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Abstract: Marine propeller design requirements have risen in quantity and quality in recent decades.
Reduced propeller cavitation is targeted to ensure that comfort requirements and environmental
regulations are met. This paper presents the development of a mesh refinement process for the
numerical prediction of tip vortex cavitation (TVC) using the commercial CFD package STAR-CCM+.
Given the strong dependence on the mesh resolution within the areas of interest, mesh refinement
and the use of field functions for adaptive meshing were demonstrated. The developed numerical
model was substantiated against relevant published test data. Subsequently, the validated mesh
refinement process was extended to scaled-up models representing medium- and full-scale propellers.
The results showed that this process can be applied to CFD simulations to capture the minimum
pressure within a tip vortex core. This process is also applicable to different types of hydrodynamic
propulsors at both model scale and full scale. Additionally, the cavitation inception scaling law
was evaluated for all small-scale and full-scale models, and it was found that the scaling parameter
obtained using the developed refinement process was somewhat close to that obtained using existing
methods. It is expected that the mesh refinement process developed in this study can be used to
investigate the effect of scaling on tip vortex cavitation inception.

Keywords: numerical simulation; propeller efficiency; RANS; tip vortex cavitation

1. Introduction

Cavitation occurs when the fluid pressure drops below the local vapor pressure and is
often an inevitable phenomenon for hydro machinery. It can have detrimental impacts on
power and performance and is, therefore, a major limiting factor in the design of marine
propulsion systems. The low-pressure core of a strong propeller tip vortex can initiate
tip vortex cavitation, which can lead to excessive noise and vibration and cause erosion
to the propulsor and the surrounding structures. The noise signature associated with the
inception of a tip vortex cavity is of particular importance, as it can pose a significant threat
to ocean wildlife, particularly marine mammals that rely on sound for communication [1,2].
The development of accurate and reliable techniques for the numerical prediction of tip
vortex cavitation has, therefore, become an area of growing interest in recent years, as
has assessment of the application of commercial CFD codes to cavitating propeller flows.
Thanks to its advantages, CFD has also been widely used for other marine research, for
example, Refs. [3–5].

Several studies on tip vortex cavitation (TVC) have been reported in the open lit-
erature [6–8]. From the relevant literature, it can be seen that prediction of a tip vortex
cavity depends strongly on the mesh resolution within the vortex region [9,10]. Mesh
refinement approaches have thus far focused on fixed volumetric refinements behind the
propeller tip, requiring a priori knowledge of the flow field, and a mesh refinement cell
size of D/1000 has been employed to resolve part of the tip vortex cavity [10]. Given the
computationally demanding requirements of the mesh and the current limitations of the
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cavitation models, it is noted that there are still difficulties in numerically predicting the full
extent of a downstream tip vortex cavity when using commercial CFD codes [11]. In order
to predict the conditions for the onset of cavitation for full-scale vessels, a reliable scaling
law for cavitation inception is required to scale from model tests to full-scale propellers.
Deriving a suitable scaling law for cavitation inception using CFD has also been an area of
interest within cavitation research [6,7].

From the preceding experimental studies, it is evident that TVC persists and travels
a considerable distance in the propeller wake. While numerous studies have explored
numerical simulations of TVC, the majority of these simulations have yielded unsatisfactory
results, diverging significantly from observed experimental phenomena. Specifically, TVC
tends to dissipate rapidly in the simulations, contrary to experimental findings [12–14].
A primary factor contributing to this discrepancy is the insufficient resolution of the
computational mesh. To accurately simulate the roll-up and prolonged slip of TVC in a
propeller wake, it is crucial to enhance the mesh resolution in the tip vortex wake region.
Asnaghi et al. [15] conducted a combined numerical and experimental investigation into
the inception behavior of TVC, demonstrating that TVC inception is closely linked to the
size of the initial nuclei. Their findings indicated that a finer mesh resolution produces
a stronger tip vortex, resulting in earlier TVC inception. In subsequent studies, different
mesh resolutions were compared to analyze the vortex trajectory, streamwise velocity, and
cavitation number, and this revealed that at least 16 mesh points are required per vortex
radius to accurately predict the tip vortex and enable the axial acceleration velocity at
the vortex core to be fully captured [16]. In efforts to improve TVC simulations, some
researchers employed cylindrical geometry to refine the tip vortex mesh [17,18]. Despite
these advances, while TVC behavior can be simulated, the detailed roll-up tip vortex
phenomenon remains inadequately represented. Gaggero et al. [12] considered the impacts
of transition models on cavitation inception and development, and found that modified
models enhanced numerical predictions. However, discrepancies between simulated and
experimental results persist for TVC extension.

