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Abstract: Some characteristics of stationary flows of the Sawada–Kotera system lend themselves to
generalization, producing a large class of separable Lagrangian systems with two degrees of freedom.
All of these systems come in couples that have the same equations of motion, although they are not
related by a gauge transform. Some nonpolynomial examples are provided.
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1. Introduction

The authors have long been interested in constants of motion for Lagrangian systems
with finite degrees of freedom, and, as a special case, in integrable systems. We have
recently come across some such system, which had been introduced in the field of solitons
and of a chaotic dynamical system. As a result of our investigation into their integrability,
we found that it can be generalized to a wider class, which may be of some interest for
possible future applications in PDE settings.

Our most direct motivation was the study of the Lagrangian

LSK =
1
2
(q̇2

1 + q̇2
2)−

(
1
2
(q2

1 + q2
2) + q2

1q2 +
1
3

q3
2

)
, (1)

which we call the Sawada–Kotera system. It is integrable, by means of the energy and the
supplementary first integral

KSK = q̇1q̇2 + q1q2 +
1
3

q3
1 + q1q2

2. (2)

This case is also separable in the coordinates (q1 + q2, q1 − q2), and its solution can be
expressed through elliptic functions. This result was obtained by Aizawa and Saito [1], but
their names did not stick, and the system is found associated with Sawada and Kotera, and
is connected with soliton theory [2–4].

Modern theories of integrable systems introduce the fundamental concept of the soliton
to study completely integrable systems having an infinite number of degrees of freedom [5].
Examples of soliton equations are the Korteweg–de Vries (KdV) equation [6], the nonlinear
Schrödinger (NLS) equation [7], and the Sine-Gordon (SG) equation [8]. Generally, soliton
solutions represent stable solutions of nonlinear PDEs, where nonlinearity and dispersion
are balanced [9]. With reference to the scope of our work, we report two relevant results.
A method developed by Blaszak [10] constructs Lagrangian and Hamiltonian functions
for stationary flows of some well-known soliton equations, including Sawada–Kotera
hierarchies. In [11], a new parametrization for higher-order nonlinear equations is applied
to stationary flows of soliton solutions. Interestingly, the dynamics of such systems comes
out in the form of Newton equations of motion.
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The Sawada–Kotera Lagrangian system is a special case of the following family of
Lagrangian functions, depending on the parameter b ∈ R:

Lb =
1
2
(q̇2

1 + q̇2
2)−

(
1
2
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1 + q2
2) + q2

1q2 −
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3

q3
2

)
. (3)

See, for instance, the larger family of Hamiltonian functions marked as (1) in [12] (p. 277), which
we restricted with the choice ω1 = ω2 = a = 1. Since these Lagrangians are autonomous,
the associated Lagrange equations have the first integral of energy
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The special case of b = 1 is the influential Hénon–Heiles system that was introduced
in [13] in order to model a Newtonian axially symmetric galactic system. Such a model
has no analytic first integral independent of energy as proved by Ito [14], and its chaotic
dynamic behavior has been extensively studied [15–17]. Note that Wojciechowski calls
after Hénon–Heiles the whole family in his formula (1) quoted above.

By contrast, two other members of the Lb family are known to be integrable. One is
the case b = −6 studied by Dorizzi, Grammaticos, and Ramani [18], and independently
integrated by Wojciechowski [12].

The case b = −1 is precisely the Sawada–Kotera system, which is integrable too as we
mentioned above. In the same spirit of solitons, the case b = −6 is called Korteweg–de Vries.

Let us mention a recent paper by Sottocornola [19], which deals with the separation
of variables for seven integrable systems related to Hénon–Heiles, and presents some
open questions.

2. Main Result

Theorem 1. The two smooth Lagrangians in two degrees of freedom

L =
1
2
(q2

1 + q2
2)− U(q1, q2), L̃ = q̇1q̇2 − Ũ(q1, q2) (5)

have the same Lagrange equations and, hence, share the two energy first integrals

E =
1
2
(q̇2

1 + q̇2
2) + U(q1, q2), Ẽ = q̇1q̇2 + Ũ(q1, q2), (6)

if and only if there exist two smooth functions f , g of one variable such that

U(q1, q2) = f (q1 + q2) + g(q1 − q2), Ũ(q1, q2) = f (q1 + q2)− g(q1 − q2). (7)

If this happens, the change in variables (x, y) = (q1 + q2, q1 − q2) separates the Lagrange
equations into

ẍ = −2 f ′(x), ÿ = −2g′(y). (8)

In Equation (8), each of the two separated differential equations has its own energy as
a conserved quantity, which helps when solving with numerical methods [20].

