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Abstract: This study investigates mixed convection flow over a vertical thin needle with
variable surface heat, mass, and microbial flux, incorporating the influence of gyrotactic
microorganisms. The governing partial differential equations are transformed into ordi-
nary differential equations using appropriate similarity transformations and then solved
numerically by employing MATLAB’s Bvp4c solver. The primary focus lies in examining
the influence of various dimensionless parameters, including the mixed convection param-
eter, power-law index, buoyancy parameters, bioconvection parameters, and needle size
parameters, on the velocity, temperature, concentration, and microbe profiles. The results
indicate that these parameters significantly affect the surface (wall) temperature, fluid
concentration, and motile microbe concentration, as well as the corresponding velocity,
temperature, concentration, and microorganism profiles. The findings provide insights into
the intricate dynamics of mixed convection flow with bioconvection and have potential
applications in diverse fields such as biomedicine and engineering.

Keywords: mixed convection; bioconvection; gyrotactic microorganisms; thin needle flow;
mathematical modelling and solution

1. Introduction
Researchers have devoted increasing attention to studying mixed convection in recent

years due to its significant role in numerous technological and industrial applications.
Mixed convection, which combines both forced and free convection, occurs when fluid flow
is influenced by both external mechanical forces (such as pumps or fans) and buoyancy
forces arising from temperature differences within the fluid. This phenomenon is crucial in
many systems where heat transfer efficiency plays a key role in operational performance.
Examples include heat exchangers operating in low-velocity environments, solar collectors
exposed to wind currents, and emergency cooling systems for nuclear reactors. In these
scenarios, controlling and optimizing the heat transfer process are essential for safety
and efficiency. Mixed convection is often observed in environmental processes, such as
atmospheric boundary layer flows, and industrial systems, like cooling technologies used
in reactors and electronics. The growing interest in mixed convection is largely driven
by its significance in numerous practical engineering applications, as demonstrated by
various studies.

Nasir et al. [1] examined stagnation-point flow and heat transfer over a permeable
quadratically stretching or shrinking sheet, emphasizing the importance of mixed convec-
tion in optimizing fluid flow and heat transfer around complex surfaces. This study is
particularly relevant for manufacturing processes such as material extrusion and coating.
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Aly and Raizah [2] explored mixed convection in an inclined nanofluid-filled cavity satu-
rated with a partially layered porous medium, shedding light on how mixed convection
in porous structures can enhance thermal efficiency in systems like solar collectors and
insulation technologies. Similarly, Rashid et al. [3] conducted a numerical investigation of
magnetohydrodynamic hybrid nanofluid flow over a stretching surface, focusing on the
impact of mixed convection and strong suction in improving heat transfer efficiency. Their
study is crucial for advanced cooling systems and magnetic field control applications, such
as electronics and magnetic resonance technologies. These studies collectively demonstrate
the broad applicability of mixed convection in enhancing heat transfer and fluid flow
performance across diverse engineering systems.

Numerous researchers, such as Raju et al. [4] and Ahmad et al. [5], have focused on
studying mixed convection over various types of surfaces to understand the interaction
between forced convection, driven by external forces, and natural convection, which is
buoyancy-induced. The primary factor that governs this interaction is heat flux—the rate at
which heat energy transfers across a surface. In mixed convection flows, managing heat flux
is vital as it directly influences temperature distribution within the fluid and along solid
boundaries. Heat flux dictates the overall efficiency of heat exchange in applications such as
HVAC systems, geothermal energy extraction, and electronics cooling. The analysis of heat
flux is particularly important in boundary layer studies, where the fluid’s temperature and
velocity profiles change rapidly near solid surfaces. In these regions, the complex interplay
between buoyancy and mechanical forces can lead to intricate heat transfer patterns that are
challenging to predict. By understanding and controlling heat flux, engineers can develop
more efficient thermal systems that optimize heat dissipation or retention, depending on
the requirements of the specific application. Heat flux and mixed convection studies have
shown their importance in various manufacturing processes, especially where uniform or
non-uniform heat distribution affects product quality and efficiency. For instance, Ahmed
et al. [6] recently investigated mixed convective Williamson fluid flow with variable thermal
conductivity, providing insights into how changes in material properties affect heat transfer.
Similarly, Everts et al. [7] examined forced convective flow through a horizontal tube with
constant surface heat flux, offering valuable information for designing more efficient heat
exchanger systems.

