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Abstract: Tropical cyclones (TCs) can be characterized as a 3D annular structure of elevated potential
vorticity (PV). However, strong mature TCs often develop a secondary eyewall, leading to a 3D
annular vortex with a double-eyewall structure. Using 2D linear stability analysis, it is shown that
three types of barotropic instability (BI) are present for annular vortices with a double-eyewall
structure: Type-1 BI across the secondary eyewall, Type-2 BI across the moat of the vortex, and Type-3
BI across the primary eyewall. The overall stability of these vortices (and the type of BI that develops)
depends principally upon five vortex parameters: the thickness of the primary eyewall, the thickness
of the secondary eyewall, the moat width, the vorticity ratio between the eye and the primary eyewall,
and the vorticity ratio between the primary and secondary eyewall. The adiabatic evolution of 3D
annular vortices with a double-eyewall structure is examined using a primitive equation model in
normalized isobaric coordinates. It is shown that Type-2 BI is the most common type of BI for 3D
annular vortices whose vortex parameters mimic TCs with a double-eyewall structure. During the
onset of Type-2 BI, eddy kinetic energy budget analysis indicates that barotropic energy conversion
from the mean azimuthal flow is the dominant energy source of the eddies, which produces a
radial velocity field with a quadrupole structure. Absolute angular momentum budget analysis
indicates that Type-2 BI generates azimuthally averaged radial outflow across the moat, and the
eddies transport absolute angular momentum radially outward towards the secondary eyewall. The
combination of these processes leads to the dissipation of the primary eyewall and the maintenance
of the secondary eyewall for the vortex.

Keywords: geophysical vortices; atmospheric dynamics; vortex Rossby waves; tropical cyclone
dynamics

1. Introduction

It has been shown that asymmetric processes within the core of tropical cyclones (TCs)
have a large impact on the structure and evolution of TCs [1–5]. The dynamical evolution
of the TC inner core can be explained by using a potential vorticity (PV) framework. For
fully three-dimensional motions including diabatic and frictional sources, the evolution of
PV is given by the Rossby–Ertel PV equation:

DP
Dt

= α
→
ω · ∇

.
θ + α

(
∇×

→
F
)
· ∇θ, P = α

→
ω · ∇θ (1)

where D/Dt is the total (material) derivative, α = ρ−1 is the specific volume,
→
ω is the

absolute vorticity vector, θ is the potential temperature,
.
θ is the diabatic heating rate, P is

the potential vorticity, and
→
F is the frictional force per unit mass. Within the inner core of a

mature TC, the absolute vorticity vector
→
ω points radially outward and upwards. Since

.
θ obtains its maximum value within the middle troposphere, air parcels flowing inward
within the lower troposphere and spiraling upward in the eyewall experience an increase
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in PV due to diabatic heating. PV is then advected vertically into the upper troposphere,
producing a towering annular structure of elevated PV (known as a hollow PV tower). The
hollow PV tower extends from the lower to middle troposphere with values of PV as high
as 275 PV units (where 1 PV unit = 1.0× 10−6 m2s−1K kg−1) [6,7].

Since the radial structure of the hollow PV tower satisfies the Charney–Stern condition
for combined barotropic–baroclinic instability [8,9], the hollow PV tower may break down,
causing PV mixing between the eyewall and the eye. The instability of the eyewall and
the subsequent PV mixing within the inner core of the TC has been examined extensively
in idealized numerical modeling frameworks [3,10–22], in full-physics numerical mod-
eling [23–29], and in observational and experimental studies [30–35]. In the absence of
diabatic heating and frictional effects, PV is conserved, and the annular vortex structure
leads to barotropic instability (BI) within the inner core of the vortex. In addition to the
strength of the annular vortex, the subsequent evolution of the hollow PV tower depends
upon the hollowness of the vortex (i.e., the ratio of eye to inner-core PV) and the eyewall
thickness of the vortex (i.e., the ratio of the inner and outer radii of the eyewall of the
annular vortex) [10,11]. When the effects of diabatic heating are included, BI (and the
subsequent PV mixing) functions as a transient brake in intensification [20,22]. Moreover,
diabatic heating produces a strengthening and thinning of the hollow PV tower structure
due to the combined effects of radial PV advection and diabatic heating [12,22]. In contrast,
friction is shown to stabilize the hollow PV tower structure by reducing eyewall PV and
the unstable barotropic growth rate [12].

The previously mentioned studies examined the evolution of a 3D annular vortex
structure which mimicked a mature TC with a single eyewall. However, numerous aircraft
and satellite observations have shown that mature TCs frequently develop a secondary
wind maximum outside of the primary eyewall, which is known as secondary eyewall
formation [1,36]. Since a secondary eyewall in a TC is accompanied by a ring of convec-
tion [37], this implies that the radial structure of a mature TC with a primary and secondary
eyewall can also be examined using a PV framework. Similar to the argument made above,
a mature TC with a double-eyewall structure consists of a central region with low PV, a
towering structure of elevated PV that corresponds to the primary eyewall, a local mini-
mum in PV that corresponds to the moat, and a local maximum in PV that corresponds to
the secondary eyewall.

The development of a secondary eyewall in a mature TC usually leads to an eyewall
replacement cycle (ERC) in which the secondary eyewall typically contracts and inten-
sifies, while the primary eyewall weakens, dissipates, and is replaced by the secondary
eyewall [38,39]. This cycle often produces an oscillation of TC intensity, and it is usually
accompanied by an expansion of the TC wind field. Although the ERC is well documented,
there have been relatively few studies that have examined the dynamical processes asso-
ciated with the evolution of a double-eyewall vortex. Ref. [40] used a 2D non-divergent
barotropic model to examine the evolution of a 2D vortex composed of a central, monopolar
vortex with an annular ring of vorticity, and it was shown that two types of instability
are present:

• Type-1 BI occurs across the secondary eyewall when the secondary eyewall is suffi-
ciently narrow and when the circulation associated with the primary eyewall is too
weak to stabilize the secondary eyewall.

• Type-2 BI occurs across the moat when the radial extent of the moat (i.e., the moat
width) is narrow enough so that unstable interactions occur between the primary
eyewall and the inner edge of the secondary eyewall.

Refs. [41,42] examined the evolution of a 2D annular vortex with a double-eyewall
structure using a shallow water framework, and it was shown that Type-2 BI makes a
significant contribution to the dissipation of the primary eyewall through eddy radial
transport of absolute angular momentum. Furthermore, it was shown that Type-2 BI can
increase the absolute angular momentum of the secondary eyewall.
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The purpose of the present study is to extend the analysis of Refs. [40–42] in two ways.
First, as noted in Ref. [41], a 2D annular vortex with a double-eyewall structure satisfies
the Rayleigh necessary condition for BI across the primary eyewall, the moat region, and
the secondary eyewall. Using 2D linear stability analysis, it will be shown that the type
of BI that develops for a 2D annular vortex with a double-eyewall structure (along with
the fastest growing mode and its PV growth rates) depends principally upon five vortex
parameters: the thickness of the primary eyewall, the thickness of the secondary eyewall,
the moat width, the vorticity ratio between the primary and secondary eyewall, and the
vorticity ratio between the eye and the primary eyewall. Second, this study will extend
the analysis of Refs. [40–42] to the next level of complexity towards the real atmosphere by
using a three-dimensional primitive equation model. This work will examine how each
type of BI affects the evolution of 3D annular vortices with a double-eyewall structure.
Eddy kinetic energy budget analysis will be used to examine the role of eddy processes in
the evolution of these vortices, whereas angular momentum budget analysis will be used to
examine the processes that contribute to the intensity change in the primary and secondary
eyewall. For 3D vortices that mimic TCs with a double-eyewall structure, it will be shown
that the formation and growth of eddies associated with the onset of BI contributes to the
dissipation of the primary eyewall.

This paper is organized in the following manner. In Section 2, the linear stability
analysis associated with the 2D annular vortex with a double-eyewall structure is presented.
In Section 3, the primitive equation model along with the initial conditions used in this
study is presented, and the nonlinear PV evolution for the control experiment is discussed.
In Section 4, sensitivity experiments are presented to investigate how changes in the vortex
parameters associated with the initial condition of the vortex impact the nonlinear evolution
of PV for the 3D annular vortex with a double-eyewall structure. Conclusions are given in
Section 5.

2. Linear Stability Analysis
2.1. Derivation

To examine the types of BI that are present during the evolution of a 2D annular vortex
with a double-eyewall structure, the linearized 2D non-divergent barotropic vorticity
equation in polar coordinates (r, ϕ) is used.

∂

∂t

(
∇2ψ′

)
= −ω

∂

∂ϕ

(
∇2ψ′

)
−
(

1
r

∂ψ′

∂ϕ

)(
dζ

dr

)
, ∇2 =

∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂ϕ2 (2)

where ζ(r) is the axisymmetric vertical vorticity, ω(r) is the axisymmetric angular velocity,
and ψ′(r, ϕ, t) is the perturbation streamfunction. Assuming wave solutions of the form
ψ′(r, ϕ, t) = Ψ(r)exp[i(mϕ− νt)] where m is the azimuthal wavenumber and ν is the
frequency, Equation (2) can be rewritten as follows:

(ν−mω)

[
r2 d2Ψ

dr2 + r
dΨ
dr
−m2 Ψ

]
= −mr

dζ

dr
Ψ (3)

To solve Equation (3), we must specify the axisymmetric vertical vorticity. To model a
2D annular vortex with a double-eyewall structure, the vortex model of Ref. [41] has been
extended into a six-region model which consists of an eye region (region 1), an annular
primary eyewall region (region 2), a moat region (region 3), an annular secondary eyewall
region (region 4), an outer vortex region with small vorticity (region 5), and a far-field
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vortex region with zero vorticity (region 6), as shown in Figure 1. This six-region model
can be written mathematically as follows:

ζ(r) =



ζ0, r < r0
ζ1, r0 < r < r1
ζ2, r1 < r < r2
ζ3, r2 < r < r3
ζ4, r3 < r < r4
0, r > r4

(4)

where r0, r1, r2, r3, and r4 are the specified radii and ζ0, ζ1, ζ2, ζ3, and ζ4 are the specified
vertical vorticity values for each region.
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Figure 1. Schematic of the axisymmetric vertical vorticity ζ(r) (with solid black curve) for the six-
region 2D annular vortex with a double-eyewall structure. The accompanying angular velocity ω(r)
is given by the solid blue curve.

