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Abstract: This paper focuses on the numerical study of spherical particle sedimentation, taking
into account hydrodynamic interactions. Infinite impulse response (IIR) digital filters, specially
tailored to solve the sedimentation dynamics, were used in the present study to numerically solve
the coupled ordinary differential equations with the time-dependent coefficients of the problem.
Hydrodynamic interactions are modeled using the Rotne–Prager–Yamakawa (RPY) approximation,
to which a correction is made to better account for short-range interactions. In order to validate both
the proposed numerical resolution method and the RPY correction, this paper begins with the study
of two interacting spherical particle sedimentation methods. Comparisons with previously published
analytical or numerical results confirm the relevance of the present approach.

Keywords: sedimentation; hydrodynamic interactions; Rotne–Prager–Yamakawa approximation;
Stokesian dynamics; mobility matrix; IIR filters

1. Introduction

The sedimentation of micro-particles (in the form of spheres, filaments, sheets, etc.)
can represent a major obstacle to the effective use of colloidal suspensions in industrial
environments. Colloidal particles experience gravitational, thermal, and hydrodynamic
forces while moving in a fluid. The influence of the latter is a crucial aspect in various
problems related to the mechanics and transport of suspensions. Important properties,
such as the terminal sedimentation velocity of a suspension and the agglomeration rates of
aerosols in the atmosphere, all depend on the relative motion of suspended particles [1].
The same applies to the effectiveness of spray purification devices (aimed at removing
suspended particles from gas streams). In addition, knowledge of the velocity distribution
of microparticles within a suspension is essential for example in granulometry, where it
can be used to determine the size distribution of the considered particles.

From a particle point of view, colloidal suspensions are usually studied using the
Stokesian dynamics (SD) method introduced by Brady and Bossis [2]. The SD method is
based on solving the coupled Langevin equations describing the dynamics of N colloidal
particles, which are written as follows when only translation is considered [2,3]:

mi
dvi
dt

= Fh
i + Fnh

i + Fb
i , i = 1, 2, · · · , N (1)
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where mi and vi are the mass and the velocity vector of the ith particle, respectively; Fh
i is the

hydrodynamic force exerted by the fluid on the ith particle; Fnh
i are the non-hydrodynamic

forces (interparticle forces Fint and/or external forces Fe) acting on the ith particle; and Fb
i

is the Brownian force acting on the ith particle due to thermal agitation. The SD approach
is implemented in well-known numerical codes such as Hoomd-Blues, Lammps, PyStokes,
and many others. Langevin’s equations are generally solved in these codes using the
over-damped assumption, which consists of neglecting the inertial terms mi

dvi
dt in front of

the viscous contribution to the hydrodynamic force Fh
i , leading to the following simplified

equation of motion:
Fh

i = −Fnh
i − Fb

i , i = 1, 2, · · · , N (2)

In most unconstrained situations, the over-damped hypothesis yields remarkable
results, provided that suspension behavior is only considered over long time scales, which
is generally the case. However, when it comes to characterizing the local behavior of
suspensions, i.e., at short times, the over-damped hypothesis may prove to be too imprecise.
This is, for example, the case in optical two-point microrheology measurements [4,5]. It
is therefore within the framework of a global dynamics study that the present modeling
is carried out, by solving Equation (1) over the whole time-scale, using first-order infinite
impulse response digital filters (IIR).

Infinite impulse response (IIR) digital filters are usually limited to the field of linear
time-invariant systems (LTISs), of which their dynamics are described by linear ordinary
differential equations with constant coefficients, or equivalently by Laplace transfer func-
tions expressed as polynomial fractions. In a previous paper, the use of first-order IIR filters
was extended to the numerical resolution of Basset-type integro-differential equations [6],
of which their Laplace transfer functions cannot be expressed as rational fractions. A simi-
lar approach was adopted here in order to extend the IIR-Filter method to the numerical
resolution of system (1), which is composed of N coupled ordinary differential equations
(ODEs), satisfied based on the particle velocities: v1, v2, · · · , and vN . These EDOs are linear
as functions of velocities but non-linear as functions of particle positions r1, r2, · · · , and
rN . It is therefore an original extension of the IIR-Filter method that is proposed in the
present paper.

This paper first examines the sedimentation dynamics of two identical spherical micro-
particles to validate the method of solving the equations of the motion of colloidal particles
in interactions using the IIR-Filter method. The results are compared with those obtained
analytically or numerically, in other research works [7–10]. Stimson and Jeffery [7] deliv-
ered, for the first time, an exact solution of the axisymmetric translational motion for two
spherical particles moving at the same speed along their centerline. The authors obtained
the solution in the form of an infinite series, which converges rapidly using bipolar coordi-
nates. This is not the case when the particles are very close to each other. The calculated
values of the forces are for identical spheres. O’Neill [11] then Goldman et al. [8] and finally
Wakiya [12] also used this technique. The authors aimed to determine the resulting motion
of two identical, homogeneous-free spheres, moving in an unlimited fluid, with a low
Reynolds number. They determined the linear and angular velocities of the two spheres
as a function of their relative separation and the orientation of the line of centers concerning
the direction of gravity g.