Beyond conventional heat transfer studies, bioconvection introduces additional com-
plexity by involving self-propelled microorganisms that actively influence flow behaviour.
Bioconvection in fluid dynamics refers to the phenomenon where self-propelled microor-
ganisms, such as algae and bacteria, react with oxygen gradients (oxytaxis), rotation
(gyrotaxis), or gravity. Motile bacteria swim upwards in the system due to their greater
density compared to the surrounding liquid. This behaviour results in the development of
diverse flow patterns, as extensively documented in studies conducted by Khan et al. [8],
Saleem et al. [9], Mahdy et al. [10], and others. Researchers have also investigated nanofluid
bioconvective flow around various geometric configurations. Gyrotactic bacteria play a
crucial role in bioconvection by coordinating group movements that substantially impact
ecological dynamics. Their navigational proficiency in locating nutrient-abundant areas
plays a role in the transportation of nutrients, affecting the spatial arrangement of microor-
ganisms in aquatic habitats. The bioconvection patterns that are created also contribute
to the biological pump by enabling the upward movement of organic materials and nu-
trients. Moreover, the ability of gyrotactic microorganisms to respond to light gradients
improves their capacity to perceive and understand their surroundings. In addition to eco-
logical ramifications, examining these microorganisms offers a significant understanding
of thermo-bioconvection, microbial augmentation, bio-microsystems, biofuels, and other
bioengineering systems.
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Several studies have explored the impact of gyrotactic microorganisms on mixed
convective nanofluid flows across various geometries. Sudhagar et al. [11] investigated
how gyrotactic microorganisms influence mixed convective nanofluid flow past a vertical
cylinder, emphasizing their role in modifying heat transfer characteristics. Mallikarjuna
et al. [12] extended this study by studying mixed bioconvection flow around a vertical
slender cylinder, highlighting the intricate dynamics introduced by gyrotactic microor-
ganisms in nanofluids. Rashad and Nabwey [13] further analyzed the gyrotactic mixed
bioconvection flow of nanofluids around a circular cylinder with convective boundary
conditions, providing insights into boundary layer behaviour. Mahdy [14] examined the
unsteady mixed bioconvection of Eyring–Powell nanofluid containing motile gyrotactic
microorganisms near a stretching surface, contributing to understanding complex flow
behaviour in bioconvective systems.

Similarly, Waqas et al. [15] investigated magneto-Burgers nanofluid flow with motile
microorganisms near a stretching cylinder or plate, focusing on stratified flows and variable
thermal conductivity. Most recently, Bilal et al. [16] conducted a comparative study on the
heat transfer characteristics of Carreau nanofluids containing gyrotactic microorganisms,
providing new insights into the role of fluid rheology and microorganism behaviour in
optimizing thermal systems. Alharbi et al. [17] investigated the importance of gyrotactic
microorganisms in a tangent hyperbolic nanofluid flowing across a thin surface. Alam
et al. [18] studied gyrotactic microbial flow under thermal radiative conditions over a
dual-stretched surface. In recent studies, Khan et al. [19] and Yasmin [20] investigated
hydromagnetic bioconvection flow with nanofluid over stretching surfaces. The effect of
Stefan blowing and gyrotactic bacteria on bio-nano convective flow past a needle is reported
by Beg et al. [21]. These studies collectively demonstrate the significance of incorporating
gyrotactic microorganisms in enhancing nanofluid heat transfer performance in various
industrial applications.

Building on the role of gyrotactic microorganisms in fluid dynamics, researchers have
also focused on the unique flow characteristics surrounding a thin needle, which has signif-
icant applications in biomedical and engineering fields, including cancer treatment and
transdermal medicine delivery. Experimental research on momentum and heat transfer by
analyzing slender needle flow is essential. This phenomenon arises due to the movement of
the needle, which causes disturbances in the flow of the free stream. Thus, this topic is vital
for hot anemometers used to measure wind velocity, transportation systems, geothermal
power generation, fibre technology, lubrication, aerospace, wire coating, metal spinning,
micro/nanoscale equipment, and underground nuclear waste disposal. Thin needles have
paraboloids of revolution geometry and are thinner than boundary layer thickness. Grosan
and Pop [22] were the first to study nanoparticles’ effect on thin needle flow. Soid et al. [23]
applied this to a needle in a nanofluid. Hayat et al. [24] studied nano-liquid flow where a
thin needle near a stagnation point changed surface heat flux. Ali et al. [25] studied mixed
convective nanofluid flow over a needle. Salleh et al. [26] examined how a heat source and
a chemical reaction affect nanofluid flow around a thin needle in a stability analysis. Waini
et al. [27] studied hybrid nanofluid flow through a thin needle.