Since each piecewise region in Equation (4) has constant vertical vorticity, as shown in
Figure 1, Ψ(r) = 0 everywhere except at r = r0, r = r1, r = r2, r = r3, and r = r4. Therefore,
Equation (3) reduces to the following:

r2 d2Ψ
dr2 + r

dΨ
dr
−m2 Ψ = 0, r ̸= r0, r1, r2, r3, r4 (5)

which is valid for all six regions. Since Equation (5) has the form of Euler’s differential
equation, its general solution in the six regions can be constructed from different linear
combinations of rm and r−m in each region. Thus, the general solution can be written
as follows:

Ψ(r) = Ψ0B0(r) + Ψ1B1(r) + Ψ2B2(r) + Ψ3B3(r) + Ψ4B4(r),

Bj(r) =


(

r
rj

)m
, r < rj( rj

r

)m
, r ≥ rj

(6)

where Ψ0, Ψ1, Ψ2, Ψ3, and Ψ4 are complex coefficients. Following Ref. [39], the complex
coefficients can be related by integrating Equation (3) over the narrow radial regions
centered at r0, r1, r2, r3, and r4 to obtain the following:

lim
ϵ→0

{[
ν−mω j

]
rj

(
dΨ
dr

)rj+ϵ

rj−ϵ

}
+
(
ζ j+1 − ζ j

)
mΨj = 0 (7)
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where ω j ≡ ω
(
rj
)
, Ψj ≡ Ψ

(
rj
)
, and j = 0, 1, 2, 3, 4. Substituting Equation (6) into

Equation (7) and dividing by ζ3/2 produces the following eigenvalue equation:

←→
M∗


Ψ0
Ψ1
Ψ2
Ψ3
Ψ4

 = ν∗


Ψ0
Ψ1
Ψ2
Ψ3
Ψ4

 (8)

where ν∗ = 2ν/ζ3 is the non-dimensional wave growth rate and
←→
M∗ is a 5 × 5 non-

dimensional matrix associated with the axisymmetric vorticity ζ. The full form of
←→
M∗ can

be found in the Appendix A, and it is a function of eight non-dimensional parameters:

1. ζ01 = ζ0/ζ1 is the ratio of the eye to primary eyewall vorticity. Following Ref. [10],
ζ01 will be called the hollowness of the vortex.

2. ζ13 = ζ1/ζ3 is the ratio of the primary to second eyewall vorticity. ζ13 will be called
the eyewall vorticity ratio.

3. ζ23 = ζ2/ζ3 is the ratio of the moat vorticity to secondary eyewall vorticity. ζ23 will
be called the moat strength.

4. ζ43 = ζ4/ζ3 is the ratio of the far-field vorticity to secondary eyewall vorticity. Since
the vorticity of the outer vortex is usually denoted as the vortex skirt [43], ζ43 will be
called the skirt strength.

5. r01 = r0/r1 is the ratio of the inner to outer primary eyewall radius. Notice that, as
r01 approaches 1, the primary eyewall thins. For this reason, r01 will be called the
primary eyewall thickness. It will be shown in Section 2.2 that this parameter plays
an important role in the onset of BI across the primary eyewall of the vortex, which is
known as Type-3 BI.

6. r12 = r1/r2 is the ratio of the outer primary eyewall radius to the inner secondary
eyewall radius. Notice that, as |r2 − r1| increases (with all other parameters held
constant), r12 decreases. Furthermore, notice that r2 → r1 implies that r12 → 1 . This
means that r12 is a measure of the radial extent of the moat such that values of r12 close
to 1 correspond to a vortex with a small moat and values of r12 close to 0 correspond to
a vortex with a large moat. For this reason, r12 will be called the moat width parameter.
It will be shown in Section 2.2 that this parameter plays an important role in the onset
of Type-2 BI.

7. r23 = r2/r3 is the ratio of the inner to outer secondary eyewall radius. Notice that, as
r23 approaches 1, the secondary eyewall thins. For this reason, r23 will be called the
secondary eyewall thickness. It will be shown in Section 2.2 that this parameter plays
an important role in the onset of Type-1 BI.

8. r34 = r3/r4 is the ratio of the outer secondary eyewall radius to the radius of the outer
vortex. Notice that, as |r4 − r3| increases (with all other parameters held constant), r34
decreases. Furthermore, notice that r4 → r3 implies that r34 → 1 . This means that r34
is a measure of the radial extent of the skirt such that r34 → 1 corresponds to a vortex
with no skirt and r34 → 0 corresponds to a vortex whose skirt extends through the
entire far-field region of the vortex. For this reason, r43 will be called the skirt width.

The eigenvalue equation in Equation (8) is solved by evaluating the following deter-
minant equation: ∣∣∣∣←→M∗ − ν∗

←→
I
∣∣∣∣ = 0 (9)

where
←→

I is a 5× 5 identity matrix. For a given value of the azimuthal wavenumber m
along with the eight parameters defined above, a solution to Equation (9) gives five values
for the non-dimensional wave growth rate ν∗, and the most unstable value from these roots
(which corresponds to the fastest growing mode) is chosen for each m. The most unstable
mode is identified as the mode in which the azimuthal wavenumber m has the largest wave
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growth. For this manuscript, m∗ corresponds to the azimuthal wavenumber associated
with the most unstable mode.

To complete the linear stability analysis, the parameter range of eight vortex parame-
ters must be defined. For annular vortices with a double-eyewall structure, the range of r01,
r12, r23, r34, ζ01, ζ23, and ζ43 is between 0 and 1. Although ζ13 can range from 0 to ∞, the
range of ζ13 was set to between 0 and 5 in order to mimic TCs with a double-eyewall struc-
ture [39]. Equation (9) was solved for the most unstable mode (with its the non-dimensional
growth rate) for this parameter space with increments of 1/60. Based on the description
of the eight parameters given above, it is not expected that each parameter will have a
significant influence on the stability of the vortex. To understand why this should be the
case, it is important to note that the most unstable mode results from the mutual growth
of vortex Rossby waves (VRWs) associated with various regions within the vortex. The
theory of VRWs suggests that only the core of the vortex can support VRWs [43], which
implies that ζ43 and r34 should play negligible roles in the linear stability of the vortex. It
can be shown that the stability of the vortex is largely independent of ζ43 and r34, except
when ζ13 < 1 (which corresponds to the scenario where the secondary eyewall vorticity is
greater than the primary eyewall vorticity). In the following section, the effects of ζ01, ζ13,
ζ23, r01, r12, and r23 on the linear stability of the vortex will be given.

2.2. Results from Linear Stability Analysis

Figure 2 examines the impact of the primary eyewall thickness r01, the moat width
r12, and the secondary eyewall thickness r23 on the stability of the vortex. For r23 < 0.322
(which corresponds to a thick secondary eyewall), there are three important patterns to
note. First, for r12 < 0.400 (which corresponds to a large moat width), the vortex is stable
for r01 < 0.500 (which corresponds to a thick primary eyewall), as shown in Figure 2a,b.
Thus, the linear analysis indicates that the 2D annular vortex is stable for thick eyewalls
with a large moat region. Second, as r01 increases beyond 0.500, note that the azimuthal
wavenumber associated with the most unstable mode increases from m∗ = 4 to m∗ > 10,
and the wave growth rates increase as r01 increases, as shown in Figure 2a–c. Since r01
controls the thickness of the primary eyewall, increasing r01 excites an instability across
the primary eyewall. As mentioned in Section 2.1, this instability is known as a Type-3
BI, which results from phase-locked VRWs across the primary eyewall [3,41]. Third, as
r12 increases beyond 0.500, note that the azimuthal wavenumber associated with the most
unstable mode increases from m∗ = 2 to m∗ > 10, and the wave growth rates increase as r12
increases, as shown in Figure 2c,d. Since r12 controls the moat width, increasing r12 excites
an instability across the moat of the vortex. As mentioned in Section 1, this instability is
known as a Type-2 BI, which results from the mutual growth of VRWs across the moat [41].

Finally, Figure 2 also demonstrates the impact of increasing r23 on the stability of the
vortex. As r23 exceeds 0.500, the azimuthal wavenumber associated with the most unstable
mode increases from m∗ = 3 to m∗ > 7 in the parameter range r01 < 0.500 and r12 < 0.400,
and the wave growth rates increase as r23 increases. Since r23 controls the thickness of
the secondary eyewall, increasing r23 excites an instability across the secondary eyewall.
This instability is known as a Type-1 BI, which results from phase-locked VRWs across the
secondary eyewall [3,41]. (Figures 2–7 describe the parameter range for the most unstable
mode. This should not be interpreted to mean that only one type of BI is present for a given
parameter range. Multiple type of barotropic instability can coexist in the same vortex for a
given parameter range, although their unstable wave growth rates will be different. This
will play an important role in the interpretation of 3D annular vortices given in Section 4.)
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Figure 2. Isolines of the dimensionless growth rate ν∗ computed from Equation (9) as a function of
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Figure 3. Isolines of the maximum value of the dimensionless growth rate ν∗ computed from
Equation (9) as a function of eyewall vorticity ratio ζ13 and the moat strength ζ23 f. The minimum
isoline value is ν∗ = 0.05, and the contour interval is 0.05. The color shading indicates the azimuthal
wavenumber associated with the most unstable mode m∗ where the white color indicates the stable
region. For each panel, ζ43 = 0.05, r01 = 0.333, r12 = 0.500, r23 = 0.750, and r34 = 0.500.



Dynamics 2024, 4 705

Dynamics 2024, 4, FOR PEER REVIEW 7 
 

 

Finally, Figure 2 also demonstrates the impact of increasing 𝑟ଶଷ on the stability of 
the vortex. As 𝑟ଶଷ exceeds 0.500, the azimuthal wavenumber associated with the most un-
stable mode increases from 𝑚∗ = 3  to 𝑚∗ > 7  in the parameter range 𝑟ଵ < 0.500  and 𝑟ଵଶ < 0.400, and the wave growth rates increase as 𝑟ଶଷ increases. Since 𝑟ଶଷ controls the 
thickness of the secondary eyewall, increasing 𝑟ଶଷ excites an instability across the second-
ary eyewall. This instability is known as a Type-1 BI, which results from phase-locked 
VRWs across the secondary eyewall [3,41]. (Figures 2–7 describe the parameter range for 
the most unstable mode. This should not be interpreted to mean that only one type of BI 
is present for a given parameter range. Multiple type of barotropic instability can coexist 
in the same vortex for a given parameter range, although their unstable wave growth rates 
will be different. This will play an important role in the interpretation of 3D annular vor-
tices given in Section 4.) 

 
Figure 3. Isolines of the maximum value of the dimensionless growth rate 𝜈∗ computed from Equa-
tion (9) as a function of eyewall vorticity ratio 𝜁ଵଷ and the moat strength 𝜁ଶଷ f. The minimum iso-
line value is 𝜈∗ = 0.05, and the contour interval is 0.05. The color shading indicates the azimuthal 
wavenumber associated with the most unstable mode 𝑚∗ where the white color indicates the stable 
region. For each panel, 𝜁ସଷ = 0.05, 𝑟ଵ = 0.333, 𝑟ଵଶ = 0.500, 𝑟ଶଷ = 0.750, and 𝑟ଷସ = 0.500. 