3. Two Lagrangians for the Sawada–Kotera Equations

Consider again the Sawada–Kotera cubic Lagrangian

LSK =
1
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2)−
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)
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The associated Sawada–Kotera Lagrange equations are

q̈1 = −q1(1 + 2q2), q̈2 = −q2 − q2
1 − q2

2. (10)
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The energy first integral is
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and there is one more first integral, which is quadratic in the velocities

KSK = q̇1q̇2 +
(

q1q2 +
1
3

q3
1 + q1q2

2

)
. (12)

Let us change a sign in the formula for KSK and make it into a second Lagrangian function

L̃ = q̇1q̇2 −
(

q1q2 +
1
3

q3
1 + q1q2

2

)
. (13)

It happens that

∂q1 LSK − d
dt

∂q̇1 LSK = ∂q2 L̃ − d
dt

∂q̇2 L̃, (14)

∂q2 LSK − d
dt

∂q̇2 LSK = ∂q1 L̃ − d
dt

∂q̇1 L̃, (15)

so that the Euler–Lagrange equation for the two system are exactly the same:

q̈2 = −q2 − q2
1 − q2

2, q̈1 = −q1(1 + 2q2). (16)

The first integral of energy for L̃ happens to coincide with KSK of (12) above

Ẽ = q̇ · ∂L̃
∂q̇

− L̃ = q̇1q̇2 + q1q2 +
1
3

q3
1 + q1q2

2 = KSK (17)

(the central dot is the scalar product). The relationship between LSK and L̃ is very close.

4. Proof of the Main Theorem

Suppose we have a Lagrangian of the form

L =
1
2
(q̇2

1 + q̇2
2)− U(q1, q2), (18)

where the potential U is smooth but it is not necessarily a polynomial function. The associated
Euler–Lagrange equations are

q̈1 = − ∂U
∂q1

(q1, q2), q̈2 = − ∂U
∂q2

(q1, q2). (19)

Inspired by the Sawada–Kotera results of the previous Section, let us consider a second
Lagrangian of the form

L̃ = q̇1q̇2 − Ũ(q1, q2), (20)

whose equations of motions are

q̈2 = − ∂Ũ
∂q1

(q1, q2), q̈1 = − ∂Ũ
∂q2

(q1, q2). (21)

Let us impose that the equations (19) coincide with those in (21):

∂U
∂q1

≡ ∂Ũ
∂q2

,
∂U
∂q2

≡ ∂Ũ
∂q1

. (22)
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We claim that this occurs if and only if

U(q1, q2) = f (q1 + q2) + g(q1 − q2), (23)

Ũ(q1, q2) = f (q1 + q2)− g(q1 − q2), (24)

for some smooth functions f , g.
To prove this, let us make a change in the dependent variables through a 45◦ rotation

in the (q1, q2) plane, introducing new variables r1, r2, V, Ṽ:

V(r1, r2) := U
(

r1 + r2√
2

,
r2 − r1√

2

)
, (25)

Ṽ(r1, r2) := Ũ
(

r1 + r2√
2

,
r2 − r1√

2

)
. (26)

that is to say,

U(q1, q2) = V
(

q1 − q2√
2

,
q1 + q2√

2

)
, (27)

Ũ(q1, q2) = Ṽ
(

q1 − q2√
2

,
q1 + q2√

2

)
, (28)

In terms of the new variables, the differential Equation (22) becomes

∂(Ṽ + V)

∂r2
= 0,

∂(Ṽ − V)

∂r1
= 0, (29)

which means that there exist one-variable functions φ, ψ such that

Ṽ + V = 2φ(r1), Ṽ − V = −2ψ(r2), (30)

that is,
Ṽ(r1, r2) = φ(r1)− ψ(r2), V(r1, r2) = φ(r1) + ψ(r2), (31)

which are equivalent to (23).
The Euler–Lagrange Equation (19) has the first integral of energy

E = q̇1∂q̇1 L + q̇2∂q̇2 L − L =
1
2
(q̇2

1 + q̇2
2) + U(q1, q2), (32)

while the first integral of energy for (21) is

Ẽ = q̇1∂q̇1 L̃ + q̇2∂q̇2 L̃ − L̃ = q̇1q̇2 + Ũ(q1, q2). (33)