So far, research on free or mixed convection boundary layer flow over vertical thin
needles has primarily focused on stationary needles in a viscous, incompressible fluid.
Previous studies have largely examined heat and mass transfer under isothermal or non-
isothermal conditions, considering constant and variable wall heat flux. However, the
analysis presented here addresses a critical gap in the recent literature by analyzing the
influence of gyrotactic microorganisms on mixed convection flow over a thin needle under
variable surface heat, mass, and microbial flux conditions. This framework is distinct due
to its integration of bioconvection dynamics, particularly the complex interactions between
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mixed convection and microbial motility, using the Darcy model and introducing new
similarity transformations and dimensionless quantities. The present study assists the
existing literature in responding to the following questions:

1. How do variable surface fluxes influence the heat and mass transfer characteristics in
mixed bioconvection flow around vertical thin needles?

2. How do the values of the mixed convection parameter influence flow profiles and
describe the transition from forced convection to mixed convection behaviour with
variations in velocity, temperature, concentration, and microorganism distribution?

3. How can the motility rate, heat and mass transfer rates, and flow rate be influenced by
different emerging parameters such as mixed convection and buoyancy parameters?

4. How do different bioconvection parameters, such as Peclet and Bioconvection Lewis
numbers, influence the overall efficiency of heat and mass transfer?

5. How do variations in needle size affect the flow dynamics and heat transfer character-
istics in mixed bioconvection around vertical thin needles?

6. How do transient effects impact the flow behaviour and heat transfer characteristics
when transitioning from isothermal to non-isothermal conditions?

In addressing the research question of how mixed convection parameters influence
flow profiles and the transition from forced convection to mixed convection behaviour,
this study aims to utilize the Darcy model to explore the behaviour of gyrotactic microor-
ganisms around thin needles. This analysis encompasses various needle sizes and both
isothermal and non-isothermal conditions. It also examines how different bioconvection
parameters impact the flow profile and transition dynamics. The Darcy model is advanta-
geous for fluid flow analysis as it simplifies the complex interactions of microorganisms
and fluid dynamics, making it easier to implement and interpret than more complicated
models. Additionally, this study introduces new dimensionless quantities and similarity
transformations for simulation, enhancing its novelty and uniqueness. Including variable
surface heat flux in the boundary conditions is crucial, as it directly impacts heat trans-
fer efficiency and affects the behaviour of motile microorganisms around the needle. By
examining these interactions with the Darcy model, the study aims to provide valuable
insights into heat, mass, and motile microbe flux dynamics over thin needles. The findings
have potential applications across various industries, including food and pharmaceuticals,
chemical processing equipment, fuel cell technology, and enhanced oil recovery.

The remainder of this manuscript is structured as follows: Section 2 details the mathe-
matical model and governing equations for the mixed convection flow around a thin needle,
while Section 3 describes the numerical methods used to solve these equations. Section 4
presents the results and an in-depth discussion of the findings, and finally, Section 5
provides conclusions and suggests potential avenues for future research.

2. Model Formulation
Following the Introduction Section, this section outlines the mathematical model

governing the mixed convection flow around a vertical thin needle with gyrotactic microor-
ganisms. This study examines the 2-D laminar flow of a fluid surrounding a vertical thin
needle. A needle is deemed thin when its thickness is not greater than the boundary layer
that forms over it. The flow is influenced by variations in heat, mass, and the movement
of microorganisms. Additionally, the presence of gyrotactic bacteria is taken into account.
Figure 1 provides a visual representation of the computational domain and the system’s
configuration. A vertical, thin needle defined by a radius r∗ = R∗(x∗) is displayed along-
side the flow model with system coordinates; where the −x∗ axis is measured from the
leading edge of the needle, and the axial and radial coordinates x∗ and r∗ correspond to

↼
u
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and
↼
v , respectively. Variable mainstream velocity is considered to be Ue