 

Figure 4. Isolines of the maximum value of the dimensionless growth rate ν∗ computed from
Equation (9) as a function of eyewall vorticity ratio ζ13 and primary eyewall thickness r01 The
minimum isoline value is ν∗ = 0.05, and the contour interval is 0.05. The color shading indicates the
azimuthal wavenumber associated with the most unstable mode m∗ where the white color indicates
the stable region. For each panel, ζ23 = 0.05, ζ43 = 0.05, r12 = 0.500, r23 = 0.750, and r34 = 0.500.

Dynamics 2024, 4, FOR PEER REVIEW 8 
 

 

Figure 4. Isolines of the maximum value of the dimensionless growth rate 𝜈∗ computed from Equa-
tion (9) as a function of eyewall vorticity ratio 𝜁ଵଷ and primary eyewall thickness 𝑟ଵ The minimum 
isoline value is 𝜈∗ = 0.05, and the contour interval is 0.05. The color shading indicates the azimuthal 
wavenumber associated with the most unstable mode 𝑚∗ where the white color indicates the stable 
region. For each panel, 𝜁ଶଷ = 0.05, 𝜁ସଷ = 0.05, 𝑟ଵଶ = 0.500, 𝑟ଶଷ = 0.750, and 𝑟ଷସ = 0.500. 

 
Figure 5. Isolines of the maximum value of the dimensionless growth rate 𝜈∗ computed from Equa-
tion (9) as a function of eyewall vorticity ratio 𝜁ଵଷ and moat width 𝑟ଵଶ . The minimum isoline value 
is 𝜈∗ = 0.05 , and the contour interval is 0.05. The color shading indicates the azimuthal wave-
number associated with the most unstable mode where the white color indicates the stable region. 
For each panel, 𝜁ଵ = 0.500, 𝜁ଶଷ = 0.05, 𝜁ସଷ = 0.05, 𝑟ଶଷ = 0.750, and 𝑟ଷସ = 0.500. 

 
Figure 6. Isolines of the maximum value of the dimensionless growth rate 𝜈∗ computed from Equa-
tion (9) as a function of eyewall vorticity ratio 𝜁ଵଷ and moat width 𝑟ଵଶ. The minimum isoline value 
is 𝜈∗ = 0.05 , and the contour interval is 0.05. The color shading indicates the azimuthal wave-
number associated with the most unstable mode 𝑚∗ where the white color indicates the stable re-
gion. For each panel, 𝜁ଵ = 0.500, 𝜁ଶଷ = 0.05, 𝜁ସଷ = 0.05, 𝑟ଵ = 0.333, and 𝑟ଷସ = 0.500. 

Figure 5. Isolines of the maximum value of the dimensionless growth rate ν∗ computed from
Equation (9) as a function of eyewall vorticity ratio ζ13 and moat width r12. The minimum isoline
value is ν∗ = 0.05, and the contour interval is 0.05. The color shading indicates the azimuthal
wavenumber associated with the most unstable mode where the white color indicates the stable
region. For each panel, ζ01 = 0.500, ζ23 = 0.05, ζ43 = 0.05, r23 = 0.750, and r34 = 0.500.
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Figure 6. Isolines of the maximum value of the dimensionless growth rate ν∗ computed from
Equation (9) as a function of eyewall vorticity ratio ζ13 and moat width r12. The minimum isoline
value is ν∗ = 0.05, and the contour interval is 0.05. The color shading indicates the azimuthal
wavenumber associated with the most unstable mode m∗ where the white color indicates the stable
region. For each panel, ζ01 = 0.500, ζ23 = 0.05, ζ43 = 0.05, r01 = 0.333, and r34 = 0.500.
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Figure 7. Isolines of the maximum value of the dimensionless growth rate ν∗ computed from
Equation (9) as a function of eyewall vorticity ratio ζ13 and primary eyewall thickness r01. The
minimum isoline value is ν∗ = 0.05, and the contour interval is 0.05. The color shading indicates the
azimuthal wavenumber associated with the most unstable mode m∗ where the white color indicates
the stable region. For each panel, ζ01 = 0.500, ζ23 = 0.05, ζ43 = 0.05, r12 = 0.500, and r34 = 0.500.

Figure 3 examines the impact of the vortex hollowness ζ01, the eyewall vorticity ratio
ζ13, and the moat strength ζ23 on the stability of the vortex. The parameters r01, r12, r23,
and r34 were chosen such that Type-1 or Type-2 BI could be excited. It should be noted
that there is a clear distinction in the behavior of the vortex when ζ13 < 1 (i.e., in which
the secondary eyewall is stronger than the primary eyewall) compared to ζ13 > 1 (i.e.,
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in which the primary eyewall is stronger than the secondary eyewall). In the parameter
region ζ13 < 1, Type-1 BI is excited with m∗ = 4 for small ζ01 and for small ζ23, as shown
in Figure 3a–d (i.e., which corresponds to a hollow vortex with small moat vorticity). As
ζ23 increases, the azimuthal wavenumber corresponding to the most unstable mode for the
Type-1 BI increases from m∗ = 4 to m∗ > 10. Physically, ζ13 < 1 and ζ23 → 1 correspond
to a scenario in which the secondary eyewall has virtually replaced the primary eyewall.
In contrast, for the parameter region 1 < ζ13 < 3 and ζ01 < 0.5 (which corresponds to
a hollow vortex with a strong primary eyewall), Type-2 BI is excited with m∗ = 2 for all
values of ζ23, as shown in Figure 3a–d. These results suggest that the moat vorticity plays
a relatively unimportant role in the dynamics when ζ13 > 1 (i.e., the primary eyewall is
stronger than the secondary eyewall). Finally, it should be noted that the vortex becomes
stable for large ζ13 and large ζ01, as shown in Figure 3c,d. Physically, this corresponds
to a strong, filled vortex with a thin secondary eyewall, and as shown in Ref. [40], the
circulation of a strong, central vortex can induce enough differential rotation across the
outer ring to prevent Type-1 BI.

Figure 2 illustrates that different types of barotropic instabilities are present based
upon the thickness of the eyewalls and their relative positions through the moat width.
We will now examine how changes in the eyewall vorticity and moat strength lead to the
onset of different types of BI. Figure 4 examines the impact of the vortex hollowness ζ01,
the eyewall vorticity ratio ζ13, and the moat strength ζ23 on the stability of the vortex. First,
it should be noted that the vortex hollowness plays an unimportant role when r01 < 0.5,
which corresponds to a thick primary eyewall with a small eye. As ζ13 increases within the
parameter range r01 < 0.5, the behavior of the vortex is similar to Figure 3c in which the
vortex is unstable with Type-2 BI with m∗ = 4 for ζ13 < 1, unstable with Type-2 BI with
m∗ = 2 for 1 < ζ13 < 3, and stable for ζ13 > 3. Similar to Figure 2b, there is an overlap of
Type-2 and Type-3 BI in the parameter range r01 > 0.5, ζ01 < 0.5, and ζ13 > 1, as shown in
Figure 4a,b. However, as ζ01 increases within the parameter range r01 > 0.5, notice that the
Type-3 BI is removed, as shown in Figure 4c,d. Similar to the argument made above, the
differential rotation across the primary eyewall can prevent the onset of Type-3 BI. Similarly,
as ζ01 and ζ13 increase within the parameter range r01 > 0.5, notice that both Type-2 and
Type-3 BI are removed, as shown in Figure 4d. In other words, very large ζ01 and ζ13 are
required to stabilize the vortex when the primary eyewall is very thin.

Figure 5 examines the impact of moat width r12, primary eyewall thickness r01, and
eyewall vorticity ratio ζ13 on the development of each type of BI. For r12 < 0.5 (i.e., large
moat width) and small r01 (i.e., large primary eyewall thickness), the vortex is dominated
by m∗ = 4 Type-1 BI, as shown in Figure 5a,b Interestingly, the vortex is stable for the
parameter range 0.4 < r12 < 0.5, ζ13 > 4, and r01 < 0.4. In other words, a relatively wide
moat with a strong primary eyewall is a stable vortex, as discussed in Figure 3. As r12
increases (i.e., moat width decreases) for a fixed r01 in which r01 < 0.4, there is a transition
from Type-1 BI to Type-2 BI, as shown in Figure 5a,b. However, it should be noted that this
transition occurs only for ζ13 > 1. Thus, Type-1 BI occurs across the secondary eyewall
for sufficiently thin and strong secondary eyewalls. As shown in Figure 5c,d, Type-3 BI
dominates the dynamics within the parameter range r01 > 0.5, r12 < 0.5, and ζ13 > 2.5.

Figure 6 examines the impact of moat width r12, secondary eyewall thickness r23, and
eyewall vorticity ratio ζ13 on the development of Type-1 and Type-2 BI. For the parameter
range r12 < 0.4 and r23 < 0.3 (which corresponds to thick primary and secondary eyewalls),
the vortex is stable for virtually all values of ζ13, as shown in Figure 6a. As r12 increases, a
Type-2 BI begins to develop with increasing growth rates, as shown in Figure 6a,b, whereas
as r23 increases, a Type-1 BI develops with increasing growth rates for r12 < 0.5, as shown
in Figure 6c,d. It is important to note that the transition from Type-1 BI to Type-2 BI occurs
within the parameter range r23 > 0.5 and ζ13 > 1, as shown in Figure 6c,d. This implies that
the relative strength between the primary eyewall and the secondary eyewall determines
the type of BI present in 3D annular vortices.
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Finally, Figure 7 examines the impact of primary eyewall thickness r01, eyewall vortic-
ity ratio ζ13, and secondary eyewall thickness r23 on the stability of the vortex. Notice that
large ζ13 and small r01 (i.e., thick primary eyewalls) lead to a stable vortex regardless of
r23. As shown in Figure 7a,b, increasing r01 above 0.7 (which corresponds to thin primary
eyewalls) excites Type-3 BI for small values of r23. As shown in Figure 7c,d, Type-1 BI is
excited within the parameter range r23 > 0.5 and ζ13 < 1, which corresponds to strong
secondary eyewalls. In contrast, for 1 < ζ13 < 4, Type-2 BI is excited for r01 < 0.7 and
r23 < 0.5, as shown in Figure 7a–c. In general, when the primary eyewall dominates
(which occurs when ζ13 > 1), changes in secondary eyewall thickness r23 do not impact the
dynamics except for very thin secondary eyewalls (i.e., when r23 > 0.7). This describes the
transition from Type-2 BI to Type-1 BI.

In summary, although the linear stability analysis indicates that eight vortex pa-
rameters are needed to specify the fastest growing mode for 2D annular vortices with a
double-eyewall structure, as defined by Equation (4), the five principal vortex parameters
are the primary eyewall thickness r01, the moat width parameter r12, the secondary eyewall
thickness r23, the vortex hollowness ζ01, and the eyewall vorticity ratio ζ13. In general, there
are four important trends that can be deduced from the numerical solutions associated
with the linear stability analysis:

• The parameter range in which the vortex is stable is r01 < 0.4, r12 < 0.4, r23 < 0.5, and
ζ13 > 3.5. Physically, this corresponds to a 2D annular vortex with a thick primary
eyewall, a large moat, and a weak secondary eyewall.

