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Abstract: In this paper, we consider the flow of a nanofluid in an enclosed lid-driven cavity using a
single-phase model. Two cases are considered: one in which the top and bottom walls are kept at
adiabatic conditions, and a second case in which the left- and right-side walls are kept in adiabatic
conditions. The impact of different viscosity models on the mixed convection heat transfer is
examined, and numerical methods are used to obtain solutions for the Navier–Stokes equations for
various parameter ranges. Using our robust methods, we are able to obtain novel solutions for large
Reynolds numbers and very small Richardson numbers. Using water as the base fluid and aluminium
oxide nanoparticles, our results suggest that heat transfer enhancement occurs with increasing particle
concentration and decreasing Richardson numbers. There are also significant differences depending
on the viscosity model used in terms of the impact of reducing corner recirculation regions in
the cavity.
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1. Introduction

Many researchers have attempted to deal with issues that can alter the heat transfer
performance of conventional fluids. These fluids include glycerol, water, thermal oils,
ethylene glycol, and many more. To improve this performance, Choi [1] created a nanofluid
containing nanoparticles smaller than 100 nm in conventional fluids. Numerous studies
on the properties of nanofluids have concluded that nanofluids display higher thermal
conductivity and heat transfer than base fluids [2–4]. Other research projects have focused
on investigating the mechanisms of thermal conductivity of nanofluids and built simulation
models to explain the phenomena. Conventional heat transfer fluids, such as water and
ethylene glyco inside an enclosure, have limited heat transfer effectiveness as they have
lower thermal conductivity compared with solids. Adding small solid particles (millimeter
to micrometer-sized) is not effective as these particles settle with time and clog the flow
channels, especially in miniaturized cooling systems, due to narrow flow channels. Using
certain well-suspended nanofluids instead has shown greater stability with lower clogging
rates and better heat transfer potential [5,6].

The phenomenon of mixed convection is widely employed in a variety of engineering
processes, such as the operation of solar collectors, heat exchangers, drying technologies,
home ventilation, high-performance building insulation, and lubrication technologies [7–9].
Mixed convection is more challenging computationally than other types of convection
because of the interaction between buoyancy force, which is caused by temperature
differences, and shear force, which is caused by wall movement.

Researchers have employed various numerical methods, such as the finite difference,
finite element, and spectral methods, to simulate the lid-driven cavity problem. Lid-driven
cavity flow is a typical benchmark problem for testing numerical techniques for the
Navier–Stokes equations. In a square lid-driven cavity, laminar mixed convection flows
of copper–water nanofluid were investigated numerically by [10] using the finite volume
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method. The Pak and Cho [11] and Brinkman [12] models were used in determining the
thermal conductivity and effective dynamic viscosity of nanofluids, respectively. In these
studies, particle volume fractions between 0 and 0.05, Reynolds numbers from 1 to 100, and
Rayleigh numbers between 104 and 106 were considered. It was discovered that, at a fixed
Reynolds number, the particle concentration impacts the flow characteristics and thermal
behavior, especially at a larger Rayleigh number. Additionally, it is noted that when the
Reynolds number increases, the impact of particle concentration reduces.

In a square cavity with laminar mixed convection fluid flow and heat transfer, ref. [13]
examined the effects of different dynamic viscosity models with nanoparticles of different
volume fractions. The enclosure’s left and right vertical walls and top wall were all kept
at a constant temperature, and the bottom wall had a higher temperature than the other
walls and moved from left to right. To evaluate the effective nanofluid dynamic viscosity,
two distinct models, the Brinkman [12] and Maiga [14] models, were applied. Using the
finite volume approach and the SIMPLER algorithm, the governing equations in primitive
variable form were solved numerically. It was found that the magnitude of heat transfer
enhancement was affected by the different viscosity models used.

Sheikhzadeh et al. [15] combined different thermal conductivity and viscosity formulas
to investigate the properties of mixed convection heat transfer in a lid-driven cavity filled
with nanofluids, which contained Al2O3 nanoparticles. The right and left walls were
maintained at different fixed temperatures, whilst the top surface moved at a constant
speed. The top and bottom walls remained insulated. The investigation was conducted
using various solid volume fractions, Richardson numbers, and Grashof numbers up to
104. The findings of this research demonstrate that given a fixed solid volume fraction,
the average Nusselt number varies depending on the thermal conductivity and viscosity
models used. It was realized that the average Nusselt number was more susceptible to the
viscosity and thermal conductivity formulas at small Richardson numbers. They used a
control-volume-based finite volume technique and the SIMPLE algorithm.