Balze [19] analyzed the distinctions in simulation among the following three turbu-
lence models: Direct Numerical Simulation (DNS) [20], Large-Eddy Simulation (LES) [21],
and Reynolds-Averaged Navier–Stokes (RANS) equations. The RANS approach, intro-
duced by Reynolds in 1895, involves decomposing flow variables into mean and fluctuating
components, followed by time or ensemble averaging. This method allows for the use of
considerably coarser grids compared with LES, and it assumes a stationary mean solution
for attached or moderately separated flows. These characteristics significantly reduce the
computational effort relative to LES or DNS, making the RANS approach highly popular in
engineering applications. Sipilä and Siikonen [22] utilized RANS equations to investigate
cavitating tip vortex flows in the Potsdam Propeller Test Case (PPTC). Their findings in-
dicated that cavitating tip vortex simulations exhibit low sensitivity to the mass transfer
rate. Further research by Sipilä et al. [23] revealed that different turbulence models signifi-
cantly affect the solutions for tip vortex cores under both wet and cavitating conditions.
Additionally, substantial discrepancies in pressure predictions within the wake region
were observed among various RANS models. Specifically, the Explicit Algebraic Reynolds
Stress Model (EARSM) predicted slightly lower pressures at the vortex core compared
with the two-equation RANS models. Viitanen and Siikonen [24] conducted a comparative
study of various turbulence models used to predict cavitating flows around the Potsdam
Propeller Test Case (PPTC). The evaluated models included the low Reynolds number
k − ϵ model, the SST k − ω model, the SST model with an Explicit Algebraic Reynolds
Stress Model, and a Delayed Detached-Eddy Simulation (DDES) approach based on the
SST k − ω model. The differences between the tested turbulence models in predicting
global propeller performance were not substantial, although the k − ϵ model showed
the best agreement with the experimental data. However, the tip vortex was generally
underpredicted by all models.
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This study aimed to employ a mesh refinement technique for the numerical prediction
of tip vortex cavitation using the commercial CFD package Star-CCM+. Given the strong
dependence on the mesh resolution within the areas of interest, this study focused on mesh
refinement, and the effect of using field functions for adaptive meshing was investigated.
Validation of the developed process was then performed by comparing it with relevant
existing experimental data. The validated process was extended to scaled-up model
propellers and discussed. The cavitation inception scaling law was also examined for all
the small-scale and full-scale models. The capability of the developed refinement process in
capturing the minimum pressure within the tip vortex core and its suitability for different
types of hydrodynamic propulsors, at both model scale and full scale, are presented.

2. Development of the Mesh Refinement Process
2.1. Reference Experimental Propeller Model

In this study, a 5-bladed model-scale propeller tested by the Potsdam Propeller Test
Case (PPTC) [25] was employed to develop a numerical model. The model-scale propeller
was tested in both cavitating and non-cavitating conditions in the SVA Potsdam Model
Basin. The results were presented at the 2011 Symposium on Marine Propulsors (smp’11)
as validation data to aid the development of numerical methods for calculating the per-
formance of marine propulsors [25]. Here, case 2.3.2 from the cavitating experiments was
chosen as a basic case for the development of the refinement process, since, in this case, tip
vortex cavitation visibly occurred, as revealed in Figure 1 [25]. The flow test conditions are
given in Table 1.
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Table 1. Test conditions for case 2.3.2.