• The parameter range in which Type-1 BI is excited across the secondary eyewall
is r01 < 0.4, r12 < 0.4, r23 > 0.5, and ζ13 < 1. Physically, this corresponds to a 2D
annular vortex with a thick primary eyewall, a large moat, and a strong, thin secondary
eyewall. As shown in Figures 2 and 5, Type-1 BI can be excited even for relatively
weak secondary eyewalls if the secondary eyewall is sufficiently thin (i.e., r23 > 0.750).
In general, as r23 increases, Type-1 BI is excited with increasingly large azimuthal
wavenumbers. In contrast, Type-1 BI can be removed by increasing the circulation
associated with the central vortex via ζ13 and ζ01 (as shown in Figures 3 and 4).

• The parameter range in which Type-2 BI is excited across the moat of the vortex is
r01 < 0.4, r12 > 0.5, and ζ13 > 1. Physically, this corresponds to a 2D annular vortex
with a small moat and a relatively weak secondary eyewall. As shown in Figures 2, 5
and 6 Type-2 BI can be excited even for thin secondary eyewalls and/or thin primary
eyewalls if the moat width is sufficiently small (i.e., r12 > 0.7).

• The parameter range in which Type-3 BI is excited across the primary eyewall is
r01 > 0.5, r12 < 0.4, r23 < 0.5, ζ01 < 0.5, and ζ13 > 1. Physically, this corresponds to
a 2D annular vortex with a thin, strong primary eyewall, a large moat, and a weak
secondary eyewall. As shown in Figure 5, Type-1 BI can be excited for thin secondary
eyewalls only if the primary eyewall is sufficiently thin (i.e., r01 > 0.750) and if the
primary eyewall is sufficiently strong (i.e., ζ13 > 1). In contrast, Type-1 BI can be
removed by increasing the hollowness parameter, as shown in Figure 4. The transition
between Type-1 and Type-3 BI is strongly governed by the eyewall vorticity ratio ζ13.
Type-1 BI plays an important role in the dynamics for ζ13 < 1, whereas Type-3 BI plays
an important role in the dynamics for ζ23 > 1.

As discussed in the summary above, the onset of Type-3 BI requires the most restrictive
parameter range for 2D annular vortices with a double-eyewall structure, whereas the onset
of Type-2 BI requires the least restrictive parameter range. In the following sections, we
will use the framework discussed in this section to examine the adiabatic evolution of 3D
annular vortices with a double-eyewall structure.

3. Results
3.1. Numerical Model

As discussed in Ref. [11], the material conservation of PV in isentropic coordinates
describes the mixing of potential vorticity in its purest form. However, the intersection
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of isentropes with Earth’s surface makes the use of potential temperature impractical for
strong vortices (i.e., vortices in which the maximum azimuthal wind exceeds 30 m s−1).
For this reason, the evolution of 3D annular vortices with a double-eyewall structure will
be modeled using normalized pressure as a vertical coordinate:

σ =
p− pT

p∗
(10)

where p is the pressure, pT is the pressure at the top of the atmospheric model (taken
here to be 100 hPa), p∗ = ps − ptop, and pS is the surface pressure. Following Ref. [44],
the equations of motion for a compressible, adiabatic, and hydrostatic atmosphere in
σ-coordinates can be written as follows:
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where u and v are the zonal and meridional velocity components, respectively; Φ is the
geopotential; α = ρ−1 is the specific volume; ζ is the vertical vorticity; δ is the horizontal
divergence; K =

(
u2 + v2)/2 is the kinetic energy per unit mass; and

.
σ is the vertical

velocity in σ-coordinates defined as
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The Coriolis parameter is chosen to be f = 5× 10−4s−1. The continuity equation,
the thermodynamic equation, and the hydrostatic equation can be written, respectively,
as follows:
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= −u

∂θ

∂x
− v

∂θ

∂y
− .

σ
∂θ

∂σ
+ Fθ (15)

∂Φ
∂σ

= −p∗α (16)

where θ is the potential temperature. The initial vertical vorticity has the form ζ(r, ϕ, σ, 0) =[
ζ(r) + ζ ′(r, ϕ)

]
F(σ) where the vertical vortex structure F(σ) is given by

F(σ) =

sin
[

π

2

(
σ− σu

1− σu

)]
, σ > σu

0, σ ≤ σu

(17)
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where σu = 0.100. The axisymmetric radial structure ζ(r) is a six-region axisymmetric
vortex, as discussed in Section 2, and it is given by

ζ(r) =



ζ0, r ≤ r0 − d
ζ0S
(

r−r0+d
2d

)
+ ζ1S

(
r0+d−r

2d

)
, r0 − d ≤ r ≤ r0 + d

ζ1, r0 + d ≤ r ≤ r1 − d
ζ1S
(

r−r1+d
2d

)
+ ζ2S

(
r1+d−r

2d

)
, r1 − d ≤ r ≤ r1 + d

ζ2, r1 + d ≤ r ≤ r2 − d
ζ2S
(

r−r2+d
2d

)
+ ζ3S

(
r2+d−r

2d

)
, r2 − d ≤ r ≤ r2 + d

ζ3, r2 + d ≤ r ≤ r3 − d
ζ3S
(

r−r3+d
2d

)
+ ζ4S

(
r3+d−r

2d

)
, r3 − d ≤ r ≤ r3 + d

ζ4, r3 + d ≤ r ≤ r4 − d
ζ4S
(

r−r4+d
2d

)
+ ζ5S

(
r4+d−r

2d

)
, r4 − d ≤ r ≤ r4 + d

ζ5, r ≥ r4 + d

(18)

where d = 5.00 km. ζ5 is determined such that the domain average of ζ(r) vanishes. The
function S(x) = 1− 3x2 + 2x3 is a cubic shape function [which satisfies the conditions
S(0) = 1, S(1) = 0, and S′(0) = 0 = S′(1) where the prime notation indicates a deriva-
tive] that provides smooth transition zones between each piecewise region. The vorticity
perturbation ζ ′(r, ϕ) has the following form:

ζ ′(r, ϕ) = ζamp

12

∑
m=1

cos(mϕ)×


0, r ≤ r1 − d
S[(r1 + d− r)/2d], r1 − d ≤ r ≤ r1 + d
1, r1 + d ≤ r ≤ r2 − d
S[(r− r2 + d)/2d], r2 − d ≤ r ≤ r2 + d
0, r > r2 + d

(19)

where ζamp = 10−5 s−1, d = 5.00 km, and S(x) is the cubic shape function defined above.
Note that the vorticity perturbation is applied across the moat of the vortex. The mass and
thermal fields are initialized by using the σ-coordinate version of the nonlinear balance
equation (as derived in Ref. [45]) which gives the surface pressure and potential temperature
to within additive functions of σ. These additive functions were determined so that the
horizontal area average of potential temperature and pressure over the domain resulted
in a vertical thermodynamic profile in agreement with the mean tropical North Atlantic
sounding from Ref. [46].

The model is vertically discretized using the Charney–Phillips (CP) grid with vorticity
and divergence defined on 15 evenly spaced integer levels and pressure defined on the
associated half-integer levels, as shown in Ref. [44]. The horizontal discretization is based
on a double Fourier pseudospectral method having 432× 432 equally spaced collocation
points on a doubly periodic horizontal domain of size 720 km× 720 km, which results in
1.67 km spacing. Because there is a potential enstrophy cascade to the highest resolved
wavenumbers during PV mixing, hyperdiffusion terms ν∇2ζ, ν∇2δ, and ν∇2σ where
ν = 300 m2s−1 have been included in the model. Sensitivity tests using smaller values of ν
have shown that the timing of the BI, the fastest growing mode, and the final state of the
vortex are independent of ν.

In Section 2, it was shown that the most pronounced effects on linear stability are
based upon changes in the primary eyewall thickness r01, the moat width r12, the eyewall
vorticity ratio ζ13, the vortex hollowness ζ01, and the secondary eyewall thickness r23. The
impact of these parameters on the nonlinear evolution of our 3D annular vortex will be
examined in Section 4. We first begin by defining the control experiment for our study in
the following section.
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3.2. Control Experiment

Figure 8 shows the initial condition for the control experiment. The vortex parameters
were chosen to mimic the vortex structure of a TC that has entered the re-intensification
period of its ERC, as discussed in [39]. For this experiment, the primary eyewall vorticity
is ζ1 = 5.68 × 10−3 s−1 at a radius of r0 = 15.0 km. The eight vortex parameters are
set such that ζ01 = 0.500, ζ13 = 2.00, ζ23 = 0.05, ζ43 = 0.05, r01 = 0.600, r12 = 0.500,
r23 = 0.750, and r34 = 0.500. These parameters produce a 3D vortex which decays vertically
within increasing altitude with a maximum azimuthal wind of 50.0 m/s near the secondary
eyewall near r = 70.0 km and a primary eyewall maximum of 40.0 m/s near r = 25.0 km,
as shown in Figure 8b.
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Figure 8. The initial condition for the control experiment. (a) shows the azimuthal-mean PV (in
PVU where 1 PVU = 10−6 m−2K kg−1s−1). (b) shows the azimuthal-mean azimuthal velocity with
isosurfaces of absolute angular momentum (in units of 106 m2s−1). (c) shows the azimuthal-mean-
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vorticity on σ = 0.35.

Figure 8a shows that the azimuthal-mean PV maximizes at σ = 0.85 due to the
increased static stability above the surface. As shown in Figure 8d,e, the PV of this vortex
exhibits a double hollow tower structure with elevated PV associated with the primary
eyewall, a well-defined moat region, and a region of elevated PV associated with the
secondary eyewall. The normalized Okubo–Weiss parameter shown in Figure 8c is defined
as follows:

OKWnorm =
ζ2 − s2

n − s2
s

ζ2 + s2
n + s2

s
, sn =

∂u
∂x
− ∂v

∂y
, ss =

∂v
∂x

+
∂v
∂y

(20)

where ζ is the relative vorticity, sn is the normal strain, and ss is the shearing strain. This
parameter equals 1 when the flow is completely rotational, −1 when the flow is dominated
by strain, and 0 for unidirectional shear flow. As shown in Figure 8c, the normalized
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Okubo–Weiss parameter is negative within the moat and outer region of the vortex and
positive within the radius of maximum wind and near the secondary eyewall.