Steady laminar mixed convection flow in square cavities, with a similar water-Al2O3
nanofluid in single and double lid-driven cavities, were modeled numerically by Chamkha
and Abu-Nada [16]. The Pak and Cho and Brinkman formulas are the two viscosity
formulas that were used to approximate the nanofluid viscosity in their research. They
suggested that the existence of nanoparticles can significantly improve heat transfer by
increasing the nanoparticle volume fractions at low and large Richardson numbers. The
Pak and Cho model predicts that the existence of nanoparticles will result in a decrease in
the average Nusselt number in the single-lid cavity model for small Richardson numbers.
To numerically solve the system of equations, they employed a second-order finite-volume
approach. Ghafouri et al. [17] examined how different thermal conductivity models affect
the combined convection heat transfer in a square cavity. The nanofluid that was used in
this study was water fluid with Al2O3 particles. The right and left walls were maintained
at various constant temperatures, while the top and bottom walls were kept insulated,
moving at a constant speed. To assess the impacts of numerous factors, including the
size and volume fraction of the nanoparticles, the bulk temperature of the nanofluid,
and Brownian motion, five distinct thermal conductivity models were applied. The
streamfunction–vorticity equations were solved numerically using a second-order finite
difference method. They also found that heat transfer is enhanced by increasing particle
concentrations and decreasing the Richardson number.

In this paper, we investigate the steady Navier–Stokes equations for flow in a lid-driven
cavity with two different dynamic viscosity formulas. The problem studied here is slightly
different from the standard lid-driven cavity problem because of the coupling with the
temperature field. Our aim is to investigate the role played by different viscosity models
and the effect of a nanofluid in heat transfer enhancement. Another objective is to use
more robust and accurate numerical approaches based on spectral methods. We aim
to investigate parameter values where other researchers have encountered difficulties,
particularly large Reynolds numbers and low Richardson numbers. We focus on obtaining
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results for a water-based Al2O3 nanofluid, but the techniques used here apply equally to
other nanofluid combinations.

2. Mathematical Formulation

Consider two cases for the flow in a square lid-driven cavity with a width and a height
of H. In the first case, which we denote as Case A, the top wall of the enclosure operates
at an elevated temperature (Th), and the bottom wall of the enclosure remains at a lower
constant temperature (Tc). The top wall moves to the right with a constant speed Up. A
schematic of the flow is shown in Figure 1. The right and left walls of the enclosure are
maintained at adiabatic conditions. The nanofluid in the enclosed space is shown as a
dilute solid–liquid fluid with uniform nanoparticles, such as Al2O3, scattered inside a base
fluid, such as water.

For the second case, which we label as Case B, the left wall of the enclosure operates
at an elevated temperature (Th), and the right wall of the enclosure remains at a lower
constant temperature (Tc). The top and bottom of the enclosure wall are maintained in
adiabatic conditions. The top wall again moves to the right with constant speed Up. A
schematic of the flow is shown in Figure 2.

x∗

y∗

Up
H

H

g

Th

Tc

Figure 1. Schematic of the physical configuration for case A. The cavity has a width and height H.
The top wall is a fixed temperature Th and the bottom wall has a fixed temperature Tc. The shaded left
and right walls are maintained in adiabatic conditions and the shading inside the cavity represents
the nanoparticles. The top lid moves with speed Up to the right, whilst g denotes gravity.

The fundamental governing equations for the steady-state two-dimensional incompressible
nanofluid flow are as follows. The vorticity (ω∗), stream function (ψ∗), and temperature
(T∗) satisfy the following equations:

∂

∂x∗
(ω∗ ∂ψ∗

∂y∗
)− ∂

∂y∗
(ω∗ ∂ψ∗

∂x∗
) =

[
µm

ρm

(
∂2ω∗

∂x∗2 +
∂2ω∗

∂y∗2

)
+ βmg

∂T∗

∂x∗

]
, (1)

∂2ψ∗

∂x∗2 +
∂2ψ∗

∂y∗2 = −ω∗, (2)

∂

∂x∗
(T∗ ∂ψ∗

∂y∗
)− ∂

∂y∗
(T∗ ∂ψ∗

∂x∗
) =

∂

∂x∗

(
αm

∂T∗

∂x∗

)
+

∂

∂y∗

(
αm

∂T∗

∂y∗

)
, (3)

where ρm is the density of the nanofluid, µm is the dynamic viscosity, βm is the thermal
expansion coefficient, g is the acceleration due to gravity, and αm = km

(ρcp)m
is the mixture

thermal diffusivity.
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Figure 2. Schematic of the physical configuration for case B. The cavity has a width H and height H.
The left wall is kept at a fixed temperature Th, and the right wall is kept at a fixed temperature Tc.
The shaded top and bottom walls are maintained in adiabatic conditions, and the shading inside the
cavity represents the nanoparticles. The top wall moves with speed Up to the right.