(←
x
∗)

subject to

the variable heat flux
↼
q w(

↼
x
∗
), mass flux

↼
q c(

↼
x
∗
), and motile microbial flux

↼
q I(

↼
x
∗
).
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In the Darcy model, the fluid flow through porous media is described focusing on
the relationship between pressure gradients and fluid velocity. In the context of mixed
convection flows around vertical thin needles, it simplifies analysis by assuming that flow
is primarily governed by viscous forces rather than inertial effects. The model establishes a
linear relationship between flow velocity and pressure gradient, allowing for the incorpora-
tion of buoyancy forces βT , βc, β I , which are significant in systems involving gyrotactic
microorganisms. The Boussinesq approximation facilitates the analysis of buoyancy-driven
flows by postulating that density variations are negligible except for their influence on the
buoyancy force, which is considered variable otherwise. This assumption enables a more
accurate formulation of the governing equations, rendering it particularly advantageous in
the context of mixed convection flows around vertical thin needles. Under these assump-
tions along with the physical phenomena and Boussinesq approximations, the governing
dimensional equations in cylindrical coordinates are as follows:

∂

∂
↼
x
∗ (

↼
r
∗↼

u ) +
∂

∂
↼
r
∗ (

↼
r
∗↼

v ) = 0 (1)

∂
→
u

∂
⇀
r
∗ =

gKµ

ρ

βT
∂
↼
T

∂
↼
r
∗ + βc

∂
↼
C

∂
↼
r
∗ + β I

∂
↼
I

∂
↼
r
∗

 (2)

⇀
u

∂T

∂
↼
x
∗ +

↼
v

∂T
∂r∗

= α
1
↼
r
∗

∂

∂
↼
r
∗ (

↼
r
∗ ∂

↼
T

∂
↼
r
∗ ) (3)

⇀
u

∂
↼
C

∂
↼
x
∗ +

↼
v

∂
↼
C

∂r∗
= Dc

1
↼
r
∗

∂

∂
↼
r
∗ (

↼
r
∗ ∂

↼
C

∂
↼
r
∗ ) (4)
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⇀
u

∂
↼
I

∂
↼
x
∗ +

↼
v

∂
↼
I

∂r∗
+

b∗Mc

∇
↼
C

(
∂

∂r∗
(
↼
I

∂
↼
C

∂
↼
r
∗ ) = DI

1
↼
r
∗

∂

∂
↼
r
∗ (

↼
r
∗ ∂

↼
I

∂
↼
r
∗ ) (5)

The corresponding boundary conditions are as follows:

↼
v = 0,

∂
↼
T

∂
↼
r
∗ = −

↼
q w(

↼
x
∗
)

k
,

∂
↼
C

∂
↼
r
∗ = −

↼
q c(

↼
x
∗
)

Dc
,

∂
↼
I

∂
↼
r
∗ = −

↼
q I(

↼
x
∗
)

DI
at

↼
r
∗
=

↼
R
∗
(
↼
x
∗
) (6)

↼
u =

↼
Ue(

↼
x
∗
),

↼
T →

↼
T ∞,

↼
C →

↼
C∞,

↼
I →

↼
I ∞ at

↼
r
∗
→ ∞ (7)

Here,
↼
T ,

↼
C ,

↼
I are the dimensional temperature, concentration, and volume fraction of

motile microorganisms, respectively. K is the permeability of the porous medium, µ is the
fluid viscosity, ρ is the density of the fluid, g is the acceleration due to gravity, β is the
thermal expansion coefficient, α is the effective thermal diffusivity of the porous medium, k
is the thermal conductivity of the fluid, Dc is the solute diffusivity, and DI is the diffusivity
of the microorganism.

The formulation of the microorganism equation above integrates fluid dynamics with
microbial behaviour, using parameters such as the chemotaxis constant, b∗, and microbial
cell speed, Mc, to describe how microorganisms move and proliferate in response to their
environment. The cell swimming speed indicates how quickly microorganisms can navigate
through the fluid, impacting their ability to respond to environmental changes. Meanwhile,
the microorganism diffusivity, DI , accounts for the random movement of microorganisms,
which is essential for modelling their dispersion in the fluid.

The dimensional governing Equations (1)–(5), subject to boundary conditions (6) and (7),
are nondimensionalized by following Beg et al. [21] and by incorporating characteristic
length scale L and velocity scale U∞ as listed below:

x∗ =
x∗

L
, r∗ = Pe∗

1
2

r∗

L
, u =

u
U∞

, v = Pe∗
1
2

v
U∞

, R∗(x∗) = Pe∗
1
2

R∗(x∗)
L

, r∗ = Pe∗
1
2

r∗

L
,

Ue(x∗) =
Ue(

↼
x
∗
)

U∞
= x∗2m∗−1, T =

kPe∗
1
2
(
T − T∞

)
↼
q wL

, C =
DcPe∗

1
2
(
C− C∞

)
↼
q cL

, I =
DiPe∗

1
2 I

↼
q iL

,

qw(x∗) =
qw(

↼
x
∗
)

k
= x∗

3m∗−2
, qc(x∗) =

qc(
←
x
∗
)

Dc
= x∗

3m∗−2
, qi(x∗) =

qi(
↼
x
∗
)

Di
= x∗

3m∗−2
(8)

For a vertical thin needle, L is the length of the needle, and U∞ is the reference
free-stream velocity.