Solving Equations (8) and (9) for the parameters associated with the control experiment
shows that this vortex will undergo Type-2 BI in which the most unstable mode for this
vortex is m∗ = 2 with a wave growth rate of ν∗ = 0.2706 (which corresponds to an e-folding
time of 0.72 h). Therefore, it is expected that there will be rapid growth in the perturbation in
which there will be significant VRW growth across the moat of the vortex. The evolution of
the vortex at selected times is given in Figure 9. During the first few hours of the simulation,
the axisymmetric primary eyewall begins to develop a wavenumber-2 instability such that
primary eyewall develops an elliptical shape. The onset of this instability leads to a rapid
decay in area-integrated enstrophy and a rapid increase in area-integrated palinstrophy
due to the PV mixing process. Figure 9a–d show the structure of the vortex shortly before
the rapid increase in area-integrated palinstrophy. As shown in Figure 9c, the primary
eyewall develops an elliptical PV structure at t = 5.00 h in the lower troposphere. However,
by comparing Figure 8d with Figure 9c, it should be noted that there is minimal mixing
across the primary eyewall and secondary eyewall. Furthermore, by comparing Figure 8c
with Figure 9b, note that the normalized OKW parameter has decreased to small values
along the outer edge of the primary eyewall and the inner edge of the secondary eyewall,
which suggests that there is PV mixing across the moat of the vortex. In response to the
wavenumber-2 instability, the radial flow develops a quadrupole pattern, as shown in
Figure 9d. Since the formation of the elliptical eyewall starts on the outer edge of the
primary eyewall, this suggests that the vortex has developed a m = 2 mode of a Type-2 BI
within the lower troposphere. The effect of this instability is to effectively shrink the moat
width within the lower troposphere, leading to a tilted vortex, as shown in Figure 9a.
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Figure 9e–h show the structure of the vortex when the area-integrated palinstrophy
has reached its peak value after the onset of Type-2 BI. First, it should be noted that the
quadrupole pattern in the radial velocity field shown in Figure 9d has largely persisted



Dynamics 2024, 4 713

up to t = 10.0 h, as shown in Figure 9h. Since a quadrupole velocity field induces a strain
pattern on the vortex, this leads to a significant reduction in the vorticity in the outer edge
of the primary eyewall as low PV is mixed into the outer edge of the primary eyewall.
Similarly, high PV from both eyewalls has been mixed within the moat region, producing a
“PV bridge” [11] across the moat, as shown in Figure 9e,f. The evidence of this mixing can
also be seen by noting that the normalized OKW parameter decreases within each eyewall
(which is indicative of enhanced strain and deformation in these regions) and increases
within the moat region (which is indicative of PV mixing across the moat region of the
vortex), as shown in Figure 9f. It should also be noted that the PV mixing process is largely
confined to the lower to mid-troposphere. This is to be expected since PV growth rates are
a function of the average PV across the secondary eyewall, as shown in Equation (9).

Following the peak in area-integrated palinstrophy, the vortex approaches a monopole
structure, which leads to a rapid decrease in enstrophy and palinstrophy. Figure 9h,i
show the structure of the vortex as it approaches its monopole structure. By comparing
Figure 9j with Figure 9f, it should be noted that PV mixing has begun to fill to moat
region in the middle to upper troposphere. Furthermore, the angular momentum surfaces
associated with the secondary eyewall move radially inward, and the radial flow across the
vortex weakens.

The onset of Type-2 BI and the subsequent evolution of the vortex leads to a noticeable
dissipation in the primary eyewall, as shown in the Hovmoller diagram in Figure 10. Notice
that there is minimal change in the azimuthal wind across either eyewall during the first 5 h
of vortex evolution. After the onset of Type-2 BI, the primary eyewall significantly weakens,
while the secondary eyewall moves radially inward and gradually weakens. Since this
numerical model does not contain a boundary layer parameterization, this indicates that
the onset of Type-2 BI is connected to primary eyewall dissipation, as shown in Ref. [41].
As the primary eyewall dissipates and the secondary eyewall moves inward, the PV bridge
that originally forms in the moat region becomes the eye of the new vortex, as shown in
Figure 9i.
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To assess the relative roles of mean and eddy processes in the vortex structural changes
due to PV mixing, absolute angular momentum budgets were computed for the evolution
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of this vortex. It can be shown that the equation for azimuthally averaged absolute angular
momentum in cylindrical coordinates can be written as follows:

∂Ma

∂t
= −

(
f + ζ

)
rVR −

.
σ

∂Ma

∂σ
− r( f + ζ ′)V′R −

.
σ
′ ∂M′a

∂σ
− σrα′

∂p∗′

r∂ϕ
+ rFϕ (21)

where Ma = rVT + f r2/2 is the absolute angular momentum; Fϕ is the azimuthal com-
ponent of dissipation; and ( ) corresponds to an azimuthal average. The terms on the
right-hand side of Equation (20) correspond to the radial transport of absolute angular mo-
mentum by the mean flow (RADM); the vertical transport of absolute angular momentum
by the mean flow (VADM); flux divergence of angular momentum by the eddies (FLUX); the
vertical transport of absolute angular momentum by eddies (VADE); the eddy azimuthal
pressure gradient force (PRES); and the torque due to forcing from subgrid-scale diffusion
(DISS), respectively. To show the net changes in Ma during the onset of Type-2 BI for this
vortex, Equation (20) was integrated from t = 5.00 h through t = 10.0 h (which corresponds
to the time interval in which the area-integrated palinstrophy rapidly increased) using the
trapezoidal rule on 15 min resolution model output.

Figure 11 shows the net changes in Ma induced by each term in the budget. First,
it should be noted that local changes in Ma are largely concentrated within the lower
troposphere for the vortex (i.e., primarily where σ > 0.4), consistent with the evolution
shown in Figure 9. As shown in Figure 11a, the radial advection of Ma by the mean flow
(RADM) consistently acts to decrease Ma within the lower troposphere. Since ∂Ma/∂r > 0
according to Figure 9, this implies that the azimuthal-mean radial velocity VR must be
positive during this time interval. Integrating the radial velocity fields in Figure 9 from
t = 5.00 h through t = 10.0 h leads to VR > 0. Since the quadrupole structure of VR forms
because of the Type-2 BI, this implies that the negative radial advection of Ma indirectly
results from the Type-2 instability.
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As shown in Figure 11b, the radial advection of Ma by the eddies (FLUX) decreases
Ma within the primary eyewall and increases Ma within the secondary eyewall. This
can be explained by noting that the Type-2 BI induces outward-propagating VRWs at the
outer edge of the inner eye which mixes low-PV air from the moat region into the primary
eyewall. However, the presence of positive eddy radial advection in the secondary eyewall
indicates that the eddies are transporting momentum towards the secondary eyewall. For
this reason, the primary eyewall rapidly dissipates (as shown in Figure 10), whereas the
secondary eyewall largely maintains its strength.

Although the vertical advection terms VADM and VADE are weak compared to the
radial advection terms RADM and FLUX, they both act to locally increase Ma near the
secondary eyewall in the lower troposphere, as shown in Figure 11d,e. Since ∂Ma/∂σ > 0
according to Figure 9, this implies that

.
σ > 0, which implies weak subsidence during this

time interval. The vertical motion arises based upon the structure of the radial velocity field
during the onset of the Type-2 BI, as shown in Figure 9. The development of the positive
vertical advection of Ma suggests a local secondary circulation in response to the Type-2
BI within this region. Radially inward of the secondary eyewall, VADM decreases Ma,
which suggests that rising motion is decreasing Ma in this region. Finally, we see that the
eddy azimuthal pressure gradient force (PRES) and subgrid-scale diffusion (DISS) play a
negligible role in the overall dynamics, as shown in Figure 11c,f.

In summary, local changes in absolute angular momentum are largely concentrated
within the lower troposphere for both eyewalls. As the Type-2 BI develops, the radial
advection by the mean flow and the eddies lead to inner-eyewall dissipation, whereas
radial advection by the eddies transports angular momentum towards the secondary
eyewall. Vertical motion develops in response to the elongation of the primary eyewall
and the formation of VRWs between the primary eyewall and the moat. The PV mixing
that results from Type-2 BI alters the PV across the eyewalls and the moat until the vortex
approaches a monopolar state, which eliminates the Rayleigh necessary condition for BI.
Thus, the mixing of PV due to Type-2 BI eventually stabilizes the vortex over time.

To further examine the role of eddy processes in the evolution of the vortex, we can
examine the eddy kinetic energy budget, which allows us to understand the flow of kinetic
energy between the mean flow and the eddies. Moreover, during vortex breakdown, the
eddy kinetic energy corresponds to the kinetic energy associated with VRW propagation.
Following Ref. [47], it can be shown that the azimuthally averaged eddy kinetic energy
budget equation in cylindrical coordinates can be written as follows:
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/2 is the eddy kinetic energy (per unit mass), U = p∗VR,
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(
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)
are the radial and azimuthal components of diffusion, respectively.

The terms on the right-hand side of Equation (21) correspond to the flux divergence of KP
by the mean flow (FDM); the flux divergence of KP by the eddies (FDE); the barotropic
energy conversion from the mean vortex that is associated with the mean azimuthal flow
VT (BTA); the barotropic energy conversion from the mean vortex that is associated with the
mean radial flow VR (BTR); baroclinic energy conversion from the mean vortex associated
with the mean flow (BCC); the conversion of eddy potential energy into kinetic energy
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(PTC); and the dissipation of eddy kinetic energy by diffusion (DISS), respectively. To
show the net changes in Kp during the onset of Type-2 BI for this vortex, Equation (21) was
integrated from t = 5.00 h through t = 10.0 h (which corresponds to the time interval in
which the area-integrated palinstrophy rapidly increased) using the trapezoidal rule on
15 min resolution model output.

Figure 12 shows the net changes in Kp induced by the dominant terms in the budget
analysis. First, it should be noted that the dominant source of eddy kinetic energy is the
barotropic energy conversion from the mean azimuthal flow (BTA), as shown in Figure 12c.
Physically, this means that the mean vortex transfers kinetic energy to the eddies through
the mean azimuthal flow. In contrast, barotropic energy conversion from the mean radial
flow (BTR) is a major sink for the eddy kinetic energy [as shown in Figure 12d], which
means that the energy source for the radial flow shown in Figure 9 originates from the
barotropic energy conversion from the eddies. Furthermore, since BTA and BTR are both
major sinks of eddy kinetic energy near the secondary eyewall, this implies that VRWs
transfer their kinetic energy to the mean vortex in this region, consistent with the analysis
given in Figure 11. As shown in Figure 12a,b, the flux divergence of Kp by the mean flow
(FDM) and by the eddies (FDE) play a secondary role in the energy budget. However,
near the primary eyewall, FDM is a source of eddy kinetic energy, indicating that the flux
divergence of eddy kinetic energy from the mean vortex transports eddy kinetic energy
inward from outside the primary eyewall. Conversely, FDM is a sink of eddy kinetic energy
near the secondary eyewall, which suggests that the mean vortex damps eddies near the
secondary eyewall.
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meaning for each term in the budget analysis.