The governing equations are nondimensionalized by introducing the following
dimensionless variables:

(x, y) =
(x∗, y∗)

H
, ω =

ω∗

Up/H
, ψ =

ψ∗

HUp
, u =

u∗

Up
, T∗ =

T − Tc

Th − Tc
.

The non-dimensional form of the equations are as follows:

∂

∂x
(ω

∂ψ

∂y
)− ∂

∂y
(ω

∂ψ

∂x
) =

[
1

Re
µm

µ f

ρ f

ρm

(
∂2ω

∂x2 +
∂2ω

∂y2

)
+ Ri

βm

β f

∂T
∂x

]
, (4)

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω, (5)

and
∂

∂x
(T

∂ψ

∂y
)− ∂

∂y
(T

∂ψ

∂x
) =

1
RePr

km

k f

(ρcp) f

(ρcp)m

(
∂2T
∂x2 +

∂2T
∂y2

)
. (6)

Here, ψ is the non-dimensional streamfunction, ω the non-dimensional vorticity, T the
non-dimensional temperature, and the dimensionless numbers are as follows: Ri is the
Richardson number, Gr is the Grashof number, Pr is the Prandtl number, and Re is the
Reynolds number defined by

Ri =
Gr
Re2 , Gr =

gβ f (Th − Tc)H3

ν2
f

, Pr =
ν f

α f
, Re =

Up H
ν f

.

Note that in writing the equations down, we are using a single-phase model for the
nanofluid in which the nanoparticle concentration (ϕ) is assumed to be constant, with
subscripts f , m, and p representing the base fluid, nanofluid (mixture), and nanoparticle,
respectively. The density of the nanofluid (ρm) is

ρm = ϕρp + (1 − ϕ)ρ f , (7)

where ρp and ρ f are the densities of the nanoparticles and base fluid, respectively. The
volumetric heat capacity, χm = (ρc)m is

χm = ϕρpcp + (1 − ϕ)ρ f c f , (8)
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where ρpcp and ρ f c f are the volumetric heat capacities of the nanoparticles and base fluid,
respectively.

The thermal expansion coefficient βm is

(ρβ)m = ϕρpβp + (1 − ϕ)ρ f β f . (9)

Dynamic viscosity and thermal conductivity are two major aspects of nanofluid
transport. Numerous theoretical and experimental studies have been conducted, and
numerous correlations have been established to estimate the dynamic viscosity and thermal
conductivity of nanofluids.

The effective thermal conductivity ratio formula which we used and which is known
as the Maxwell formula [18] is as follows:

k∗e f = k∗m f =

[
2 + k∗p f + 2ϕ(k∗p f − 1)

2 + k∗p f − ϕ(k∗p f − 1)

]
, (10)

where k∗m f =
km
k f

, k∗p f =
kp
k f

.
The dynamic viscosity in Brinkman’s formula [12] is given by the following:

µm = µ f (1 − ϕ)−2.5, (11)

and is frequently used in many studies. The other formula that we also used was found by
fitting experimental data in [11] and is the Pak and Cho correlation given by the following:

µm = µ f (1 + 39.11ϕ + 533.9ϕ2). (12)

Table 1 lists the thermophysical properties of the base fluid (water) and the nanoparticles
Al2O3, which we used in this study, and these are as listed by Chamkha and Abu-Nada [16].

Table 1. Thermophysical properties of the base fluid and nanoparticles.

Property Base Fluid Nanoparticles

Specific Heat cp (J/kg/K) 4179 765
Density ρ (kg/m3) 997.1 3970

Thermal Conductivity k (W/mK) 0.613 25
Dynamic Viscosity µ (Ns m−2) 8.91 × 10−4

Thermal Conductivity coefficient β (1/K) 2.1 × 10−4 8.5 × 10−6

Finally to complete the description, we also require boundary conditions. We studied
two cases, which we labeled as case A and case B.