Ganatos et al. [13] numerically solved the problem using the collocation technique.
This technique was previously developed by other authors to process and study un-
bounded [14] and bounded [15] axisymmetric Stokes flows.

2. Resolution Method

Consider a finite number N of identical particles suspended in a base fluid with density
ρ f and dynamic viscosity µ f (see Figure 1). In this study, the fluid analyzed was assumed
to be incompressible, Newtonian, unbounded, and at rest at significant distances from the
colloidal particles. The particles themselves are assumed to be rigid, spherical, and have
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a radius of a. They are supposed to be small enough to make inertial forces negligible at
long-time dynamics in comparison to viscosity forces, but large enough to make the effects
of thermal agitation (Brownian motion) negligible. Fluid properties (density and viscosity)
play a crucial role in the sedimentation processes, affecting the behavior of particles as
they settle through a fluid medium. These properties are related to each other by the
Reynolds number Re. In the whole study, viscous flow regimes with Re less than 1 were
considered and, in the case of water, at room conditions (density ρ f = 103 kg/m3 and shear
viscosity µ f = 1 mPa · s). Suspended particles were assumed to be silica, with density
ρPC = 2 × 103 kg/m3 and radii of the order of a few micrometers, depending on the
Reynolds numbers considered.

g = gêx

• yO

x

êx

êy

Figure 1. N spherical particles suspended in a viscous fluid initially at rest.

2.1. The Non-Hydrodynamic Forces

The dynamics of N > 1 colloidal particles, including hydrodynamic interactions, were
examined. The effect of thermal agitation was neglected, and only the translational motion
was considered. The initial positions were chosen in such a way that the particles did not
come into contact (no contact forces) and were not subjected to any surface tension forces
(unbounded fluid). This was, therefore, the problem of the fall of N solid spheres into a
viscous fluid at rest. The external forces Fe

i (other than hydrodynamic) considered here
were the weight Pi and the Archimedes thrust Πi, which were exerted on particle (i):

Fe
i = Pi + Πi = mi

(
1− ρ f /ρPC

)
gêx (3)

where ρPC is the colloidal particle (PC) density. In addition, the non-hydrodynamic forces
Fnh

i may also contain contact forces Fc
ij (of the Hertz–Voigt type for example), which was

not taken into account in the present study.

2.2. The Hydrodynamic Interactions

Hydrodynamic interactions (HIs) are transmitted by the fluid between the particles
that move through it. These interactions explain various observed effects. It is, for example,
possible to understand the tendency of small objects to fall vertically or at different speeds
if close enough during sedimentation. The hydrodynamic interactions Fh

i originate from
the movement of the solvent (host liquid), which is described by the Stokes equation and is
influenced locally and at a distance by the motion of the PCs. These disturbances are
then transmitted by the solvent to the other PCs that compose the suspension, modifying
its trajectories. These interactions are particularly significant in the case of concentrated
suspensions, where the ϕ solid volume fraction is high. The disturbances caused by the
fluid flow are assumed to be rapid enough (at the scale of colloidal particles) in comparison
to the movement of the PCs. This means that flow induced disturbances propagation can,
to a good approximation, be considered almost instantaneous [16].
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Under these conditions, the flow of the fluid at a given time t is only a function of the
positions and velocities of the N PCs that compose the suspension. Thus, the hydrodynamic
force Fh

i exerted by the solvent on the PC (i) is a function of the N position vectors rj and
the N velocity vectors vj of the PCs:

Fh
i = Fh

i (r1, · · · , rN ; v1, · · · , vN) (4)

The linearity of the Stokes equation allows us to establish the relationships between
the translational velocities of particles and the forces acting on them. The hydrodynamic
interactions between colloidal particles are expressed using the mobility tensor and the
associated mobility matrix (Md,d). The componentsMd,d

ij can be computed using a variety
of methods [17,18]. The following relation defines the coefficients of the mobility matrix in
the case of pure translation and a uniform imposed bulk flow v∞:

vi − v∞ = −
N

∑
j=1
Md,d

ij (r1, · · · , rN) · Fh
j (5)

The mobilitymatrix (Md,d) is a symmetrical square matrix d× d, with d being the dimen-
sionality of the suspension (i.e., d = 3 here). There is no general analytic expression of the
mobility matrix (Md,d) for N > 2. However, the expression of the matrix (Md,d) can be
simplified when only binary interactions are considered. Equation (5) is then written in the
following simplified form, which will be systematically used in this work:

vi − v∞ = −
j=N

∑
j=1
Md,d

ij
(
ri, rj

)
· Fh

j (6)

where the flow velocity v∞ of the fluid in the absence of particles is assumed to be zero
throughout this study (fluid initially at rest). In assuming that the suspension has spherical
symmetry, the Md,d

ij
(
ri, rj

)
coefficients can be written as Md,d

ij
(
rij
)

with rij = ∥ri − rj∥.
The hydrodynamic forces Fh

j can then be determined by reversing the relation (6), i.e., by

calculating the matrix (Md,d)−1.