In summary, it can be said that the instability of the mean azimuthal flow generates
and maintains the VRWs outside of the primary eyewall, and the VRWs transfer their
kinetic energy to the mean vortex in the form of radial flow. Since the azimuthally averaged
radial flow is positive, this implies that VRW energy is transported towards the mean
vortex near the secondary eyewall. This energy conversion process leads to a dissipation of
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the primary eyewall, and it provides a mechanism that helps to maintain the secondary
eyewall. These considerations further confirm that the vortex breakdown is largely driven
by barotropic processes.

4. Nonlinear Evolution of 3D Annular Vortices

As shown in Section 2, the most pronounced changes in linear stability are based
upon changes in primary eyewall thickness r01, moat width r12, eyewall vorticity ratio ζ13,
vortex hollowness ζ01, and secondary eyewall thickness r23. In this section, the effects of
changes in r01, r12, r23, and ζ13 on the nonlinear evolution of 3D annular vortices will be
examined. Table 1 gives the parameters for the three vortices examined in this section,
along with the type of BI that is expected based upon the 2D linear stability analysis given
in Section 2. The azimuthal-mean PV and VT for each experiment are given in Figure 13.
The primary eyewall vorticity ζ1 for each vortex has been set such that the maximum
azimuthal wind is 50.0 ms−1, and the radius of the primary eyewall for each vortex has
been set to r0 = 15.0 km.

Table 1. The parameters associated with the 3D annular vortices discussed in Section 4, along with
the expected BI based upon the linear stability analysis discussed in Section 2.

Case r01 r12 r23 r34 ζ01 ζ13 ζ23 ζ34 Instability Type

Vortex I 0.800 0.500 0.750 0.500 0.500 2.000 0.050 0.050 Type− 3 BI with m∗ = 4

Vortex II 0.600 0.700 0.750 0.500 0.500 2.000 0.050 0.050 Type− 2 BI with m∗ = 3

Vortex III 0.600 0.500 0.900 0.500 0.500 1.000 0.050 0.050 Type− 1 BI with m∗ = 12

Dynamics 2024, 4, FOR PEER REVIEW 20 
 

 

Vortex III 0.600 0.500 0.900 0.500 0.500 1.000 0.050 0.050 Type-1 BI with 𝑚∗ =12 

 
Figure 13. The initial condition for Vortex I, II, and III. (a–c) show the azimuthal-mean PV for Vortex 
I, II, and III, respectively. (d–f) show the azimuthal-mean azimuthal wind 𝑉ത் with isosurfaces of 
absolute angular momentum (in units of 10 mଶsିଵ) for Vortex I, II, and III, respectively. 

4.1. Results from Vortex I 
In comparison with the control experiment, the primary eyewall thickness parameter 

has increased from 𝑟ଵ = 0.600 to 𝑟ଵ = 0.800 for Vortex I, which implies a thinner pri-
mary eyewall. According to the linear analysis of Section 2, an increase in 𝑟ଵ (i.e., thin-
ning the primary eyewall) within this parameter space causes an overlap between Type-2 
BI across the moat and Type-3 BI across the primary eyewall. However, the fastest grow-
ing mode is associated with the Type-3 BI. The evolution of Vortex I at selected times is 
shown in Figure 14. During the first few hours of the simulation, the primary eyewall 
begins to develop a polygonal shape, and similar to the control experiment, the onset of 
BI leads to an increase in area-integrated palinstrophy. Figure 14a–d show the structure 
of the vortex shortly before the increase in area-integrated palinstrophy. Unlike the con-
trol experiment, there is minimal PV mixing within the moat region [as shown by the 
negligible changes in normalized OKW in Figure 14b], which indicates that Type-2 BI has 
not occurred. However, there is PV mixing between the primary eyewall and the vortex 
center, which signals the onset of Type-3 BI. Unlike the Type-2 BI shown in the control 
experiment, it should be noted that the primary eyewall strength remains approximately 
constant during the onset of Type-3 BI. 

Figure 13. The initial condition for Vortex I, II, and III. (a–c) show the azimuthal-mean PV for Vortex
I, II, and III, respectively. (d–f) show the azimuthal-mean azimuthal wind VT with isosurfaces of
absolute angular momentum (in units of 106 m2s−1) for Vortex I, II, and III, respectively.
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4.1. Results from Vortex I

In comparison with the control experiment, the primary eyewall thickness parameter
has increased from r01 = 0.600 to r01 = 0.800 for Vortex I, which implies a thinner primary
eyewall. According to the linear analysis of Section 2, an increase in r01 (i.e., thinning the
primary eyewall) within this parameter space causes an overlap between Type-2 BI across
the moat and Type-3 BI across the primary eyewall. However, the fastest growing mode
is associated with the Type-3 BI. The evolution of Vortex I at selected times is shown in
Figure 14. During the first few hours of the simulation, the primary eyewall begins to
develop a polygonal shape, and similar to the control experiment, the onset of BI leads to
an increase in area-integrated palinstrophy. Figure 14a–d show the structure of the vortex
shortly before the increase in area-integrated palinstrophy. Unlike the control experiment,
there is minimal PV mixing within the moat region [as shown by the negligible changes in
normalized OKW in Figure 14b], which indicates that Type-2 BI has not occurred. However,
there is PV mixing between the primary eyewall and the vortex center, which signals the
onset of Type-3 BI. Unlike the Type-2 BI shown in the control experiment, it should be
noted that the primary eyewall strength remains approximately constant during the onset
of Type-3 BI.
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Figure 14. The evolution of the vortex for Vortex I at t = 2.50 h (top panel), t = 5.00 h
(middle panel), and (bottom panel). (a,e,i) show the azimuthal-mean PV (in PVU where
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ter with isosurfaces of absolute angular momentum (in units of 106 m2s−1). (c,g,k) show the PV on
σ = 0.95. (d,h,l) show the radial velocity VR on σ = 0.95.

In response to the onset of Type-3BI, the primary eyewall develops a wavenumber-4
structure, which indicates that VRWs have formed in this region. However, as the vortex
continues to evolve, the dominant mode of BI shifts from Type-3 to Type-2, as the effective
moat width decreases during the initial mixing process. Figure 14e–h show the structure
of the vortex shortly before the rapid increase in area-integrated palinstrophy associated
with Type-2 BI. Notice that the primary eyewall develops an elliptical shape [as shown in
Figure 14g] with a quadrupole radial velocity structure [as shown in Figure 14h]. Moreover,
notice that there is significant mixing across the moat, as shown in Figure 14f, consistent
with the Type-2 BI discussed in the control experiment. After the onset of Type-2 BI,
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Vortex I evolves in a manner similar to the control experiment. Figure 14h,i show the
structure of Vortex I as it approaches its monopole structure. By comparing Figure 14e
with Figure 14i, notice that the primary eyewall dissipates and that the secondary eyewall
moves radially inward.

The differences between the Type-2 and Type-3 BI can be seen by analyzing their
respective effects on the angular momentum budget, which is shown in Figure 15. As
shown in Section 3, the dominant terms in the angular momentum budget are the radial
advection of Ma due to the mean flow (RADM) and due to the eddies (FLUX). During the
onset of Type-3 BI, FLUX acts to increase Ma in the vicinity of the primary eyewall [as shown
in Figure 15b], whereas it has negligible influence outside of the eyewall. Furthermore, by
comparing Figures 15a and 15b in the lower troposphere, the FLUX term partially balances
the RADM term near the primary eyewall, which helps to explain why there is minimal
change in the absolute angular momentum during the onset of Type-3 BI. In contrast, the
onset of Type-2 BI leads to a significant growth in the radial advection of Ma by the mean
flow on the outer edge of the primary eyewall. Even though the FLUX term also increases
during the onset of Type-2 BI, its magnitude is less than the magnitude of the RADM
term, which explains why primary eyewall dissipation begins after the onset of PV mixing
between the primary eyewall and the moat.
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Similar conclusions can be drawn by examining the eddy kinetic energy budget, as
shown in Figure 16. As shown in Section 3, the dominant terms in the eddy kinetic energy
budget are the flux divergence of Kp by the mean flow (FDM), the barotropic energy
conversion from the mean azimuthal flow (BTA), and the barotropic energy conversion
from the mean radial flow (BTR). As shown in Figure 16a–c, the instability in the azimuthal
flow through the BTA term transfers kinetic energy from the mean flow near the primary
eyewall to the eddies, and the radial flow associated with Type-3 BI arises from the eddies
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through the BTR term. During the transition to Type-2 BI, the source of eddy kinetic energy
arises from the azimuthal flow within the moat region, as shown in Figure 16e. However,
since the BTA and BTR terms are sinks of eddy kinetic energy near the secondary eyewall,
this implies that eddies (in the form of VRWs) are transporting their kinetic energy to the
mean vortex. The combination of these effects leads to a weakening of the primary eyewall
and a maintenance of the secondary eyewall, similar to the control experiment.
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4.2. Results from Vortex II

In comparison with the control experiment, the moat width parameter has increased
from r12 = 0.500 to r12 = 0.700, which implies a smaller moat between the eyewalls.
According to the linear stability analysis of Section 2, it is expected that this vortex will
undergo Type-2 BI with a most unstable mode of m∗ = 3. The evolution of Vortex II at
selected times is shown in Figure 17. During the first few hours of the model simulation,
PV mixing occurs across the moat region (which is consistent with Type-2 BI); however, the
primary eyewall develops a tripole structure rather than an elliptical structure. Figure 17a–d
show the structure of the vortex shortly before the rapid increase in palinstrophy associated
with Type-2 BI. Note that the moat region develops a tripole structure in the PV field
[as shown in Figure 17c] and that the tripole PV structure is accompanied by a hexapole
structure in the radial velocity field, as shown in Figure 17d. The tripole structure associated
with the Type-2 BI is due to the presence of counter-propagating VRWs, and these VRWs
propagate cyclonically around the vortex where divergence is found downstream of the
wave axis and convergence is found upstream of the wave axis. Figure 17e–h show the
structure of the vortex after the VRWs rotate one-quarter wavelength around the vortex.
During the axisymmetrization process, there is significant mixing in the moat region
within the lower troposphere [as shown by comparing Figure 17a with Figure 17e] and
the VRWs propagate outward from the moat region. Consequently, Vortex II reaches its
monopole state faster than the control experiment. By comparing the evolution of the
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control experiment to Vortex I, we see that the timescale for primary eyewall dissipation
decreases as the moat width decreases. Conversely, it is expected that a larger moat region
between the eyewalls can stabilize a 3D annular vortex, as discussed in Section 2.
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Figure 17. The evolution of the vortex for Vortex II at t = 4.00 h (top panel), t = 6.50 h (middle
panel), and t = 18.0 h (bottom panel). (a,e,i) show the azimuthal-mean PV (in PVU where
1 PVU = 10−6 m−2K kg−1s−1). (b,f,j) show the azimuthal-mean-normalized Okubo–Weiss parame-
ter with isosurfaces of absolute angular momentum (in units of 106m2s−1). (c,g,k) show the PV on
σ = 0.95. (d,h,l) show the radial velocity VR on σ = 0.95.