For case A, we had no slip on x = 0, 1 and adiabatic conditions on the temperature
given by

u = 0, ψ = 0,
∂θ

∂x
= 0, x = 0, 0 < y < 1.

u = 0, ψ = 0,
∂θ

∂x
= 0, x = 1, 0 < y < 1.

In addition, on the top wall, y = 1, representing the moving lid with a fixed temperature,
we had the following:

u = 1, ψ = 0, θ = 1, 0 < x < 1, y = 1.

On the bottom wall, y = 0, we also had no slip and a fixed temperature, giving

u = 0, ψ = 0, θ = 0, 0 < x < 1, y = 0.
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For case B, instead of insulated walls at x = 0, 1 we used insulated walls at y = 0, 1
with the temperature given at x = 0, 1. The boundary conditions on the left wall, x = 0, are
as follows:

u = 0, ψ = 0, θ = 1.

On the right wall, x = 1, the conditions are as follows:

u = 0, ψ = 0, θ = 0.

In addition, for the boundary condition on the top wall, y = 1,

u = 1, ψ = 0,
∂θ

∂y
= 0.

On the bottom wall, y = 0 are

u = 0, ψ = 0,
∂θ

∂y
= 0.

3. Numerical Methods

The Chebychev collocation method in both the x and y directions, combined with
Newton linearization, was used to discretize the equations. As there are no direct conditions
on the vorticity, we used the following integral relations (see [19,20]), replacing the conditions
on the normal velocities at the walls.

Integrating Equation (5) with respect to y provides the following:

∫ y

0

(
∂2ψ

∂x2 +
∂2ψ

∂y2 + ω

)
dy = 0, (13)

which gives [
∂ψ

∂y

]y

0
+

∫ y

0

(
∂2ψ

∂x2 + ω

)
dy = 0. (14)

Using the boundary conditions on ψ at y = 0, 1 provides one of the integral constraints as
follows:

1 +
∫ 1

0

(
∂2ψ

∂x2 + ω

)
dy = 0. (15)

For the other condition, Equation (13) was integrated with respect to y, and using the
boundary conditions for ψ on y = 0, 1 provides the second integral constraint:

∫ 1

0

[∫ y

0

(
∂2ψ

∂x2 + ω

)
dy1

]
dy = 0. (16)

The nonlinear equations are linearized by setting

ψ = ψ̄ + F, ω = ω̄ + G, θ = θ̄ + Θ,

where F, G, Θ are assumed to be small and the barred quantities represent a current guess.
The resulting linear equations for F, G, Θ are solved and the current guess updated until
the correction terms are sufficiently small.

To discretize the equations, we introduce the Chebychev collocation points xi and yj,
defined by

xi =
1
2
(cos(

iπ
N
) + 1), i = 0, 1, . . . N, yj =

1
2
(cos(

jπ
M

) + 1), j = 0, 1, . . . M,
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and unknowns Fi,j = F(xi, yj) with similar expressions for the other quantities. Derivatives
are then given by (

∂F
∂x

)
i,j
=

N

∑
k=0

DXi,kFk,j,
(

∂2F
∂x2

)
i,j
=

N

∑
k=0

D2Xi,kFk,j,

(
∂F
∂y

)
i,j
=

N

∑
k=0

DYj,kFi,k,
(

∂2F
∂y2

)
i,j
=

N

∑
k=0

D2Yj,kFi,k,

where DXi,j, D2Xi,j, DYi,j, D2Yi,j are the entries of the first and second-order collocation
differential matrices.

The discretized system leads to a set of equations, which can be written in matrix
form as follows: A1 A2 A3

A4 A5 A6
A7 A8 A9

F
G
Θ

 =

Z1
Z2
Z3

. (17)

Here, F, G, Θ are the vectors of the unknowns Fi,j, Gi,j, Θi,j, and the coefficient matrices Ap
(p = 1, 2, ..., 9) are of size (N + 1)× (M + 1). The large and sparse discrete system (17) is
solved directly in MATLAB, and the current guesses are updated. The iterations continue
until the correction terms F, G, Θ are sufficiently small.

Typically, we used N = 50, M = 50 in most of our computations, although for the
finest grids at large Reynolds numbers, we took N = M = 80. Grid-size checks and full
details of the numerical methods are provided in [21]. The techniques used here, including
details of the spectral collocation differential matrices, are also explained in [22]. In the
results reported below, we have set Gr = 100 with the Prandtl number Pr = 6.9 for a
water-based fluid. Given the fixed Grashof number, the Reynolds number is provided by
Re =

√
Gr/Ri.

