ψ(t)〉 =
∫

dkdk′c(k, k′; t)|k, k′, 0〉+ ∑
a

∫
dkda(k; t)|k, a〉, (35)

Substituting into Equation (34), we obtain:

iċ(k, k′; t) = ∑
a

λa

[
da(k; t)√

2εk′
ei(εk−Ωa)t +

da(k′; t)√
2εk

ei(εk′−Ωa)t
]

(36)

iḋa(k; t) = 2λa

∫ dk′√
2εk′

c(k, k′; t)e−i(εk′−Ωa)t (37)

These equations are to be solved subject to the initial conditions da(k; 0) = 0 and c(k, k′; 0) =
c0(k, k′), where c0(k, k′) is the initial state of the two particles. We integrate both sides of
Equation (36) and substitute c(k, k′; t) to Equation (37). We obtain:

ḋa(k; t) = 2λa
∫ dk′√

2εk′
c0(k, k′)e−i(εk′−Ωa)t

− 2λa ∑b λb
∫ dk′

2εk′
e−i(εk′−Ωa)t

∫ t
0 dsda(k; s)ei(εk−Ωb)s

− 2 λa√
εk

∑b λb
∫ dk′

2√εk′
e−i(εk′−Ωa)t

∫ t
0 dsda(k′; s)ei(εk′−Ωb)s.

(38)

Equation (38) is exact. The term in the second line is proportional to the vacuum Wightman
function W(t) =

∫ dk′
2εk′

e−iεk′ t, which drops at least with e−mt for m 6= 0 and as t−2 for
m = 0. Assuming that the particle starts sufficiently far from the detector, da(k; t) becomes
appreciable different from zero at times such that the term proportional to W(t) is strongly
suppressed.
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The third-line term in Equation (38) is of a structure that commonly appears in el-
ementary treatments of spontaneous decay [32,43]. It can be calculated by invoking a
version of the Wigner–Weisskopf approximation. For Ωat >> 1, this expression is strongly
dominated by the term with b = a. By carrying out the integration over k′, we obtain:

− λ2
a

2π2√εk

∫ ∞

m
dε

(ε2 −m2)3/2
√

ε

∫ t

0
dse−i(ε−Ωa)(t−s)da(k, s). (39)

The time integral is negligible except for values of ε around Ωa. Hence, we are justified
in substituting (ε2 −m2)3/2/

√
ε with (Ω2

a −m2)3/2/
√

Ωa, and then, to extend integration
over ε to (−∞, ∞). Then, the term (39) simplifies to − 1

2 ηaε−1/2
k da(k, t), where:

ηa = −
λ2

a(Ω2
a −m2)3/2

π
√

Ωa
. (40)

Equation (38) becomes:

ḋa(k; t) +
1
2

ηaε−1/2
k da(k; t) = 2λa

∫ dk′√
2εk′

c0(k, k′)e−i(εk′−Ωa)t. (41)

This is a linear inhomogenous equation of first order. The Green function for the corre-

sponding homogeneous equation is simply θ(t− t′)e−
1
2 ηaε−1/2

k (t−t′). Hence, we obtain:

da(k; t) = 2λa

∫ dk′√
2εk′

c0(k, k′)
∫ t

0
dse−

1
2 ηaε−1/2

k (t−s)e−i(εk′−Ωa)s = 2λa

∫
dk′c0(k, k′)ha(εk, εk′ ; t),

where:

ha(ε, ε′; t) =
e−

1
2 ηaε−1/2t − e−i(ε′−Ωa)t

√
2ε′
[

1
2 ηaε−1/2 − i(ε′ −Ωa)

] . (42)

The detection probability is non-negligible only if k is along the axis that connects
the source to the detector. Hence, the problem is effectively one-dimensional. Therefore,
we can substitute the initial state with c0(k, k′), where k, k′ > 0, and write da(k; t) =

2λa
∫ dk′

2π c0(k, k′)ha(εk, εk′ ; t).