The stream function, ψ, is defined as follows:

u =
1
r∗

∂ψ

∂y
, v = − 1

r∗
∂ψ

∂x
(9)

Using (8, 9), the resulting transformed equations are as follows:

1
r∗

∂2ψ

∂r∗2
= ε3[

∂T
∂r∗

+ Nc
∂C
∂r∗

+ Nm
∂I
∂r∗

] (10)

1
r∗

∂ψ

∂r∗
∂T
∂x∗
− 1

r∗
∂ψ

∂r∗
∂T
∂r∗

=
1
r∗

∂

∂r∗
(r∗

∂T
∂r∗

) (11)

Le[
1
r∗

∂ψ

∂r∗
∂C
∂x∗
− 1

r∗
∂ψ

∂r∗
∂C
∂r∗

] =
1
r∗

∂

∂r∗
(r∗

∂C
∂r∗

) (12)

Lb[
1
r∗

∂ψ

∂r∗
∂I

∂x∗
− 1

r∗
∂ψ

∂r∗
∂I
∂r∗

] + Pe[
∂

∂r∗
(I

∂C
∂r∗

)]
1

x∗2m−1 =
1
r∗

∂

∂r∗
(r∗

∂I
∂r∗

) (13)
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The boundary conditions are as follows:

1
r∗

∂ψ

∂x∗
= 0,

∂T
∂r∗

= −qw(x∗),
∂C
∂r∗

= −qc(x∗),
∂I
∂r∗

= −qi(x∗) at r∗ = R∗(x∗) (14)

1
r∗

∂ψ

∂r∗
= Ue(x∗), T → T∞, C → C∞, I → 0 at r∗ → ∞ (15)

To better aid in interpreting the dimensionless parameters governing mixed biocon-
vection around a thin vertical needle, Table 1 summarizes the key dimensionless Pi-groups
and their physical significance within the context of this study.

Table 1. Defining dimensionless parameters.

Dimensionless
Parameters Symbol Definition Brief Explanation

Rayleigh number Ra R = gβTqwKL2

να

Characterizes the flow regime in buoyancy-driven
(free) convection

Peclet number Pe∗ Pe∗ = U∞ L
α

The ratio of the rate of advection (transport due to fluid
motion) to the rate of diffusion (transport due to
concentration or temperature gradients), which is
crucial for analyzing forced convection processes

Mixed convection
parameter ε ε = Ra

1
3

Pe∗
1
2

Ratio of free convection dominating parameter Ra and
forced convection dominating parameter Pe. When free
convection is absent, then, ε ≈ 0, which means the
region is force convention-dominated.

Concentration-induced
buoyancy ratio parameter Nc Nc =

βcqck
βTqwDc

Compares buoyancy forces due to concentration
differences to viscous forces

Microorganism-induced
buoyancy ratio parameter Nm Nm = βnqik

βTqwDi

Compares buoyancy forces due to microbial density
differences to viscous forces

Lewis number Le Le = α
Dc

Relates the rate of momentum diffusion to
thermal diffusion

Bioconvection Lewis
number Lb Lb = α

Di

Compare the rates of diffusion of microorganisms to the
thermal diffusion rate

Bioconvection Peclet
number Pe Pe = b∗Mc

Di

Represents the relative importance of convection to
diffusion for microorganisms

Power-law exponent m∗ - Describes how viscosity changes with shear rate based
on needle shape

Needle size parameter p - Relates to the scale of interaction between the needle
and fluid

Similarity transformations are now as follows:

ξ = x∗m
∗−1r∗, ψ = x∗ f (ξ), T = x∗2m∗−1θ(ξ), C = x∗2m∗−1ϕ(ξ), I = x∗2m∗−1χ(ξ)

Setting ξ = p, the relationship ξ = r∗

x∗(1−m∗) explains the body’s shape and size with

its surface assumed by R∗(x∗) = px∗(1−m∗), where m∗ = 1 is a cylinder, m∗ = 0.5 is a
paraboloid (blunt-nosed shape), and m∗ = 0 is a cone.