4. Results and Discussion

With zero particle concentration, the equations reduce to the standard lid-driven cavity
flow, which has been extensively studied in the literature. Many benchmark solutions,
such as those presented by [23], are available for comparison. The results for the standard
lid-driven cavity with our techniques are generally in excellent agreement with all these
published results and are fully documented in [20,21].

Chamkha and Abu-Nada [16] studied lid-driven cavity flow with a non-zero particle
concentration. We first compared our results for case A with those of [16], who used a
second-order, accurate finite-volume method. Figure 3 shows a comparison of the average
Nusselt number for various values of the Richardson number. These results are in good
agreement, especially when Ri is large and Ra is small. There are some minor differences
when the Richardson number Ri is small, which may be attributed to the difference in
accuracy between our numerical approach, which is based on spectral methods, and that
of [16] using second-order, finite-difference methods.
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(a) Single-lid Brinkman formula

(b) Single-lid Pak and Cho correlation

Figure 3. Comparison of the average Nusselt number with [16] at Ri = 10, 1, and 0.001 for a
single-lid-driven cavity for case A.

4.1. Results for Case A

For case A, Figures 4–9 illustrate typical contour maps for the streamlines, vorticity,
and isotherms of a single-top lid-driven cavity filled with a water-Al2O3 nanofluid with
different particle volume fractions ϕ = 0–10% using the Brinkman Formula (11) and the Pak
and Cho Formula (12).

Figures 4 and 5 have values of Ri = 10, which means the area inside the cavity is
influenced more by natural convection. The streamline and vorticity contours are very
similar to those for a standard lid-driven cavity flow (without a nanofluid) with a central
recirculating eddy and smaller corner eddies. The vorticity contours show the typical shear
layer developing near the moving lid corners. With a nanofluid, it can be seen that the
motion of the lid drives hotter fluid downwards near the top right corner of the cavity; see
the isotherm contours in Figures 4 and 5. With the Pak and Cho [11] model, as the particle
concentration increases, there is a slight increase in the vorticity on the lower (y = 0) wall,
particularly in the middle of the cavity.

In Figures 6 and 7, we have Ri = 1 and Re = 10, which indicates that the shear effects
and the buoyancy effects are balanced. The streamlines show a major recirculating cell
caused by the moving top lid and two smaller eddies at the bottom corners. Substantial
horizontal temperature distribution is shown by the isotherms spreading upward. With an
increasing Richardson number, the temperature field shows a larger warm patch developing
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nearer the upper-right corner of the cavity. The only noticeable difference in the results
with the two viscosity models is in the vorticity in the center of the cavity.

With Ri taking even smaller values, the motion is similar to classic lid-driven cavity
flow, with the vorticity tending towards a constant in the central recirculating region. Some
of the contour plots show some oscillatory behaviors, see, for example, the streamline
patterns in Figures 8 and 9, but these features can be smoothed out with greater resolution
by increasing the number of collocation points in both the x and y directions. Similar trends
are seen in earlier work, see for instance [19,20]. The Pak and Cho [11] model shows a
significant reduction in the corner eddies when the particle concentration increases. The
reason for this may be because of the higher dynamic viscosity with the Pak Cho model
as compared to the Brinkman model, implying a reduced local Reynolds number. The
temperature field has more concentrated isotherms and boundary layer behavior near the
lower and left walls. The temperature is also mostly constant and plateaued in the bulk
of the cavity. There are also cold patches in the eddy regions in the lower left and right
corners of the cavity. Comparing the vorticity contours shows that with increasing particle
concentration, the Pak and Cho model results differ a lot from the Brinkman model results
with the vorticity deviating from the constant plateau. This again is a typical behavior with
increased viscosity and a reduced effective Reynolds number in the Pak and Cho model.

Figure 10 illustrates the u-velocity profiles and θ profiles across vertical lines through
the middle of the cavity (x = 1/2) at Ri = 0.01 and Ri = 0.0001 for the Brinkman and Pak
and Cho models and ϕ varying from 0 to 0.04. The temperature increases linearly until
y = 0.2 and then remains constant until y = 0.9 for Ri = 0.01, whereas for Ri = 0.0001,
the constant is attained at a much lower value for y. For Ri = 0.01, the velocity and
temperature profiles look very similar for both models, but for Ri = 0.0001, there are
noticeable differences in both profiles for the different viscosity models. As compared to
the pure fluid case, there is hardly any difference between the Brinkman model and the
pure fluid centerline profiles.