2.3. Expressions of the Mobility Matrix Coefficients

The main purpose of this section is to define the approximate expressions of the
mobility matrix coefficients. Two common approximations are presented: the quasi-point
approximation (AQP) and the Rotne–Prager–Yamakawa approximation (RPY).

2.3.1. The Quasi-Point Approximation (QPA)

In the quasi-point approximation, which is the most rudimentary approach, each
sphere is assimilated to a source point, also called a Stokeslet. The so-called reflection
method makes it possible to iteratively take into account hydrodynamic interactions. To an-
alyze the hydrodynamic interactions between two spheres of radii a1 and a2, we can limit
ourselves to the first reflection between two PCs, (1) and (2), and apply Faxen’s laws [19].
This helps us write the mobility matrix in the form of (7), which takes into account the
Oseen–Burgers tensor S. For two spheres in three dimensions, this equation can be ex-
pressed as follows:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣

AQPM11 =
I3

6πµ f a1

AQPM22 =
I3

6πµ f a2

AQPM12 =AQP M21 =
S12

8πµ f
=

1
8πµ f

(
I3

r12
+

r12 · r12

r3
12

) (7)

where I3 is the identity matrix (for d = 3) and r12 = ∥x1 − x2∥. We recall here that r12 · r12
is not a scalar but a tensor, with components that are given in Cartesian coordinates by

r12 · r12 =

 (x1 − x2)
2 (x1 − x2)(y1 − y2) (x1 − x2)(z1 − z2)

(x1 − x2)(y1 − y2) (y1 − y2)
2 (y1 − y2)(z1 − z2)

(x1 − x2)(z1 − z2) (y1 − y2)(z1 − z2) (z1 − z2)
2

 (8)

As an illustration, the translational mobility matrix is expressed here for two identical
spheres and d = 3:

(
AQPM

)
=

1
8πµ f r3

12

(
4r3

12
3a I3 r2

12I3 + r12 · r12

r2
12I3 + r12 · r12

4r3
12

3a I3

)
(9)

where r12 · r12 is given by (8). Even if an analytic inversion of this 2d× 2d matrix is possible,
it leads to humanly unusable expressions. Numerical inversion is therefore preferable for
determining hydrodynamic forces Fh

i .

2.3.2. Rotne–Prager–Yamakawa (RPY) Approximation

This approximation is more accurate than the quasi-point approximation developed
earlier. In the present study, the expression of the Rotne–Prager–Yamakawa tensor (RPY)
proposed by Wajnryb et al. [20,21] is used for two different spheres of radii a1 and a2
in the absence of penetration (r12 > a1 + a2). The matrix representation of mobility for two
different spheres is given in this case by∣∣∣∣∣∣∣∣∣∣∣∣∣∣

RPYM11 =
I3

6πµ f a1

RPYM22 =
I3

6πµ f a2

RPYM12 =RPY M21 =
1

8πµ f r12

[(
1 +

a2
1 + a2

2
3r2

12

)
I3 +

(
1− a2

1 + a2
2

r2
12

)
r12 · r12

r2
12

] (10)

Let us recall the main properties of this approximation:

• At the limit where r12 ≫ sup(a1, a2), the Rotne–Prager–Yamakawa mobility matrix
tends to be the mobility matrix of the point approximation. This turns out to be
legitimate and corresponds to the so-called far-field hypothesis.

• When both spheres have the same radius, the following expression for the generalized
mobility matrix is obtained:∣∣∣∣∣∣∣∣∣

RPYM11 =RPY M22 =
I3

6πµ f a

RPYM12 =RPY M21 =
1

8πµ f r12

[(
1 +

2a2

3r2
12

)
I3 +

(
1− 2a2

r2
12

)
r12 · r12

r2
12

] (11)

The literatureevaluates the coefficients of the mobility matrix for different configura-
tions. Kim et al. [22] performed the computation of coefficients for two identical spheres,
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while Jeffrey and Onishi [23] considered two different spheres, using the Lamb expres-
sion [24]. Perkins and Jones [25] were interested in the case of a single particle close to a flat
wall, while Beenakker et al. [26] examined the case of several particles in the presence of a
wall. Finally, Van Saarloos and Mazur [27] studied the case of several particles suspended
in an infinite fluid.

2.4. Equations of Motion

The centers of inertia Cj of spherical particles are assumed to be initially located in the
z = 0 plane. The initial position of Cj is supposed to be OCi(0) = (x0

i , y0
i , 0).