Parameter Unit Value

Propeller diameter (D) m 0.25

Advance ratio (J) - 1.269

Cavitation number (σn) - 1.424

Density (ρ) kg/m3 997.59

Dynamic viscosity (µ) Pa·s 9.4472 × 10−4

Inlet velocity m/s 7.93

Outlet pressure Pa 30,516.47

Propeller RPM - 1500

Vapor pressure (pv) (tw = 15
◦C) Pa 2771

2.2. Numerical Simulation

Numerical computations were performed using the flow solver STAR-CCM+ 13.04.011.
The simulations were run for steady-state conditions with a single water phase. The rotation
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of the propeller was modeled using a rotating reference frame. The RANS (Reynolds-
Averaged Navier–Stokes) K-Omega SST turbulence model was used with an all y+ wall
treatment. A single-blade passage was modeled using periodic boundaries, as the blades
were assumed to be identical. A polyhedral mesh was used for the propeller blade passage.
The computational domain is shown in Figure 2, with the size defined according to the
International Towing Tank Conference [26]. The single-blade passage boundaries are
illustrated in Figure 3.
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After the coarse mesh was created and the boundary conditions, numerical solution,
and initial conditions were set up, the computational technique used to predict tip vortex
patterns proceeded as follows:

Step 1: The solution was iterated until the convergence criteria were reached to obtain
the solution for the coarse mesh (1000 iterations were used).

Step 2: The results of the initial simulation were analyzed to identify regions with
significant flow features, such as regions with high velocity or pressure gradients (e.g.,
regions where tip vortex cavitation might occur).

Step 3: An adaptive mesh refinement technique [27] based on the local flow field was
used. A table using field function criteria specified the cell size and the xyz coordinate
position where the mesh region needed refinement. Subsequently, this table was used by
the mesh generation tool in Star-CCM+. This tool used the table to adjust the mesh, making
cells smaller in critical regions to capture more detail. After several iterations, the solution
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led to issues such as poor parallel processing efficiency and the creation of poor-quality
cells due to large cell volume gradients.

An alternative technique also based on adaptive mesh refinement was explored to
refine the mesh and capture the tip vortex core as follows:

Step 4: From an initial converged solution obtained on a coarse mesh in Step 1,
volumetric threshold parts based on field functions of interest were determined. Next, the
threshold parts were exported as STL files from the coarse converged solution.

Step 5: The STL files were imported into the initial solution from Step 1, and surface
wrapping was used to ensure a closed volume.

Step 6: The simulation was run until convergence was achieved, and refinements were
repeated iteratively, reducing the refinement cell sizes in each iteration until convergence
of the minimum vortex pressure was achieved.

The mesh refinement technique from Step 4 to Step 6 has numerous advantages
because the thresholds of scalars are easy to construct and export. Consequently, volumetric
refinements mesh efficiently in parallel, and the resulting mesh is of good quality, since
volumetric growth rates can be utilized. The computational procedures can be illustrated
with a flowchart, as shown in Figure 4.
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Figure 4. The computational procedures adopted in the current study.