In Table 2, we show the minimum values of ϕ for case A with the Brinkman and Pak
and Cho formulae at chosen Richardson numbers. In comparison to the Brinkman model,
the values using the Pak and Cho model differ slightly from the values for just the base
fluid (with zero concentration ϕ).

Figure 11 shows the average Nusselt number Nu versus the volume fraction ϕ of
nanoparticles using the Brinkman and Pak and Cho formulae for dynamic viscosity. With
the Brinkman viscosity model, as the volume fraction increases, the average Nusselt number
increases for all the Ri values studied. On the other hand, with the Pak and Cho model,
for small Ri values (Ri = 0.001, Ri = 0.0001), the Nusselt number initially decreases before
leveling out and starting to increase. For Ri = 0.0001, even with a volume concentration of
ϕ = 0.1, the Nusselt number is much lower than the value with the corresponding value
for just the base fluid. Effective convective heat transfer is indicated by a larger Nusselt
number, which raises the overall heat transfer coefficient and this is only seen with the
Brinkman model for all values of Ri studied. For Ri < 0.01, there is little difference in
terms of the average Nusselt number, and thereby heat transfer characteristics, for both the
Brinkman and Pak and Cho models.

Table 2. Minimum values of the ψ function for case A using the Brinkman and Pak and Cho formulae
at selected Richardson numbers.

ϕ
Brinkman
(Ri = 10)

Pak and Cho
(Ri = 10)

Brinkman
(Ri = 0.00001)

Pak and Cho
(Ri = 0.00001)

0 −0.091846174 −0.0918462 −0.122128526 −0.122128526
0.02 −0.092820132 −0.095179 −0.122150678 −0.120607855
0.04 −0.092476482 −0.0967305 −0.122160357 −0.119011494
0.06 −0.092820132 −0.0975358 −0.122158149 −0.117359139
0.08 −0.093175107 −0.0979984 −0.122144814 −0.115609126
0.1 −0.09353645 −0.0982861 −0.122121257 −0.113943122
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Figure 4. Contours of ψ(x, y) in subplots (a–c), θ(x, y) in (g–i), and ω(x, y) in (d–f) for case A using the
Brinkman formula with Ri = 10 and Re = 3.1622. Note that dotted contours have negative values.
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Figure 5. Contours of ψ(x, y) in subplots (a–c), θ(x, y) in (g–i), and ω(x, y) in (d–f) for case A using
the Pak and Cho correlation with Ri = 10 and Re = 3.1622.
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Figure 6. Contours of ψ(x, y) in subplots (a–c), θ(x, y) in (g–i), and ω(x, y) in (d–f) for case A using
the Brinkman formula with Ri = 1 and Re = 10.
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Figure 7. Contours of ψ(x, y) in subplots (a–c), θ(x, y) in (g–i), and ω(x, y) in (d–f) for case A using
the Pak and Cho correlation with Ri = 1 and Re = 10.
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(i) ϕ = 0.1

Figure 8. Contours of ψ(x, y) in subplots (a–c), θ(x, y) in (g–i), and ω(x, y) in (d–f) for case A using
the Brinkman formula with Ri = 0.00001 and Re = 3162.28.
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Figure 9. Contours of ψ(x, y) in subplots (a–c), θ(x, y) in (g–i), and ω(x, y) in (d–f) for case A using
the Pak and Cho correlation with Ri = 0.00001 and Re = 3162.28.
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Figure 10. Velocity profiles for u in subplots (a,b) and profiles of the temperature θ in (c,d) along a
vertical line passing through the geometry center at Ri = 0.01 and Ri = 0.0001 with Brinkman and
Pak and Cho models.

4.2. Results for Case B

Figures 12–17 illustrate typical contour maps for the streamlines, vorticity, and isotherms
for case B. For Ri = 10 (Figures 12 and 13), the majority of the inner surface of the cavity’s
streamlines generate a main recirculating cell created by moving the top wall. When Ri = 1
and for smaller values of Ri, the recirculating eddy moves down and towards the center of
the cavity with decreasing Ri; see Figures 16 and 17.