In applying Newton’s second law to each particle, the resulting system of coupled
ordinary differential equations is as follows:

m1v̇1
:

miv̇i
:

mN v̇N

+ (Md,d)−1 ·


v1
:

vi
:

vN

 =


P1 + Π1

:
Pi + Πi

:
PN + ΠN

 (12)

where (Md,d)−1 is the inverse of the mobility matrix defined above.
The present study sought to solve system (12) with zero initial conditions on the

velocities: vi(0) = 0, ∀i = 1, 2, . . . , N. System (12) is rewritten as follows:

v̇i(t) + αi

j=N

∑
j=1

(
M−1

i j

)
· vj(t) = αiFe

i (t) (13)

where αi = 1/mi, and
(
M−1

i j

)
is a d × d matrix, with coefficients given by (7) or (10),

depending on the considered approximation. To our knowledge, there is no systematic
exact analytic approach (such as a Laplace transformation or variation of the constant) for
solving the system analytically (13). Thus, the resolution exposed in the present study is
based on a numerical approach that implements recursive IIR digital filters (the IIR-Filter
method). This type of numerical approach has been successfully used to solve linear
parabolic partial differential equations from heat conduction problems [28,29]. It has also
been used to solve linear convolutional integro-differential equations in fluid mechanics [6].
In the former case, the time complexity of the IIR-Filter method is O(n), which is lower
than numerical methods such as a piecewise linear approximation, which features a time
complexity of O(n2).

The present study extends the scope of the IIR-Filter method to the case of systems of
linearly coupled ordinary differential equations with time-dependent coefficients.

2.5. Numerical Resolution Using the IIR-Filter Method

Let us first write NIi(v1, v2, · · · , vN) = ∑N
j=1(M−1

i j ) · vj(t) as the non-time-invariant
term in the system of Equation (13) for particle (i). The mobility matrix depends on the
positions of the particles that are in motion. Therefore, these positions change continu-
ously over time, and the components of the mobility tensor also vary over time. This
represents a considerable difficulty for the numerical solution of the equations of motion.
The application of the Laplace transform L to system (13) leads to the following system of
algebraic equations:

svi(s)− vi(0) = αiF
e
i (s)− αiNIi(s) (14)

where vi(s), Fe
i (s), and NIi(s) are the Laplace transforms of vi, Fe

i , and NIi, respectively.
Since there is no known analytic expression of velocities vi that verifies (13), the Laplace
transform NIi(s) of the non-invariant term NIi cannot be computed analytically. Any direct
analytic or numerical inversion of vi(s) (i.e., using an analytic expression of vi(s)), thus
becomes impossible. In this case, the numerical resolution must use methods that do not
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require knowledge of NIi(s). The IIR-Filter method allows for this. This is the main interest
of the digital approach developed in this work. We recall that, for simplicity, this study
is based on the assumption that vi(0) = 0. In the framework of the IIR-Filter method,
the excitatory force Fe

i (t) must be sampled into a regular set of discrete values in time{
Fe

i (nTe)
}

, where Te = ∆t is the sampling period, in order to calculate the velocity vi(nTe).
The application to Equation (14) of the bilinear transformation of the type

s → 2
Te

z−1
z+1 [30], allows the transition from Laplace space to discrete time space, with

z being the complex number introduced in the definition of the z-transformation (Z) of a
discrete time signal x(nTe): Z [x(nTe)] = x(z) = ∑∞

n=0 x(nTe)z−n.
Replacing s with 2

Te
z−1
z+1 = 2

Te
1−z−1

1+z−1 in Equation (14) yields(
1− z−1

1 + z−1

)
vi(z) =

αiTe

2

(
Fe

i (z)−NIi(z)
)

resulting in the following algebraic system, with the intervention of the z-transforms of
the different functions of the problem:(

1− z−1
)

vi(z) =
αiTe

2

(
1 + z−1

)(
Fe

i (z)−NIi(z)
)

(15)

In noting that the non-invariant term NIi(v1, v2, · · · , vN) = ∑N
j=1(M−1

i j ) · vj(t) can be
written as

NIi(t) = (M−1
i i ) · vi(t) +

N

∑
j=1
j ̸=i

(M−1
i j ) · vj(t), (16)

system (15) is rewritten in the following form:

Z
[(

I3 +
αiTe

2
(M−1

ii )

)
· vi

]
= z−1Z

[(
I3 −

αiTe

2
(M−1

ii )

)
· vi

]
+

αiTe

2

(
1 + z−1

)
Fe

i (z)

− αiTe

2

N

∑
j=1
j ̸=i

{
Z
[
(M−1

ij ) · vj

]
+ z−1Z

[
(M−1

ij ) · vj

]} (17)

From these algebraic z-equations, N coupled recurrence relations are deduced to
numerically solve the problem of the dynamics of N spherical colloidal particles at time
tn = nTe, taking into account hydrodynamic interactions:[

I3 +
αiTe

2
(M−1

ii )

]
n
· vi,n =

[
I3 −

αiTe

2
(M−1

ii )

]
n−1
· vi,n−1 +

αiTe

2
(
Fe

i,n + Fe
i,n−1

)
− αiTe

2

N

∑
j=1
j ̸=i

[
(M−1

ij )n · vj,n + (M−1
ij )n−1 · vj,n−1

] (18)

where n = 1, 2, · · · , N, and ri,n = ri,n−1 + Tevi,n−1.
Key result (18) is applied, in the following paragraphs, to the calculation of the dynam-

ics of systems composed of two, and then three, colloidal particles, when hydrodynamic
interactions are not negligible. The flowchart shown in Figure A1 summarizes the process
of numerically solving the coupled recursion Equations (18) of the Stokesian dynamics of a
colloidal suspension using the IIR-Filter method.