Next, the transformations of ordinary differential equations are as follows:

f ′′ = (ε)3ξ[θ′ + Ncϕ′ + Nmχ′] (16)

ξθ′′ + θ′ + f θ′ − (2m∗ − 1) f ′θ = 0 (17)
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ξφ′′ + φ′ + Le. f φ′ − (2m∗ − 1)Le. f ′ϕ = 0 (18)

ξχ′′ + χ′ + Lb. f χ′ − Lb.(2m∗ − 1) f ′χ− Pe(ξϕ′χ′ + χφ′ + ξϕ′′ ) = 0 (19)

The modified boundary conditions are as follows:

ξ = p, f (p) = 0, θ′(p) = −1, ϕ′(p) = −1, χ(p) = −1 and (20)

ξ → ∞, f ′ → p, θ → 0, ϕ→ 0, χ→ 0 (21)

The definitions of surface temperature Tw, surface fluid concentration Cw, and surface
motile microorganism concentration Iw are as follows:

Tw =
kPe

1
2 (Tw − T∞)
↼
q wL

, Cw =
DcPe

1
2 (Cw − C∞)
↼
q cL

, Iw =
DiPe

1
2 Iw

↼
q iL

Finally, using nondimensional and similarity transformations,

T = x∗2m∗−1θ(p), C = x∗2m∗−1ϕ(p), I = x∗2m∗−1χ(p)

3. Numerical Method
To solve the governing equations developed in Section 2, this section presents the

numerical approach adopted for analyzing mixed bioconvection around a vertical thin
needle, utilizing MATLAB’s bvp4c solver and Maple’s dsolve algorithm.

In solving boundary value problems (BVPs) using MATLAB’s bvp4c function, the first
step involves defining the system of ordinary differential equations (ODEs) representing
the problem. Equation (7)–(10) can be rearranged as follows:

f ′′ = ε3ξ[θ′ + Ncϕ′ + Nmχ′]

θ′′ = −θ′− f θ′+(2m∗−1) f ′θ
ξ

ϕ′′ = −ϕ′−Le f ϕ′+(2m∗−1)Le f ′ϕ
ξ

χ′′ = −χ′−Lb f χ′+(2m∗−1)Lb f ′χ+Pe(ξϕ′χ′+χϕ′+ξϕ′′ )
ξ

The MATLAB bvp4c function works based on the following workflow for solving
boundary value problems for ordinary differential equations (ODEs):

1. Function Structure: The syntax for bvp4c is sol = bvp4c(odefun, bcfun, solinit).

# odefun: A function that defines the system of ordinary differential equations.
It should accept the independent variable (typically denoted as x) and a vector
of dependent variables (denoted as y) and return the derivatives of y.

# bcfun: A function that specifies the boundary conditions. It returns the residu-
als for the boundary conditions, ensuring they are satisfied at the endpoints of
the interval.

# solinit: An initial guess for the solution structure, which is crucial for the
convergence of the numerical method.

2. Initial Solution Guess: solinit is an essential aspect of using bvp4c. Providing a good
initial guess helps the solver converge to the correct solution.

3. Transforming to First-Order Equations: Since bvp4c requires the governing equations
to be expressed as a system of first-order ODEs, any higher-order equations must be
rewritten accordingly. For this, let ξ = p and

s1 = f , s2 = f ′, s3 = θ, s4 = θ′, s5 = ϕ, s6 = ϕ′, s7 = χ, s8 = χ′



Dynamics 2025, 5, 2 9 of 21

Then, the differential equations of the first-order are as follows:

dh1
dx = f ′ = s2

dh2
dx = f ′′ = ε3 p[s4 + s6Nc + s8Nm]

dh4
dx = θ′′ = −s4−s1s4+(2m∗−1)s2s3

p

dh6
dx = ϕ′′ = −s6−s1s6Le+(2m∗−1)s2s5Le

p

dh8
dx = χ′′ = −s8−s1s8Lb+(2m∗−1)s2s8Lb+Pe(ps6s8+s7s6+s7(−s6−Les1s6+(2m∗−1)Les2s5))

p

The boundary conditions are defined by ya∗ as the left boundary and yb∗ as the right
boundary.

ya∗(1) = 0, yb∗(2)− p = 0
ya∗(4) + 1 = 0, yb∗(3) = 0
ya∗(6) + 1 = 0, yb∗(5) = 0
ya∗(8) + 1 = 0, yb∗(7) = 0

4. Mesh Selection and Error Control: bvp4c automatically generates a mesh (grid of
points) to evaluate the solution. It adapts the mesh based on the behaviour of the
solution, refining it in regions where rapid changes occur. Error control is managed
by analyzing the residuals of the continuous solution, allowing the solver to adjust
the mesh and ensure that the solution is within a specified tolerance.