The major change from case A is that the temperature field shows the effect of
recirculation in pushing hotter fluid toward the left-hand side of the cavity near the lower
wall. The behavior is similar for the Brinkman and Pak and Cho models. The isotherms
nearly become parallel to the left and right walls for Ri = 10. As Ri decreases, the isotherms
become tightly clustered close to the cavity’s bottom. That means the cavity has a weak
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temperature gradient everywhere except the bottom of the cavity, where there is a sharp
change in the temperature. With Ri = 1, one can notice a more pronounced jet of fluid
approaching the lower-left side of the cavity. This effect increases with increasing Reynolds
number, see Figures 14 and 15.
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Figure 11. Nusselt number versus particle concentrations for case A and with the two viscosity
models for selected values of Ri.

Comparing the results for the vorticity in Figures 12 and 13, it can be seen that with
increasing particle concentration, there is hardly any difference between the Brinkman
model and the pure fluid ϕ = 0 case. On the other hand, for the Pak and Cho model,
increasing the particle concentration results in a more symmetric vorticity distribution as
compared to the pure fluid case.

With a decreasing Richardson number and increasing Reynolds number, the recirculating
eddies near the corners are visible. There are sharp temperature gradients on the left wall
and upper-right wall. The temperature is plateauing in the bulk of the recirculating main
eddy. Again, there is a noticeable reduction in eddy size in the corner regions with the Pak
and Cho model compared with the Brinkman model with an increasing Reynolds number
and particle concentration.

In Figures 16 and 17, it is seen that temperature behavior is similar to vorticity in the
flow with a large plateau region in the bulk of the cavity. There are temperature boundary
layers which develop on the left and right walls of the cavity.

Figure 18 shows the u-velocity profiles and θ profiles across vertical lines through
the middle of cavity (x = 1/2) at Ri = 0.01 and Ri = 0.0001 with the Brinkman and Pak
and Cho models with a particle concentration of ϕ = 0.04. As compared to the pure fluid
case (ϕ = 0), the Pak and Cho model has a more dramatic impact on the velocity and
temperature profiles than the Brinkman model. In fact, the Brinkman model results look
very similar to the pure fluid results for small and large values of Ri, whereas with the
Pak and Cho model, the differences are more pronounced with decreasing values of Ri.
Comparing the Brinkman and Pak Cho model, the plateau temperature in the center of the
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cavity is higher with the Pak Cho model. This is true except for close to the lower wall as,
for a fixed y, the centerline velocities are also higher with the Pak Cho model.
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Figure 12. Contours of the streamfunction ψ(x, y) in subplots (a–c), temperature θ(x, y) in (g–i), and
the vorticity ω(x, y) in (d–f) for case B using the Brinkman formula with Ri = 10 and Re = 3.16.

Table 3 shows the minimum values of the streamfunction ϕ values for case B at selected
values of the Richardson numbers. For large values of Ri, the Brinkman model results do
not change much with increasing particle concentration unlike the results with the Pak and
Cho model.
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Figure 13. Contours of the streamfunction ψ(x, y) in subplots (a–c), temperature θ(x, y) in (g–i), and
vorticity ω(x, y) in (d–f) for case B using the Pak and Cho correlation with Ri = 10 and Re = 3.16.

Figure 19 shows the average Nusselt number versus the nanoparticle volume fraction
using the Brinkman and Pak formula for dynamic viscosity. For Ri ≥ 0.01, the values of Nu
increase in line with the increase in nanoparticle volume fraction ϕ. When Ri ≤ 0.001 using
the Brinkman model, the Nusselt number increases with increasing nanoparticle volume
fraction ϕ. For the case when Ri ≤ 0.001 using the Pak formula, the Nusselt number shows
a decrease initially when the nanoparticle volume fraction ϕ increases before recovering
at larger concentrations. As compared to case A, the reduction in the Nusselt number for
Ri = 0.0001 for the Pak and Cho model is much less for case B.
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Figure 14. Contours of the streamfunction ψ(x, y) in subplots (a–c), temperature θ(x, y) in (g–i), and
vorticity ω(x, y) in (d–f) for case B using the Brinkman formula with Ri = 1 and Re = 10.
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Figure 15. Contours of the streamfunction ψ(x, y) in subplots (a–c), the temperature θ(x, y) in (g–i),
and vorticity ω(x, y) in (d–f) for case B using the Pak and Cho correlation with Ri = 1 and Re = 10.
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Figure 16. Contours of the streamfunction ψ(x, y) in subplots (a–c), the temperature θ(x, y) in (g–i),
and vorticity ω(x, y) in (d–f) for case B using the Brinkman formula with Ri = 0.0001 and Re = 1000.
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Figure 17. Contours of the streamfunction ψ(x, y) in subplots (a–c), temperature θ(x, y) in (g–i),
and vorticity ω(x, y) in (d–f) for case B using the Pak and Cho correlation with Ri = 0.0001 and
Re = 1000.
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Figure 18. Profiles of the velocity u(1/2, y) in (a,b) and temperature θ(1/2, y) in (c,d) along a vertical
line passing through the geometry center at Ri = 0.01 and Ri = 0.0001 with the Brinkman and Pak
and Cho models.