2.6. Full Dynamics versus Long-Time Dynamics

To test the relevance of numerically solving Equation (1) rather than (2), we consider
here an elementary system in which two identical particles drive through hydrodynamic



Dynamics 2024, 4 513

interactions, a third particle initially at rest (see Figure 2). The equations of motion are, in
this case, neglecting the influences of gravity and thermal agitation:∣∣∣∣∣∣∣∣

m1U̇1 = Fh
1(r1, r2, r3; U1, U2, U3)

0 = Fh
2(r1, r2, r3; U1, U2, U3) + Fe

2

0 = Fh
3(r1, r2, r3; U1, U2, U3) + Fe

3

(19)

where Fe
2 and Fe

3 are the external forces that must be exerted on C2 and C3, respectively,
in order for them to move with uniform rectilinear translational motion.

x

y

∆y

∆x

(C2)

UC2

U

(C3)

C3

(C1)

C1

Figure 2. Two identical particles (C2 and C3), moving according to a uniform rectilinear translation at
the same velocity U2 = U3 = U = Uex, are driven by hydrodynamic interactions to a third particle
(C1), initially at rest.

The dynamics, Equation (19), are solved using the IIR-Filter method (full dynamics)
and also using the usual over-damped assumption (long-time dynamics).

We considered the case of three identical spherical particles (radius a = 10µm) made
of silica (density ρPC = 2× 103 kg/m3), immersed in water at rest, at room conditions
(dynamic viscosity µ f = 1 mPa · s and density ρ f = 103 kg/m3). C2 and C3 are assumed to
move at constant velocity U = Uex, with U = 10 cm/s, and it is assumed that, initially,
∆y = 100µm and ∆x = 10a. Equation (19) has been solved with a time step Te = 2µs.

Figure 3a compares the short-time dynamics of C1, obtained without over-damping
(solid line) and with over-damping (dotted line). It is clear from this figure that short-time
dynamics are not well described in the present situation by the over-damped approximation.
It is also clear from Figure A2 that the two approaches converge at the long-time scale
of observation.

In the same way, Figure 3b shows that the external force Fe
2 required to ensure uniform

rectilinear motion of C2 (or C3) is not precisely calculated for short time scales using the
over-damped method.

It can be concluded from this elementary study that measurements based on long-
time results can easily be obtained by the over-damped method and possibly also by the
IIR-Filter method (which is undoubtedly more complex to implement). If, on the other
hand, it is necessary to evaluate the dynamics of colloidal particles at short time scales, it
is imperative in this case to resort to solving the equations of motion without making the
over-damped approximation. In this case, the IIR-Filter method is an interesting approach,
as illustrated in the following paragraphs.
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(a)

0 0.5 1 1.5 2
0

1

2

3

t (ms)

U
1,

x
(c

m
/s

)
IIR-Filter

over-damped

(b)

0 0.5 1 1.5 2

17.8

18

18.2

t (ms)

Fe 2
(n

N
)

IIR-Filter
over-damped

Figure 3. Comparisons of C1 short-time dynamics, obtained without making the over-damped
assumption (solid line) and making the over-damped assumption (dashed line). (a) Changes in the
U1,x component of C1’s velocity as a function of time. (b) Changes in the external force Fe

2 exerted on
C2, as a function of time.

3. Sedimentation of Two Identical Colloidal Particles

The configuration of two identical spherical particles is a simple and effective way to
test the accuracy and convergence of the numerical resolution method presented in the
present study (result (18)). The numerical results obtained using our approach are first
compared with approximate or numerical analytical solutions available in the literature.
The “ideal” configuration, where two identical spherical particles sedimenting at small
Reynolds numbers in a viscous fluid at rest and unbounded, has numerous applications in
colloid chemistry, rheology, meteorology, and the sedimentation of dilute suspensions.

3.1. Presentation

Let us consider the sedimentation problem of two identical spherical particles of
radius a, density ρPC, and suspended without initial velocity (v1(0) = 0 and v2(0) = 0) in
a solvent initially at rest (v∞ = 0), with viscosity µ f and density ρ f (see Figure 4).

v1

x

y

g

x0
1

C1
(C1)

C2

v2

(C2)
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2

x0
2

y0
1

dx

dy

Figure 4. Sedimentation of two identical spheres in a stationary fluid.

The centers of inertia C1 and C2 of the two spherical particles are placed in the z = 0
plane. The initial positions of C1 and C2 are OC1(0) = (x0

1, y0
1, 0) and OC2(0) = (x0

2, y0
2, 0).