The differences in vortex evolution for Vortex II and the control experiment can be
investigated by examining the absolute angular momentum and eddy kinetic energy
budget, which is shown in Figure 18. By comparing Figure 18a with Figure 11a, we see that
the RADM term is larger in magnitude for Vortex I than the control experiment near the
primary eyewall. This is primarily based upon a larger azimuthal-mean radial outflow for
Vortex II. In contrast, by comparing Figure 18b with Figure 11b, the FLUX term is smaller
in magnitude and more radially constrained for Vortex I than the control experiment
near the primary eyewall. This can be explained by noting that the stagnation radius for
VRWs varies inversely with the azimuthal wavenumber [48]. Therefore, the wave energy
associated with VRWs from the outer edge of the primary eyewall accumulates at a smaller
radius. However, since the moat region is smaller for Vortex II, PV can be efficiently mixed
within the moat region to the inner edge of the secondary eyewall.

Similarly, by comparing Figure 18c–e with Figure 12, we see that the dominant terms
in the eddy kinetic energy budget are more radially constrained for Vortex II than for the
control experiment. In particular, the BTA term (which is the source of VRW energy from the
mean vortex) and the BTR term (which is the energy source for radial flow during the onset
of Type-2 BI) are strongly confined near the outer edge of the primary eyewall. Therefore, it
can be said that the instability within the azimuthal flow generates wavenumber-3 VRWs,
and their energy generates radial flow near the primary eyewall with a tripole structure.
During the axisymmetrization process, the VRW energy accumulates at a smaller radius
than the control experiment. t
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4.3. Results from Vortex III

In comparison with the control experiment, the eyewall vorticity ratio parameter has
decreased from ζ13 = 2.00 to ζ13 = 1.00, and the secondary eyewall thickness parameter
has increased from r23 = 0.750 to r23 = 0.900. Thus, Vortex III has a stronger, thinner
secondary eyewall than the control experiment. According to the linear analysis of Section 2,
these changes within this parameter space cause an overlap between Type-1 BI across the
secondary eyewall and Type-2 BI across the moat. The evolution of Vortex III at selected
times is shown in Figure 18. During the first three hours of the model simulation, an
instability develops across the secondary eyewall, producing a collection of mesovortices.
Since this instability leads to no appreciable mixing across the moat or across the primary
eyewall, this corresponds to Type-1 BI. Figure 19a–d display the state of the vortex shortly
before the increase in area-integrated palinstrophy associated with Type-1 BI. As shown in
Figure 19c, a collection of 12 mesovortices develops across the secondary eyewall, consistent
with the linear stability analysis from Section 2. These mesovortices arise from VRWs across
the secondary eyewall which generate substantial strain and deformation [as shown in
Figure 19c] and regions of alternating radial inflow and outflow across the secondary
eyewall [as shown in Figure 19d].
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Figure 19. The evolution of the vortex for Vortex III at t = 3.00 h (top panel), t = 7.00 h (middle
panel), and t = 18.0 h (bottom panel). (a,e,i) show the azimuthal-mean PV (in PVU where
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σ = 0.95. (d,h,l) show the radial velocity VR on σ = 0.95.

The onset of Type-1 BI across the secondary eyewall increases the effective thickness of
the secondary eyewall and reduces the azimuthal-mean PV of the secondary eyewall over
time, which permits the development of Type-2 BI across the moat. Figure 19e–h show the
state of the vortex at the peak of the area-integrated palinstrophy associated with Type-2 BI.
Notice that the radial velocity field develops a quadrupole structure just as in the control
experiment, but the strength of the radial outflow regions across the moat has increased, as
shown in Figure 19h. This implies that there is a significant transfer of eddy kinetic energy
to the mean vortex, which will be shown below. By comparing Figure 19f to Figure 9f, we
see that there is much more deformation and strain present during the axisymmetrization
process for Vortex III than the control experiment. For this reason, the dissipation of the
primary eyewall occurs rapidly during the onset of Type-2 BI. Figure 19i–l show the state
of the vortex as it approaches a vortex monopole. By comparing Figure 19a with Figure 19i,
we see that the primary eyewall has rapidly dissipated, while the secondary eyewall moved
radially inwards in response to Type-2 BI.

The differences between the Type-1 and Type-2 BI can be seen by analyzing their
respective effects on the angular momentum budget, which is shown in Figure 20. During
the onset of Type-1 BI, the FLUX term acts to increase Ma in the vicinity of the secondary
eyewall [as shown in Figure 20b], whereas the RADM term acts to decrease Ma in the
vicinity of the eyewall [as shown in Figure 20a]. Furthermore, since the VRWs have a high
azimuthal wavenumber (where m = 12), VRW energy has a relatively small propagation
distance. For this reason, the radial extent of both terms is small around the secondary
eyewall. For Vortex III, the onset of Type-2 BI leads to strong flux divergence of Ma within
the moat region, as shown in Figure 20d. This helps to explain the significant mixing
(and increased absolute angular momentum) that occurs near r ≈ 45 km in Figure 19e–g.
Outside of this region, the RADM term acts to decrease Ma, especially within the primary
eyewall, as shown in Figure 20c. As mentioned in Section 3.2, positive axisymmetric radial
advection in the angular momentum budget is associated with positive azimuthal-mean
radial flow, which is consistent with the radial velocity field shown in Figure 19h. In
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summary, it can be said that the Type-1 BI leads to significant PV mixing in the region
surrounding the secondary eyewall (which effectively weakens Ma), and this PV mixing
sets the stage for the Type-2 BI between the moat and the primary eyewall.
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The eddy kinetic energy budget, as shown in Figure 21, can be used to further explain
the rapid changes in Vortex III compared to the control experiment. The development of the
Type-1 BI is evidenced by the barotropic conversion of kinetic energy from the azimuthal
flow near the secondary eyewall, as shown in Figure 21b. Notice that the FDM and BTA
terms have opposite signs near r ≈ 60 km, as shown in Figure 21a, which implies that
the eddies obtain their energy from the flow instability and the eddies are damped by the
shearing flow. Furthermore, the eddies transfer some of their energy to the mean vortex in
the form of radial flow, as shown in the radial velocity field given in Figure 19d. During the
transition to Type-2 instability, the magnitude of the BTA term for Vortex III [as shown in
Figure 21d] is approximately 30% larger than the magnitude of the BTA term for the control
experiment [as shown in Figure 12c]. This helps to explain the rapid growth of VRWs in the
moat region and the rapid dissipation of the primary eyewall for Vortex III. Furthermore,
the enhanced magnitude of the BTR term for Vortex III compared to the control experiment
helps to explain the pronounced radial velocity field shown in Figure 19h.



Dynamics 2024, 4 725Dynamics 2024, 4, FOR PEER REVIEW 28 
 

 

 
Figure 21. The integrated 𝐾ഥ budget analysis from 𝑡 = 0 h to 𝑡 = 3.00 h (top panel) and from 𝑡 =4.00 h to 𝑡 = 9.00 h (bottom panel) for Vortex III. The top panel corresponds to the time interval in 
which Type-3 BI is the dominant instability, whereas the bottom panel corresponds to the time in-
terval in which Type-2 BI is the dominant instability. See the text for the meaning of each term in 
the budget analysis. 

5. Discussions and Conclusions 
In this manuscript, the stability and evolution of annular vortices with a double-eye-

wall structure were examined. By performing a linear stability analysis on 2D annular 
vortices with a double-eyewall structure, as shown in Figure 1, it was shown that the sta-
bility of these vortices depends upon eight dimensionless parameters: (1) the hollowness 
of the vortex 𝜁ଵ = 𝜁/𝜁ଵ, (2) the eyewall vorticity ratio 𝜁ଵଷ = 𝜁ଵ/𝜁ଷ, (3) the moat strength 𝜁ଶଷ = 𝜁ଶ/𝜁ଷ , (4) the skirt strength 𝜁ସଷ = 𝜁ସ/𝜁ଷ , (5) the primary eyewall thickness 𝑟ଵ =𝑟/𝑟ଵ, (6) the moat width 𝑟ଵଶ = 𝑟ଵ/𝑟ଶ, (7) the secondary eyewall thickness 𝑟ଶଷ = 𝑟ଶ/𝑟ଷ, and 
the skirt width 𝑟ସଷ = 𝑟ସ/𝑟ଷ.  

In addition, it was shown the type of BI that develops for these types of vortices de-
pends principally upon 𝑟ଵ, 𝑟ଵଶ, 𝑟ଶଷ, 𝜁ଵ, and 𝜁ଶଷ. The parameter range in which the vor-
tex is stable is 𝑟ଵ < 0.4, 𝑟ଵଶ < 0.4, 𝑟ଶଷ < 0.5, and 𝜁ଵଷ > 3.5, which physically corresponds 
to annular vortices with a thick primary eyewall, a thick secondary eyewall, and a large 
moat. The parameter range in which Type-1 BI is excited across the secondary eyewall is 𝑟ଵ < 0.4, 𝑟ଵଶ < 0.4, 𝑟ଶଷ > 0.5, and 𝜁ଵଷ < 1, which physically corresponds to annular vor-
tices with a thick primary eyewall, a large moat, and a strong, thin secondary eyewall. The 
parameter range in which Type-2 BI is excited across the moat of vortex is 𝑟ଵ < 0.4, 𝑟ଵଶ >0.5, and 𝜁ଵଷ > 1, which physically corresponds to annular vortices with a small moat and 
a relatively weak secondary eyewall. Finally, the parameter range in which Type-3 BI is 
excited across the primary eyewall is 𝑟ଵ > 0.5, 𝑟ଵଶ < 0.4, 𝑟ଶଷ < 0.5, 𝜁ଵ < 0.5, and 𝜁ଵଷ >1, which physically corresponds to annular vortices with a thin, strong primary eyewall, 
a large moat, and a weak secondary eyewall. 

The 2D linear stability analysis indicates that Type-2 BI has the least restrictive pa-
rameter range, where Type-2 BI can be excited even for thin secondary eyewalls and/or 
thin primary eyewalls if the moat width is sufficiently small (i.e., 𝑟ଵଶ > 0.7). For this rea-
son, the most common type of BI for annular vortices with a double-eyewall structure is 
Type-2 BI. Conversely, Type-3 BI has the most restrictive parameter range since the 

Figure 21. The integrated Kp budget analysis from t = 0 h to t = 3.00 h (top panel) and from
t = 4.00h to t = 9.00 h (bottom panel) for Vortex III. The top panel corresponds to the time interval
in which Type-3 BI is the dominant instability, whereas the bottom panel corresponds to the time
interval in which Type-2 BI is the dominant instability. See the text for the meaning of each term in
the budget analysis.