5.3. An Example

Consider an initial state:

c0(k, k′) =
1√
2

[
ψ1(k)ψ2(k′) + ψ1(k′)ψ2(k)

]
, (43)

where ψi, for i = 1, 2, is centered around momentum ki, or, equivalently, on energy

εi =
√

k2
i + m2. We assume that there is no overlap between ψ1 and ψ2. Then, we can

approximate:
da(k; t) = λa[ψ1(k)F2a(t) + ψ2(k)F1a(t)], (44)

where

Fia(t) =
∫ dk

2π
ψi(k)

e−Γiat − e−i(εk−Ωa)t
√

2εk[Γia − i(εk −Ωa)]
, (45)

where Γ1a = 1
2 ηaε−1/2

2 and Γ2a = 1
2 ηaε−1/2

1 . Then, the probability pa(t) that the 3LS is
found in an excited state is given by:

pa(t) =
∫

dk|da(k; t)|2 = λ2
a

(
|F1a(t)|2 + |F2a(t)|2

)
. (46)

Let the states ψi(k) be well localized around x = −L, so that they can be written as
χ(k− ki)eikL, where χ is a positive function peaked around k = 0, for example, a Gaussian.
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Then, the typical behavior of |Fia(t)|2 is given in Figure 4. The function is negligible prior
to the arrival time ta = mL/ki of the particle to the locus of 3LS. Then, it jumps to a finite
value, which then decays with a rate given by Γia.

Figure 4. Typical plot of the functions |Fia(t)|2 as a function of time t, for a Gaussian function χ(k).
The function jumps to a finite value when the particle arrives at the 3LS, and then it decays with a
rate of Γia.

The peak value of |Fia(t)|2 is approximately proportional to the Breit–Wigner term
[(Γ2

ia + (εi −Ωa)2]−1. Supposing that we choose εa ' Ωa, and that Γia << |Ω1 −Ω2|, for
all i, a = 1, 2, and then, the terms |F11|2 and |F22|2 dominate in the probability assignment,
and:

pa(t) = λ2
a|Faa(t)|2. (47)

The behavior of the probabilities is characteristic of resonant fluorescence. The 3LS absorbs
one of the two particles, and after a time of order Γ−1

aa , it re-emits the particle, albeit in a
different direction. Hence, the energy of the fluorescent particle determines whether the
ordering M1 or M2 was realized.

6. Conclusions

We provided a general definition of events in quantum theory, and showed how to
construct probabilities associated with the causal ordering such events. Our notion of
events is very different from that of Refs. [3,4], and it is naturally related to the relativistic
notion of events. Our analysis clarifies that the existence of an indefinite quantum causal
order of events has no relation to quantum gravity, as this causal order is a dynamical
consequence of the quantum nature of the matter degrees of freedom. The COoE should
not be conflated with the causal structure of spacetime, which we take to be fixed and
unchanged in absence of gravity.

In Section 4, we showed that the quantum probabilities for the COoE have different
behavior from the corresponding classical ones. We expect that it will be possible to prove
an analogue of Bell’s theorem, namely, that some probabilistic predictions for the causal
orders cannot be reproduced by any classical probabilistic theory. However, the POVM does
not factorize with respect to the subsystems, so any irreducibly quantum behavior of the
COoEs in a multi-partite system will not be directly related to entanglement. In this sense,
any Bell-type inequality for the COoE’s would be similar to the Leggett–Garg inequalities
for sequential measurements [44–46], rather than to the standard Bell inequalities.

The model systems considered in this paper are experimentally accessible. The set-ups
considered in Section 5 are essentially quantum races, that is, the causal order of events
coincides with the order that a number of distinguishable particles arrive in a specific finish
line. The set-up of Section 6, when applied to photons, involves a variation of resonant
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fluorescence with specially engineered multi-level atoms that play the role of detectors for
the causal ordering that is being realized.
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