Once the initial solution had been run on the initial coarse mesh, multiple field
functions were assessed to determine which could effectively delineate the tip vortex
region and which threshold values should be used. To ensure that the refinements would
only be applied to the blade tip, the field functions were filtered so they were only defined
within the region satisfying 0.8 < radial coordinate

propeller radius < 1.1. The field functions assessed were
the helicity, tangential vorticity, and absolute pressure, which are shown in Figure 5. From
the assessment, it was decided that a two-tier refinement strategy would be employed,
with refinements applied to the region with a tangential vorticity > 300 s−1 and a finer
refinement applied to the region with a vapor pressure (P) < 2771 Pa. The sizes of the
volumetric refinement cells were reduced by 25% in each iteration (i.e., D/320, D/640,
and D/960 for two, four, and six iterations, respectively). The volumetric refinements for
iterations two, four, and six are shown in Figures 6 and 7. As the mesh was refined, the
absolute pressure in the region of volumetric refinement grew, indicating that the tip vortex
was being resolved further downstream. Figure 8 shows the pressure coefficient and the
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mesh within the tip vortex, just downstream of the blade. It was observed that the vortex
core pressure decreased as the mesh was refined; i.e., the tip vortex was better resolved.
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Figure 9 shows the convergence of the total volume of cells below the vapor pressure
threshold throughout the refinement process. Annotations R1 to R6 denote the mesh
refinement iterations. Figure 10 shows the vortex core pressure coefficient at two locations
downstream of the propeller and the minimum pressure coefficient within the vortex
(Cpmin). Vortex monitoring locations 1 and 2 were on the plane that intersected the propeller
center line and were parallel to the x- and z-axes, with vortex location 2 occurring one
full propeller tip vortex rotation downstream. As seen in Figure 9, convergence of the
volume below the vapor pressure threshold was achieved by the fifth tip vortex mesh
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refinement (R5). Figure 10 shows that convergence was achieved for the vortex core
pressure coefficients at locations 1 and 2.
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2.3. Validation

Numerical models need to be validated by comparing them with experimental data.
Then, these numerical models can be used for further study. The open-water characteristics
and cavitation phenomena of controllable pitch propeller VP1304 were measured in cavi-
tation tunnel K15A of the Potsdam Model Basin [25]. A thrust coefficient (KT) of 0.2450
was obtained for the non-cavitating open-water case, while the computational KT value
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was 0.2458 for the finer mesh. The relative difference between the experimental test and
the computation was 0.33%. These values met the requirements of numerical simulation.
The computational wake pattern, including the complex roll-up phenomenon, was within
acceptable limits. The numerical results show that the mesh refinement technique proposed
in this paper could successfully simulate the extension of TVC and the roll-up phenomenon
of TVC in the propeller wake. While monitoring KT throughout the refinements, it was
observed that the tip vortex refinements did not have a significant impact.

3. Application of Mesh Refinement Process to Scaled-Up Propellers

The refinement process was applied to two scaled-up PPTC cases comprising medium-
and full-scale propellers. The propeller diameter was scaled up by factors of six and fifteen
to yield the medium- and full-scale propeller diameters, respectively. The simulation condi-
tions were obtained by ensuring the similarity of the Reynolds number and advance ratio,
as shown in Table 2. The fluid properties of the two larger propellers were representative
of seawater at 15 degrees.

Table 2. Scaled-up propeller dimensions and flow conditions.

Parameter Unit Model Scale Medium Scale Full Scale

D m 0.25 1.5 3.75

ρ kg/m3 997.59 1025.07 1025.07

µ Pa·s 9.4472 × 10−4 1.1030 × 10−3 1.1030 × 10−3

U∞ m/s 7.93 9.774 13.376

POut Pa 30,516.47 46,085.23 83,880.19

RPM - 1500 308.14 168.67

Vapor pressure (pv) (tw = 15 ◦C) Pa 2771 2771 2771

It was found that the tangential vorticity threshold value could be non-dimensionalized
using the propeller diameter and inlet velocity while maintaining the same relative refine-
ment volume at all scales. A normalized tangential vorticity threshold value of 9.5 was
employed in all cases. The absolute pressure threshold remained the same for all cases,
as the fluid vapor pressure was assumed to be unchanged. Figures 11 and 12 show the
monitored values throughout the refinement process for the full-scale propeller.
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The convergence behavior remained more or less unchanged compared with the
model-scale convergence, as shown in Figures 9 and 10; however, it can be seen that the
converged pressure coefficient values were lower for the full-scale propeller. To further
investigate these differences, the pressure coefficient was plotted through the tip vortex at
location 1 for both the scaled model and the full-scale propellers, as revealed in Figure 13.
The distance from the center of the vortex was normalized using the propeller diameter in
each case.
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Figure 13. A plot of Cp across the vortex core for (a) the scaled model and (b) the full-scale model.