We need to solve the system of coupled differentials, Equation (12), which becomes, in the
case of N = 2, identical to the following particles:
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m
(

v̇1
v̇2

)
+ (Md,d)−1 ·

(
v1
v2

)
=

(
P1 + Π1
P2 + Π2

)
(20)

with the initial conditions v1(0) = 0 and v2(0) = 0. By explaining the various vectors, we
obtain here

m



v̇1x
v̇1y
v̇1z
v̇2x
v̇2y
v̇2z

 = −
(
Md,d(r12)

)−1
·



v1x
v1y
v1z
v2x
v2y
v2z

+ mg
(

1−
ρ f

ρPC

)


1
0
0
1
0
0

 (21)

3.2. The Results

Equation (21), describing the fall dynamics of two identical spheres, is solved using
recurrence relations (18). One of our objectives was to choose among the two approxima-
tions mentioned above the one that delivers the results closest to physical reality. The two
spheres are initially placed at the same altitude x0

1 = x0
2, with the centers being 2a1 + dy

apart. When the two particles settle, they remain at the same distance from each other by
moving at the same speed, denoted vx. This is a consequence of the reversibility property
of flows at low Reynolds numbers. This common velocity of the two particles is higher
than the velocity that each of them would have taken separately. The smaller the initial
distance between the particles, the greater the speed of the doublet.

Figure 5a shows the temporal variations in the vx component of the two particles.
Figure 5b compares the limit velocity of the fall of a single sphere V0

s = mg
6πµ f a

(
1− ρ f

ρPC

)
with vℓ,HI

x obtained numerically in the presence of a second identical sphere, for the initial
conditions indicated above. The verticality of the fall is checked (v1y = v2y = 0 m/s) as
well as its location in the z = 0 plane.
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Figure 5. Fall velocities of two identical spheres taking into account hydrodynamic interactions.
(a) Changes in the vx component of the two spheres as a function of reduced time t∗. (b) Changes
in the fall velocity vℓ,HI

x of the two spheres relative to the limit fall velocity V0
s of one sphere, as a

function of 2a/r12.

Figure 5b legitimately reveals that both the RPY and AQP approximations tend toward
a common limit when the distance r12 between the centers of the two spheres becomes
large in front of their diameter d = 2a. The physical reason for this common limit lies in
the fact that at a high distance from a small source (in this case, a sphere), the latter can be
considered as point-like. The RPY approximation, on the other hand, yields higher-limit
velocities than those of the quasi-point approximation when the two spheres are close. This
discrepancy is due to the fact that the quasi-punctual approximation (AQP) is less valid the
closer the spheres are.
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It can also be seen that the fall velocity of each of the two spheres is higher than the
fall velocity of a single sphere. The closer the spheres are initially, the higher the velocity.
Hydrodynamic interactions thus accelerate the fall velocity at low Reynolds number in an
incompressible, resting, unbounded Newtonian viscous fluid. This result is important for
the modeling of the drying of complex suspensions by Stokesian dynamics.

The influence of a vertical shift between the two spheres on their relative motion
was also analyzed. Positioning sphere (1) above sphere (2), during the movement of (1),
results in the displacement of the fluid by “pushing” fluid in front of the sphere and the
deflection to the right of sphere (2) (Figure 6a). The deflections are reversed when sphere
(1) is positioned below sphere (2), as shown in Figure 6b.

The influence of a vertical shift between the two spheres on their relative motion was
also analyzed. For example, if sphere (1) is initially positioned above sphere (2), then during
its movement, (1) displaces the fluid by pushing the fluid in front of it, and consequently,
sphere (2) is deflected to the right, as shown in Figure 6a. The deflections are reversed
when sphere (1) is positioned below sphere (2), as shown in Figure 6b.
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Figure 6. Deviations of the fall trajectories of two spheres in hydrodynamic interaction. (a) Trajectories
of the two sphere when the blue one (C1) is initially positioned above the red one (C2). (b) Reverse
situation of (a).

The accuracy and convergence of the IIR-Filter method are now examined by com-
paring the numerical results obtained with those resulting from other analytical and/or
numerical techniques available in the literature [7,9,13]. In [7], the authors determined the
motion created in a viscous fluid at rest at infinity using two solid spheres moving with
small, constant, and equal velocities, parallel to their center line. Their solution is based on
the determination of the Stokes current function for the movement of the fluid. The forces
required to maintain the motion of the spheres were then calculated. In the case of identical
spheres, the forces are equal, and their modulus F is written as follows:

F = 6πµ f rλ∥V
0
s (22)

where r = a/ sinh α. The ratio r/2a of the distance between the centers of the two spheres
to their diameter is written here as cosh α. According to [9], the coefficient λ∥ can be written
in the following form, which we denote as λB

∥ :

λB
∥ =

4
3

sinh α
∞

∑
n=1

n(n + 1)
(2n− 1)(2n + 3)

1−
4 sinh2

(
n + 1

2

)
α− (2n + 1)2 sinh2 α

2 sinh(2n + 1)α + (2n + 1) sinh 2α

 (23)

Thus, λ∥ represents the ratio between the force required to maintain the motion of one
sphere in the presence of the other and the force necessary to maintain its motion with the
same velocity if the other sphere was at an infinite distance. Figure 7 shows the evolution of
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the drag correction factor λ∥ of the two spheres when falling parallel to the line connecting
their centers.