5. Output Structure: The output sol is a structure containing the solution information,
including the mesh points and the corresponding values of the dependent variables.
The solution can be evaluated at any point in the interval using the deval function,
which interpolates the solution.

To validate the findings, the differential equations are once again solved numerically
using Maple’s algorithm. Here is a detailed explanation of how the Maple algorithm
operates in this context:

1. Symbolic vs. Numerical Solutions: The dsolve command in Maple can provide both
symbolic and numerical solutions. In the case of symbolic solutions, Maple attempts
to find an exact expression for the solution of the differential equations.

2. Defining the Problem: To use dsolve, users must first define the differential equations
along with any initial or boundary conditions. The equations can be entered in a
format that Maple recognizes, and the boundary conditions can be applied directly
within the dsolve command.

3. Setting boundary conditions: In the present study, the asymptotic boundary conditions
are specified by setting the similarity variable ξmax to a value of 5. This adjustment
allows for the analysis of the behaviour of the solution as it approaches the boundary
limits. The similarity variable is often used to reduce the number of independent
variables in the equations, simplifying the problem.

4. Solving the Equations: After defining the equations and boundary conditions, the
dsolve command processes the input and generates the solution. If a symbolic solution
is feasible, Maple will provide it in a closed form; otherwise, it may offer a numerical
approximation.

5. Output and Interpretation: The output from dsolve includes the solution(s) to the
differential equations, which can be further analyzed or visualized.

This comparison serves to validate the results and ensure consistency across different
computational approaches. The outcomes for both situations are presented in Table 2,
which demonstrates strong concordance and precision in numerical computations.
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Table 2. Comparison results of f ′(p), θw(p), ϕw(p), χw(p) when ε = 0.5, Nc = 0.5, Nm = 0.3, Le = 1,
Lb = 0.3, and Pe = 0.5.

p m*
f ′(p)
(MATLAB
Bvp4c)

f ′(p)
(Maple
Algorithm)

θw(p)
(MATLAB
Bvp4c)

θw(p)
(Maple
Algorithm)

ϕw(p)
(MATLAB
Bvp4c)

ϕw(p)
(Maple
Algorithm)

χw(p)
(MATLAB
Bvp4c)

χw(p)
(Maple
Algorithm)

0.1 0.5 0.180423 0.180422 0.339327 0.339334 0.339327 0.339334 0.338872 0.338878

1.0 0.161941 0.161940 0.288509 0.288513 0.288509 0.288513 0.316816 0.316818

0.2 0.5 0.331971 0.331970 0.503218 0.503222 0.503218 0.503222 0.505191 0.505193

1.0 0.294243 0.294243 0.400586 0.400591 0.400586 0.400591 0.454692 0.454695

An error analysis is performed to assess the additional accuracy of the obtained
findings from the MATLAB Bvp4c and Maple schemes, and the results are appended in
Table 3. The small error percentage shows that the method is reasonably accurate in this
particular problem.

Table 3. Error percentage.

p m* f ’(p) θw(p) ϕw(p) χw(p)

0.1 0.5 0.000554 0.002062 0.002062 0.001770

1.0 0.000617 0.001386 0.002062 0.000627

0.2 0.5 0.000301 0.000794 0.000794 0.000395

1.0 0.000000 0.001248 0.001248 0.000659

To perform error analysis between MATLAB Bvp4c and Maple scheme, absolute and
relative errors were calculated using the following formulas:

Absolute error = |NMAPLE − NBVP4C|

Relative error =
|NMAPLE − NBVP4C|

Max(|NMAPLE|, |NBVP4C|)

The percentage error is then calculated, expressing the relative error as a percentage,
which is often easier to interpret and compare.

Percentage Error =
|NMAPLE − NBVP4C|

Max(|NMAPLE|, |NBVP4C|)
× 100

These above formulas allow for quantifying the error between the two methods,
facilitating the comparison and validation of numerical results.

4. Analysis and Interpretation of the Outcome
This section provides an analysis of the numerical results obtained from the governing

equations, with a focus on the impact of key parameters on flow characteristics, heat
transfer, and microorganism distribution around the vertical thin needle.