These figures show that the vortex core pressures converged by R6, as there was very
little change between the R5 and R6 mesh plots. It was observed that the free-stream
pressure coefficient was the same in both cases, which was expected, as both were run
with the same cavitation number and the relative size of the vortex core remained the
same. It can be seen in Figure 12 that the minimum pressure coefficient was lower for the
full-scale propeller.
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4. Cavitation Inception Scaling

As the refinement process was applied to different propeller scales, a cavitation
inception scaling law could be investigated. Assuming the cavitation inception number (σi)
is −Cpmin, a scaling law can be defined according to Equation (1) [7].

σi,2

σi,1
=

−Cpmin,2

−Cpmin,1
=

(
Re2

Re1

)γ

(1)

where σi,1, Re1, and Cpmin,1 and σi,2, Re2, and Cpmin,2 are the cavitation numbers, Reynolds
numbers, and minimum pressure coefficients of the model-scale and full-scale propellers,
respectively, while γ is a scaling parameter. The cavitation number (σi) and the Reynolds
number are defined in Equation (2) and Equation (3), respectively, where ρ is the water
density; p is the reference pressure; pv is the vapor pressure; n is the revolution rate of
the propeller; D is the diameter of the propeller; U∞ is the velocity of upstream; ν is the
kinematic viscosity of water; and c0.7 is the chord length at r/R = 0.7. Note that the pressure
coefficient is defined in Equation (4).

σi =
p − pv

0.5ρ(nD)2 (2)

Re =

√
U2

∞ + (0.7πnD)2c0.7

v
(3)

Cpmin =
pmin − p

0.5ρ(nD)2 (4)

Many studies investigating the use of the appropriate scaling parameter (γ) have been
reported, and they can be compared with the results obtained using the refinement process.
The classic constant for γ was calculated by McCormick for a hydrofoil tip vortex and was
found to be 0.4 [28]. However, recent studies have shown that this value is only applicable
to the laminar flow regime and that γ should increase with the Reynolds number [7]. The
equation for γ based on the turbulent boundary layer theory is shown in Equation (5),
which is dependent on Re [7].

γ =
5.16 log

(
log Re2
log Re1

)
log

(
Re2
Re1

) (5)

Table 3 shows the Re and tip vortex (Cpmin) values obtained from the refinement
process for the three propeller scales. Table 4 shows the γ values obtained from the
refinement process and from Equation (5).

Table 3. Re and tip vortex (Cpmin) values for the three propeller scales.

Parameter Model Scale Medium Scale Full Scale

Re 1.745 × 106 18.91 × 106 38.87 × 106

Tip Cpmin −2.514 −3.510 −3.869

Table 4. Comparison between the scaling law obtained using CFD and Shen’s scaling law (Equation (5)).

Re1 Re2 Re Ratio
γ

Present Study CFD Equation (5) [2]