In the case of the motion of the two spheres being perpendicular to the line of their
centers, Goldman et al. [8] found the following empirical formula:

λG
⊥ = 1− 3

4
ξ +

9
16

ξ2 − 59
64

ξ3 +
465
256

ξ4 − 15 813
7 168

ξ5 + 2
ξ6

1 + ξ
(24)

where ξ = a/(y2 − y1).
The results obtained agree with those of Brenner [9] for large separation distances

in front of the diameter d = 2a of the spheres. In this case, the relative error is less than
10−2 %. On the other hand, the relative error increases and becomes non-negligible as the
separation distance between the two particles decreases. This behavior is explained by the
influence of near-field interactions (lubrication effect), which are not properly taken into
account in the mobility matrix.

Figure 8 shows the evolution of the drag correction factor λ⊥ for two spheres falling
perpendicular to the line connecting their centers. The results obtained using the chosen
resolution method, with the use of the RPY approximation, are consistent with those of
Goldman et al. [8] (refer to the insert in Figure 6 showing the relative error in %, defined
as |λIIR

⊥ − λG
⊥| × 100/λG

⊥) for the sedimentation of two identical spherical particles in a
perpendicular direction at the line connecting their centers.

The relative error calculated in the case of the parallel fall is greater than that calculated
in the perpendicular situation. The physical origin of this difference is due to the fact that
in the first case, the dynamics of the particles downstream are strongly influenced by the
disruption of the flow caused by the sphere upstream, just as when a ship moves in the
wake of another rather than alongside it.

As shown both in Figures 7 and 8, the numerical results obtained by IIR filters are
consistent with those obtained analytically for relatively large separation distances, as noted
above. In the case of small separation distances, where deviations from analytical results are
more pronounced, we found that the results obtained with the IIR-Filter method are very
close to those obtained with the Euler method for the two approximations considered here
(QPA and RPY). The observed discrepancies are therefore due more to the limitations of
the QPA and RPY approximations than to the calculation methods. We therefore proposed
in this work to correct the RPY mobility matrix in order to obtain better results at low
separation distances.
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Figure 7. Evolution of the drag correction factor λ∥ of the two spheres falling parallel to the line
connecting their centers.
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Figure 8. Evolution of the drag correction factor λ⊥; the two spheres fall perpendicular to the line
connecting their centers.

3.3. Correction to the RPY Mobility Matrix

In order to correct the deviations observed at small separation distances, we propose
to introduce, in the RPY mobility matrix, a corrective term of an order greater than 2 into
a/r12. The corrected matrix RPY(M)c is thus written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

RPYMc
11 =RPY Mc

22 =
I3

6πµ f a

RPYMc
12 =RPY Mc

21 =
1

8πµ f r12

{[
1 +

2a2

3r2
12
− α(r12)

2a3

r3
12

]
I3

+

[
1− 2a2

r2
12
− α(r12)

2a3

r3
12

]
r12 · r12

r2
12

} (25)

where α(r12) is a corrective function. The aim of the present correction is to minimize
the discrepancy between our numerical results obtained using the RPY approximation
and the analytical results of both H. Brenner [9], in the case of the motion of the
two particles parallel to the axis connecting their centers, and of Goldman et al. [8], in the
case of perpendicular motion.

The expression of the function α(r12) should be determined as a function of the
separation distance r12. This function reduces the discrepancy between the results of
the present study and the analytical solutions [8,9] for a given separation distance of r12.
Figure 9 shows the α values leading to a minimum error for a given value of ζ = 2a/r12.

An interpolation of the results shown in Figure 9 led to the following expression of α
as a function of the parameter ζ = 2a/r12, with a regression coefficient R2 = 0.998:

α(ζ) = 1.2971− 0.0905ζ − 0.884ζ2 (26)

The numerical IIR-Filter solution of the two-particle sedimentation problem with
hydrodynamic interactions was repeated using the corrected mobility matrix (25), with the
α expression (26). As can be seen from Figure 10a,b, the introduced correction considerably
improves the correspondence between numerical and analytical results, which confirms
its relevance and allows the lubrication effect to be integrated very simply into the RPY
mobility matrix.
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Figure 10. Evolution of the drag correction factor λ: (a) the two spheres’ sediment parallel to the line
connecting their centers; (b) the two spheres’ sediment perpendicular to the line connecting their
centers. The generalized mobility matrix used is given by (25).

4. Sedimentation of Three Particles

The study of the sedimentation of a triplet of particles (see Figure 11) is discussed here.
The three identical spherical particles can be arranged evenly or irregularly. The literature
examines these different configurations [13,31,32].

In the first configuration, the three spheres are positioned in such a way as to be
equidistant along the horizontal axis, with a distance equal to 6a between each particle.
The particle, initially at the center of this configuration, moves during sedimentation, at a
higher speed than the two spheres positioned at the ends. It drags the two extreme spheres
with it, causing them to come together.

Figure 12 illustrates the trajectories of the three particles obtained using the IIR-
based resolution method with the corrected RPY mobility matrix. The velocities of
the two particles (C1) and (C3) increase as they approach and exceed the velocity of the
sphere (C2). This pair of particles then approaches the sphere (C2) until it reaches a critical
distance, as described by Ganatos [13].
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Figure 11. Three particles sedimenting in a viscous fluid at rest.
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Figure 12. Trajectories of the three sedimenting particles.