5. Discussions and Conclusions

In this manuscript, the stability and evolution of annular vortices with a double-
eyewall structure were examined. By performing a linear stability analysis on 2D annular
vortices with a double-eyewall structure, as shown in Figure 1, it was shown that the
stability of these vortices depends upon eight dimensionless parameters: (1) the hollow-
ness of the vortex ζ01 = ζ0/ζ1, (2) the eyewall vorticity ratio ζ13 = ζ1/ζ3, (3) the moat
strength ζ23 = ζ2/ζ3, (4) the skirt strength ζ43 = ζ4/ζ3, (5) the primary eyewall thickness
r01 = r0/r1, (6) the moat width r12 = r1/r2, (7) the secondary eyewall thickness r23 = r2/r3,
and the skirt width r43 = r4/r3.

In addition, it was shown the type of BI that develops for these types of vortices
depends principally upon r01, r12, r23, ζ01, and ζ23. The parameter range in which the vortex
is stable is r01 < 0.4, r12 < 0.4, r23 < 0.5, and ζ13 > 3.5, which physically corresponds
to annular vortices with a thick primary eyewall, a thick secondary eyewall, and a large
moat. The parameter range in which Type-1 BI is excited across the secondary eyewall
is r01 < 0.4, r12 < 0.4, r23 > 0.5, and ζ13 < 1, which physically corresponds to annular
vortices with a thick primary eyewall, a large moat, and a strong, thin secondary eyewall.
The parameter range in which Type-2 BI is excited across the moat of vortex is r01 < 0.4,
r12 > 0.5, and ζ13 > 1, which physically corresponds to annular vortices with a small moat
and a relatively weak secondary eyewall. Finally, the parameter range in which Type-3 BI is
excited across the primary eyewall is r01 > 0.5, r12 < 0.4, r23 < 0.5, ζ01 < 0.5, and ζ13 > 1,
which physically corresponds to annular vortices with a thin, strong primary eyewall, a
large moat, and a weak secondary eyewall.

The 2D linear stability analysis indicates that Type-2 BI has the least restrictive param-
eter range, where Type-2 BI can be excited even for thin secondary eyewalls and/or thin
primary eyewalls if the moat width is sufficiently small (i.e., r12 > 0.7). For this reason, the
most common type of BI for annular vortices with a double-eyewall structure is Type-2
BI. Conversely, Type-3 BI has the most restrictive parameter range since the presence of
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a strong, central vortex (i.e., large ζ01) or the presence of a sufficiently strong secondary
eyewall (i.e., ζ13 < 1) can eliminate the presence of Type-3 BI.

The theoretical framework from the 2D linear stability analysis was used to interpret
the nonlinear evolution of 3D annular vortices with a double-eyewall structure. For a
3D vortex undergoing Type-2 BI, it was shown that the primary eyewall develops an
elliptical structure in which the radial velocity field develops a quadrupole structure.
Absolute angular momentum budget analysis indicates that during the onset of Type-2
BI, azimuthally averaged radial outflow occurs across the moat (which leads to a rapid
decrease in the intensity of the primary eyewall), and the eddies transport absolute angular
momentum radially outward towards the secondary eyewall (which helps to maintain the
intensity of the secondary eyewall). Eddy kinetic energy budget analysis indicates that
the instability associated with the azimuthal flow in the primary eyewall is the energy
source of the eddies, while the eddies themselves transfer energy to the mean vortex in the
form of radial flow during the axisymmetrization process of the vortex. As PV is mixed
between the moat and the primary eyewall, the moat vorticity gradually increases, which
stabilizes the vortex to Type-2 BI according to the linear stability analysis. Eventually, the
vortex approaches its end state as a monopole in which the secondary eyewall replaces the
primary eyewall. This process indicates that the onset of Type-2 BI aids in the dissipation
of the primary eyewall during an ERC, as suggested in [41].

The effects of changes in r01, r12, r23, and ζ13 on the nonlinear evolution of 3D annular
vortices were examined. The 2D linear stability analysis indicated that an increase in r01 (i.e.,
thinning of the primary eyewall) shifts the Type-2 BI towards a Type-3 BI (i.e., BI across the
primary eyewall). The 3D model simulation shows that the onset of Type-3 BI produces a
polygonal eyewall structure, which indicates that counter-propagating VRWs have formed
in this region [3]. Since the VRWs associated with Type-3 BI can have a high azimuthal
wavenumber, this implies that the wave energy is largely confined to the primary eyewall
and the outer eye region. However, the VRWs mix PV and angular momentum between
the primary eyewall and the eye of the vortex. This process increases the hollowness of the
vortex, which stabilizes the vortex to Type-3 BI (as shown in Ref. [40]) and allows Type-2 BI
to ensue. The difference in the eddy kinetic energy transfer between Type-2 and Type-3 BI
is connected to the substantial difference in PV mixing between these types of instabilities,
as suggested by [49].

Second, it was shown (via the 2D linear stability analysis) that an increase in r12 (i.e.,
decrease in the moat width) shifts the most unstable mode of the Type-2 BI towards higher
azimuthal wavenumber numbers with large wave growth rates. The 3D model simulation
shows that the timescale for axisymmetrization (and the accompanying primary eyewall
dissipation) is reduced as the moat width decreases. This is consistent with the hypothesis
from Ref. [50] which speculated that BI plays a role in determining the maintenance time of
the double-eyewall structures. As the moat width decreases, VRWs with a higher azimuthal
wavenumber propagate across the moat of the vortex, and since the stagnation radius of
VRWs is inversely related to the azimuthal wavenumber, VRW energy is strongly sheared
just outside of the vortex.

Third, it was shown (via the 2D linear stability analysis) that an increase in r23 (i.e.,
thinning of the secondary eyewall) shifts the Type-2 BI towards a Type-1 BI (i.e., BI across
the secondary eyewall) only when ζ13 ≤ 1. The 3D model simulation shows that the onset
of Type-1 BI produces mesovortices and counter-propagating VRWs across the secondary
eyewall. Since thin secondary eyewalls generate VRWs with a high azimuthal wavenumber,
wave energy is strongly confined to the near region between the secondary eyewall and
the moat. As the VRWs mix PV within this region, the effective moat vorticity increases,
which stabilizes the vortex to Type-1 BI, as shown in the linear stability analysis in Section 2.
In general, the axisymmetrization process associated with the Type-1 BI or Type-3 BI can
rearrange the PV within the annular vortex, which sets the stage for Type-2 BI to occur if
the moat width is sufficiently small.
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The analysis in this paper can be used to explain how BI aids in the evolution of
eyewall replacement cycles (ERCs). As discussed in Ref. [39], the evolution of an ERC
occurs in three phases: (1) Stage I corresponds to an intensification phase where the
primary eyewall reaches its maximum intensity and the secondary eyewall has formed,
(2) Stage II corresponds to the weakening phase in which the primary eyewall weakens
while the secondary eyewall contracts and intensifies, and (3) Stage III corresponds to the
re-intensification phase in which the secondary eyewall becomes stronger than the primary
eyewall and fully replaces the primary eyewall. During Stage I, the TC vortex becomes a
3D annular vortex with a double-eyewall structure, which implies that it is susceptible to
BI. As the secondary eyewall continues to intensify, the eyewall vorticity ratio ζ13 decreases,
and as the secondary eyewall contracts, the moat width r12 decreases. As the 2D linear
stability analysis in Figure 5 shows, the conditions for Type-1 and Type-2 BI may both be
present in the vortex. Since convection will continuously generate PV across the secondary
eyewall, this implies that the dominant instability will be Type-2 BI. The onset of Type-2
BI begins Stage II in which the primary eyewall dissipates (based upon PV mixing and
radial outflow within the moat region). Although convection helps to maintain the strength
of the secondary eyewall, the outward-directed momentum flux from the VRWs helps to
maintain the strength of the secondary eyewall [51].

In closing, this manuscript focused upon the adiabatic evolution of 3D annular vortices.
First, it should be noted that the impacts of convection (and the accompanying secondary
circulation) have been neglected in this study. As shown in Ref. [22], convection will directly
impact the eyewall vorticity ratio ζ13, the primary eyewall thickness r01, and the secondary
eyewall thickness r23 as the vortex evolves over time. Furthermore, the presence of the
secondary circulation will produce changes in the eddy kinetic energy and absolute angular
momentum budgets as baroclinic processes begin to play an important role in the evolution
of these vortices. Second, the impacts of vertical structure (i.e., the baroclinity of the base-
state) have also been neglected in this study. Although the budget analyses of this work
have shown that vertical advective processes play a minor role in the adiabatic evolution of
these vortices, previous work [48] has shown that excited VRWs can propagate vertically,
and they can have behavior that differs substantially from the barotropic evolution given
in this study. Further investigations are required to further understand these subjects.
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Appendix A. The Matrix
←→
M*

As shown in Section 2, the dominant wave growth rate for the linear stability analysis

is determined by solving Equation (8) for the matrix
←→
M∗. Since

←→
M∗ is a 5× 5 matrix, it has

the following form:

←→
M∗ =


M∗11 M∗12 M∗13 M∗14 M∗15
M∗21 M∗22 M∗23 M∗24 M∗25
M∗31 M∗32 M∗33 M∗34 M∗35
M∗41 M∗42 M∗43 M∗44 M∗45
M∗51 M∗52 M∗53 M∗54 M∗55


where each matrix element is given below in which ζij = ζi/ζ j and rij = ri/rj.
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M∗11 = mζ03 + (ζ13 − ζ03),
M∗12 = (ζ13 − ζ03)rm

01, M∗13 = (ζ13 − ζ03)rm
02, M∗14 = (ζ13 − ζ03)rm

03, M∗15 = (ζ13 − ζ03)rm
04,

M∗21 = (ζ23 − ζ13)rm
01,

M∗22 = m
[
ζ13 − (ζ13 − ζ03)r2

01
]
− ζ13,

M∗23 = (ζ23 − ζ13)rm
12, M∗24 = (ζ23 − ζ13)rm

13, M∗25 = (ζ23 − ζ13)rm
14,

M∗31 = (1− ζ23)rm
02, M∗32 = (1− ζ23)rm

12,
M∗33 = m

[
ζ23 − (ζ23 − ζ13)r2

12 − (ζ13 − ζ03)r2
02
]
+ (1− ζ23),

M∗34 = (1− ζ23)rm
23, M∗35 = (1− ζ23)rm

24,

M∗41 = (ζ43 − 1)rm
03, M∗42 = (ζ43 − 1)rm

13, M∗43 = (ζ43 − 1)rm
23

M∗44 = m
[
1− (1− ζ23)r2

23 − (ζ23 − ζ13)r2
13 − (ζ13 − ζ03)r2

03
]
,

M∗45 = (ζ43 − 1)rm
43

M∗51 = −ζ43rm
04, M∗52 = −ζ43rm

14, M∗53 = −ζ43rm
24, M∗54 = −ζ44rm

34
M∗55 = m

[
ζ43 − (ζ43 − 1)r2

34 − (1− ζ23)r2
24 − (ζ23 − ζ13)r2

14 − (ζ13 − ζ03)r2
04
]
− ζ43
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