18.91 × 106 38.87 × 106 2.056 0.135 0.302

1.745 × 106 18.91 × 106 10.837 0.140 0.332

1.745 × 106 38.87 × 106 22.275 0.139 0.325
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It can be seen that the values obtained from the refinement process were much lower
than the classic value of 0.4, as the flow within the propeller tip vortex in this Re range
was highly turbulent. The γ values obtained from the refinement process were also lower
than those predicted by Equation (2). However, the trend was the same, indicating that the
refinement process results captured the Re dependency of the scaling law. Hsiao et al. [6]
performed a CFD study on small, medium, and large propellers, representing Re numbers
of 2.09 × 106, 4.19 × 106, and 8.38 × 106, respectively, using both RANS and DNS (Direct
Numerical Simulation) approaches. γ values of 0.33 and 0.15 were obtained for moving
from small to medium scales and from medium to large scales, respectively, using RANS.
The DNS approach yielded lower Cpmin values, and γ values of 0.22 and 0.11 were obtained.
These results also displayed a general trend for γ to decrease as Re increased. As the
simulations of the refinement process were performed at larger Re values, the values
obtained using the refinement process were not unreasonable when compared with the
higher Re scaling values of 0.15 (RANS) and 0.11 (DNS) obtained by Hsiao et al. It must
be noted that only single-phase simulations were run in this study, and there is evidence
that γ can be adjusted closer to the classic value of 0.4 when nuclei effects are modeled,
provided that a statistical cavitation inception criterion is used and is not too stringent [6].

This study introduces an alternative approach to cavitation inception scaling using
Computational Fluid Dynamics (CFD). By employing a mesh refinement process in CFD
simulations, we can capture the minimum pressure coefficient (Cpmin) at the vortex core
across different propeller scales. This allows for the derivation of a scaling law that is
adaptable to various flow regimes and propeller sizes. The scaling law for cavitation
inception can be defined as:

σi2 = σi1

(
Re1

Re2

)γ

(6)

Using CFD-based simulations, the scaling parameter is determined based on the
Reynolds number and the minimum pressure coefficient. Our findings indicate that as the
Reynolds number increases, the value of γ decreases, diverging from McCormick’s classic
value of 0.4, particularly in turbulent-flow regimes. For instance, the scaling parameter
derived from the mesh refinement process was found to be significantly lower, consistent
with recent research that incorporates turbulent boundary layer theory.

Table 3 presents the Reynolds numbers and Cpmin values obtained for the model,
medium, and full-scale propellers using the CFD refinement process. The γ values com-
puted using these data are shown in Table 4 and compared against Shen’s scaling law. The
results from the CFD simulations highlight a decreasing trend in γ with the increasing
Reynolds number, aligning with trends observed in recent analytical and numerical studies.

The key advantage of the CFD-based scaling approach lies in its flexibility and adapt-
ability. Unlike traditional experimental scaling laws, which may not fully capture the
complexity of real-world cavitation phenomena at larger scales, the CFD-based method can
account for a broader range of flow conditions, including those with high turbulence or com-
plex geometries. Moreover, the CFD refinement process provides detailed insights into the
pressure distribution and vortex dynamics, which are difficult to measure experimentally,
particularly in full-scale applications.

5. Conclusions

This study successfully developed and validated a mesh refinement process for pre-
dicting tip vortex cavitation (TVC) using the commercial CFD package STAR-CCM+. The
refined mesh process demonstrated its ability to accurately capture the minimum pressure
within a vortex core and effectively simulate TVC for different propeller scales. Based on
the results of this study, the following conclusions can be drawn:

• The process achieved acceptable agreement with the experimental data, validating the
numerical model in non-cavitation conditions.

• The mesh refinement process is applicable to both model-scale and full-scale propellers,
maintaining consistency in relative refinement volume and convergence behavior.
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• The converged Cpmin values obtained using the refinement process were gradually
reduced when the scale and the Re values were increased, which allowed for the
cavitation inception scaling parameter (γ) to be predicted. The scaling parameter
obtained from the refinement process grew smaller with increasing Re values, which
was in line with recent analytical and numerical studies.

Some limitations persist in CFD-based scaling, particularly in accurately modeling
nuclei effects and unsteady flow interactions, which can significantly influence cavitation
inception. While the results presented in this study demonstrate the effectiveness of CFD
in capturing tip vortex cavitation behavior, further research is necessary to refine the
turbulence models and incorporate multi-phase flow simulations to improve the accuracy
of scaling predictions.
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