Table 3. Minimum values of the streamfunction ψ for case B using the Brinkman and Pak and Cho
formulae at selected Richardson numbers.

ϕ
Brinkman
(Ri = 10) Pak (Ri = 10) Brinkman

(Ri = 0.0001) Pak (Ri = 0.0001)

0 −0.118110653 −0.1181107 −0.12117914 −0.12117914
0.02 −0.118396409 −0.1094735 −0.121281759 −0.115927735
0.04 −0.118559806 −0.1054175 −0.121326906 −0.112511571
0.06 −0.118604327 −0.1032767 −0.121326906 −0.10953728
0.08 −0.118534614 −0.1020207 −0.121254546 −0.107110616
0.1 −0.118356374 −0.1012208 −0.171907578 −0.105025779
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Figure 19. Nusselt number for case B for selected Richardson numbers.

5. Conclusions

The mixed convective flow of a nanofluid in an enclosed square cavity with different
boundary conditions was investigated. Two cases were studied: case A, in which the
cavity’s top and bottom walls were kept at fixed temperatures, and the cavity’s left and
right walls were maintained insulated, and case B, in which the left and right walls were
kept at fixed temperatures and the top and bottom walls were insulated. In both cases,
the top wall moved to the right at a fixed speed. The Brinkman model [12] and the Pak
and Cho correlation [11] are two viscosity models that are used to estimate the viscosity
of the nanofluid. The Pak and Cho correlation is obtained by fitting it with experimental
data. Numerical results were obtained by solving the full Navier–Stokes equations using a
single-phase model for the nanofluid, and a group of results were presented and discussed
to demonstrate the effect of nanoparticle concentration and the Richardson number on flow
and heat transfer behavior.

Heat transfer was demonstrated to increase significantly with the presence of nanoparticles,
and this was greatly improved by increasing the nanoparticle volume fractions for large
Richardson numbers (Ri ≥ 0.01). However, the Pak–Cho model showed that the addition
of nanoparticles would result in a decrease in the Nusselt numbers for small Richardson
numbers (Ri < 0.01). This is also similar to the result found by Chamkha and Abu-Nada [16]
in their studies.

Lid-driven cavity flow shows some classic features such as a large recirculating eddy
in the main part of the cavity with secondary recirculating eddies near the corners. For large
Reynolds numbers and decreasing Richardson numbers, the temperature, like the vorticity
field, shows a region of constant values within the recirculating eddy in line with the
Prandtl–Batchelor theorem. The features reported here have not been seen before because
other investigators have not been able to compute the large Reynolds number solutions that
we have successfully obtained with our different numerical techniques. When the particle
concentration rises, it is apparent that the corner eddies are significantly more reduced
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with the Pak and Cho model than with the Brinkman model. This may be because the Pak
and Cho viscosity model implies increased viscosities and, hence, reduced local Reynolds
numbers as the particle concentration increases compared to the Brinkman model. The
results are interesting because they suggest the potential of disrupting the formulation of
recirculating eddies in the corner regions of the cavity by introducing nanoparticles into the
flow. On the other hand, the Pak and Cho model would suggest less effective heat transfer
properties, particularly for case A studied here. It is also noted that the Pak and Cho model
solution is obtained by fitting with experimental data.

Our robust numerical techniques have also enabled novel solutions to be obtained for
large Reynolds numbers and small Richardson numbers, parameter regimes where other
numerical studies have encountered difficulties. In some of these cases, our results also
interestingly show that there is a slight decrease in the Nusselt number and, hence, heat
transfer properties for small particle concentrations, especially if the viscosity model used
is one more closely aligned to fitted experimental data.

In this study, we focused primarily on a nanofluid based on water and Al2O3 nanoparticle
mixtures, but similar results are expected for other nanofluid combinations. Other flow
problems and configurations are studied in [21], where full details of the numerical
techniques adopted in this paper are provided.

Finally, in our study, we used the single-phase model for the nanofluid. Whether
similar results can be obtained using the two-phase model remains to be explored. The
solution of the full equations, including those for the particle concentration, is non-trivial
but worthy of further study.
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