The numerical results for this configuration are compared with those obtained by
Ganatos et al. [13] who solved the steady-state creeping-motion governing equations of
the flow (Stokes equation and mass conservation) for three sedimenting spheres. Figure 13
illustrates the variation in the horizontal distance y21 between one of the extreme spheres
(1 or 3) and the central sphere (2) as a function of dimensionless time t∗ = V0

s t/a.
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Figure 13. Evolution of (y2 − y1)/a as a function of dimensionless time t∗ = V0
s t/a. The symbols

(circles) show the results obtained by Ganatos et al. [13] (reproduced with permission from Peter
Ganatos, Robert Pfeffer, Sheldon Weinbaum published by Cambridge University Press, 2024).

Figure 14 shows the temporal variation in the vertical distance x21 between one of the
spheres at the ends and the central sphere. The results obtained from previous research
conducted by Ganatos et al. [13] are included in both cases.
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Figure 14. Evolution of (x2 − x3)/a as a function of dimensionless time t∗ = V0
s t/a. The symbols

(circles) show the results obtained using the results of Ganatos et al. [13] (reproduced with permission
from Peter Ganatos, Robert Pfeffer, Sheldon Weinbaum published by Cambridge University Press,
2024)

The comparison between the numerical results of this study and the results of Ganatos
et al. [13] reveals a global agreement in the analytical and numerical evolutions of the
distances between the particles. For t∗ ⩽ 100, the curves overlap almost perfectly. However,
discrepancies appear beyond t∗ > 100, when the correction factor in the mobility matrix
is not integrated. These differences are greatly reduced when the corrective function
is integrated into the same matrix, thus confirming the effectiveness of the lubrication
correction we introduced.

Figure 15 shows the temporal evolution of the vertical velocities of the three particles
obtained using the IIR-Filter method, using the RPYc−corrected mobility matrix.
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Figure 15. Velocity of the three particles obtained using the IIR-Filter method with the corrected
mobility matrix RPYc.

The velocity of the central sphere remains higher than those of the two extreme
spheres, up to t∗ = 106. From this point on, the particle doublet gradually approaches
the central sphere until it reaches the critical distance. The physical explanation for this
strange behavior lies in the hydrodynamic interactions between the three spheres. Initially,
the C2 sphere is pushed forward by C1 and C3 through the hydrodynamic interactions
(incompressible fluid). As a result, C2 falls faster than C1 and C3. Before t∗, spheres C1 and
C3 are disturbed by the wake of sphere C2, and approach each other, forming a doublet,
and its fall velocity gradually increases (see Figures 5 and 15) until it equals that of C2 at
t = t∗. Finally, for t > t∗, the doublet passes C1 and continues to accelerate. According to
the results of Ganatos et al. [13], the value of t∗ at which the vertical velocities of the three
particles become equal is 107.8. This represents a deviation of 1.6% from the results obtained
with the IIR-Filter method based on the corrected RPY mobility matrix, thus confirming the
relevance of both the lubrication correction we calculated and of the IIR-Filter method.

5. Conclusions

The sedimentation dynamics ordinary differential equations (ODEs) of a number
N > 1 of colloidal particles (PCs), coupled by hydrodynamic interactions and suspended
in an incompressible, unbounded Newtonian fluid, were numerically solved in this study
for the first time using infinite impulse response recursive filters (the IIR-Filter method).
The N = 2 and N = 3 cases were analyzed in detail, and many analytical and numerical
results already established with other approaches were accurately found numerically using
the IIR-Filter method.

An effective correction to the mobility matrix was also proposed in this work, within the
framework of the Rotne–Prager–Yamakawa (RPY) approximation. This correction takes
better account of hydrodynamic interactions between colloidal particles in the near-field
(lubrication phenomenon at low inter-particle separations). This correction significantly
improves the accuracy of the numerical results provided by the RPY approximation in the
case of two and three particles. The theoretical results, obtained by directly solving the
partial differential equations (PDEs) of the Stokesian dynamics of the fluid flowing around
the colloidal particles moving in it, can then be recovered with great precision by solving
the PCs’s ODEs with the mobility matrix approach.

The range of applications for the present approach is vast, and could extend, for exam-
ple, to the study of microrheology or the drying of complex suspensions.
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Appendix A

Input: N, physical properties, Te, t f , ri,0, vi,0

Compute: αi, (Mij)0, (Mij)
−1
0 , Fe

i,0

IIR-Filters Loops:
for n=1, · · · , t f /Te:

for i,j=1,· · · ,N:
ri,n = ri,n−1 + Tevi,n−1
compute (Mi,j)n and Fe

i,n
solve (18) for vi,n using (Mi,j)0, (Mi,j)n, Fe

i,0, Fe
i,n and vi,0

store (Mi,j)0 ← (Mi,j)n, Fe
i,0 ← Fe

i,n and vi,n−1 ← vi,n
end

end

Plot, compute properties, ...

Figure A1. Flowchart of IIR-Filter method applied to the resolution of system (1).
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