Whenever conditions (22) hold, the Euler–Lagrange equations coincide, and E and
Ẽ are the first integrals for both. In this case, in terms of the new variables (x, y) =
(q1 + q2, q1 − q2) (just a little simpler than r1, r2 above), the Lagrangian function L becomes

L =
1
4

ẋ2 − f (x) +
1
4

ẏ2 − g(y), (34)

for which the Euler–Lagrange equations are separated:

ẍ = −2 f ′(x), ÿ = −2g′(y). (35)

Similarly, the Lagrangian L̃ becomes

L̃ =
1
4

ẋ2 − f (x)−
(

1
4

ẏ2 − g(y)
)

. (36)
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Given a Lagrangian function L(t, q, q̇), q, q̇ ∈ Rn, it is easy to build other Lagrangians
which have the same motions: simply take an arbitrary smooth scalar function G(t, q),
and define

L(t, q, q̇) := L(t, q, q̇) +
∂G
∂t

(t, q) +
∂G
∂q

(t, q) · q̇ . (37)

Then we say that L and L are related by a gauge transform. Our Lagrangian functions
L in (18) and L̃ in (20) are not related by a gauge transform, because their difference is
quadratic in the velocities.

5. Examples

Here are some some sample systems that are covered by our results.

Example 1. (Recovering Sawada–Kotera). The functions

f (x) =
1
4

x2 +
1
6

x3, g(y) =
1
4

y2 − 1
6

y3, (38)

give the Sawada–Kotera U, Ũ:

U(q1, q2) =
1
2
(q2

1 + q2
2) + q2

1q2 +
1
3

q3
2 = f (q1 + q2) + g(q1 − q2), (39)

Ũ(q1, q2) = q1q2 +
1
3

q3
1 + q1q2

2 = f (q1 + q2)− g(q1 − q2). (40)

Hence, from (19), the separated Euler–Lagrange equations for x = q1 + q2, y = q1 − q2 are

ẍ = −x − x2, ÿ = −y + y2. (41)

Example 2. The class of system to which our result applies is not limited to the polynomial
potential. Let us consider the following Lagrangian, which is a variation on Calogero’s potential [21]
for n-bodies constrained on a line with inversely quadratic pair potentials:

L(q1, q2) =
1
2
(q̇2

1 + q̇2
2)−

(
α f

(q2 + q1)2 +
αg

(q2 − q1)2

)
. (42)

The equations of motion are

q̈1 =
2α f

(q2 + q1)3 −
2αg

(q2 − q1)3 , q̈2 =
2α f

(q2 + q1)3 +
2αg

(q2 − q1)3 . (43)

The functions

f (x) =
α f

x2 , g(y) =
αg

y2 , (44)

give the potential in (42) and satisfy the hypotheses of Theorem 1. Hence, from (19), the separated
Euler–Lagrange equations are

ẍ =
4α f

x3 , ÿ =
4αg

y3 , (45)

that have simple solutions.
Incidentally, to this system, we can apply the following result ([22] Section 3): for general

Lagrangian functions 1
2 m∥q̇∥2 − U(q), q ∈ Rn, with U homogeneous of degree −2, we have that

for each motion, ∥q(t)∥2 = 2
m (Et2 + It+ J), where E is the energy and I, J are constants depending

on the motion. In the present case, m = 1 and the relation becomes

q1(t)2 + q2(t)2 = 2(Et2 + It + J), (46)

x(t)2 = 2(E1t2 + I1t + J1), y(t)2 = 2(E2t2 + I2t + J2). (47)
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Example 3. One more nonpolynomial system is this Lagrangian:

L(q1, q2) =
1
2
(q̇2

1 + q̇2
2)−

1
2
(q2 + q1)

2 + cos(q1 − q2) , (48)

which has infinitely many potential wells along the line q1 + q2 = 0. The separated system with
x = q1 + q2, y = q1 − q2 is

ẍ = −2x, ÿ = −2 sin y. (49)

The motion with x(0) = y(0) = q1(0) = q2(0) = 0, ẋ(0) = ẏ(0) = q̇1(0) = 2
√

2 +
1/1000, q̇2(0) = 0 visits all the potential wells in turn (Figure 1).

q1

q2

Figure 1. The trajectory of a motion of system (48), over the backdrop of the level curves and the
minimum points of the potential. This kind of dynamics is not possible with polynomial potentials.
The picture was made with Wolfram Mathematica.

6. Conclusions

A possible direction for future research could be a search for a new soliton equation
whose stationary flows are separable in the sense described above. We would be very glad
if our theory could lead to experimental and numerical analysis work too.
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