Before presenting the results, the numerical methodology employed in this study has
been validated by comparing the results with canonical data reported by Lai et al. [28]
on coupled heat and mass transfer in porous media. Specifically, Figure 2 presents a
comparison of the Nusselt number (Nu) as a function of the buoyancy ratio (N) for three
different Lewis numbers: Le = 0.1, 1.0, and 10.0. The results from the present numerical
solution, obtained using MATLAB’s bvp4c solver, show excellent agreement with the
benchmark data, capturing the trends and magnitudes across the entire range of N. This



Dynamics 2025, 5, 2 11 of 21

comparison demonstrates the capability of the current solver to handle coupled thermal
and concentration gradients in porous media with high accuracy. The close alignment of
results validates the robustness and reliability of our numerical approach and reinforces its
applicability to the complex mixed convection flow considered in this study.
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for the cylinder.

4.1. Analysis of Velocity Profile

Figures 3 and 4 show the distribution of the velocity profile for various values of
the buoyancy parameter Nc and the mixed convection parameter ε. In both isothermal
(m* = 0.5) and non-isothermal (m* = 1.0) needle scenarios, as shown in Figures 3a and 4a,
and across different needle sizes, as depicted in Figures 3b and 4b, the velocity profile
increases as the values of Nc and ε rise. This increase is driven by the buoyant forces that
enhance fluid motion. When the mixed convection parameter is closer to zero, it indicates
that the flow is primarily dominated by forced convection, where external forces, such as
a pump or an imposed velocity, mainly drive the fluid motion. In this regime, the effects
of buoyancy are minimal, and the velocity profiles reflect the influence of these external
forces. As the mixed convection parameter increases, it signifies a transition towards a
combined free and forced convection regime. In this context, buoyancy forces begin to play
a more significant role, enhancing the overall fluid motion and leading to more pronounced
velocity profiles.

The velocity boundary layer becomes thicker when using an isothermal needle com-
pared to a non-isothermal one, and increasing the needle thickness further improves the
velocity profile. This enhanced flow profile is due to momentum diffusion, facilitated
by the needle’s larger contact area with the fluid. On the other hand, as the needle size
decreases, a lesser proportion of its surface interacts with the fluid particles, leading to
restricted fluid flow due to the frictional forces acting on the needle surface. In practical
applications, this insight is particularly useful in fields such as chemical processing or
biomedical engineering, where controlling fluid flow around needles or similar structures
is crucial. For example, optimizing needle size and the buoyancy effects can enhance the
efficiency of processes like drug delivery or heat exchangers, where precise control overflow
profiles are necessary for optimal performance.
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4.2. Analysis of Temperature Profile

A decrease in the temperature profile with an increase in the mixed convection pa-
rameter and buoyancy parameter is observed in Figures 5a and 6a, particularly for the
non-isothermal needle (m* = 1.0), reflecting the complex interplay between forced and
buoyant flows. As the mixed convection parameter increases, the influence of buoyancy
forces becomes more significant, promoting upward flow that enhances cooling effects
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around the needle. This contrasts with the velocity profile, which may exhibit different
dynamics due to the competing effects of momentum and thermal diffusion. When the
needle thickness increases, it results in a thicker thermal boundary layer, which means
that heat has a greater distance to diffuse before reaching the bulk fluid. This leads to
lowering the temperature at the needle’s surface, as illustrated in Figures 5b and 6b. The
thicker boundary layer not only reduces the temperature gradient at the surface but also
contributes to enhanced heat retention in the fluid immediately adjacent to the needle.
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Furthermore, the interplay between momentum and thermal diffusion plays a crucial
role in this context. A higher rate of momentum diffusion, driven by increased fluid flow,
can impede the ability of heat to diffuse away from the needle surface, causing the cooling
effect observed in the boundary layer. As a result, the thermal boundary layer becomes
cooler and thinner, as supported by reference [15]. This phenomenon emphasizes the
importance of considering both thermal and fluid dynamic factors when analyzing heat
transfer processes in systems involving mixed convection, particularly when optimizing
conditions for applications such as cooling or heating in biomedical and industrial settings.

In practical terms, this understanding is crucial in industries where precise thermal
management is needed, such as designing cooling systems for microelectronics or biomed-
ical applications where controlled temperature profiles around needles are critical. By
optimizing the mixed convection parameter and needle geometry, engineers can effectively
manage heat transfer to maintain optimal operating conditions or enhance the performance
of thermal systems.

4.3. Analysis of Concentration Profile

A decrease in the concentration profile with increasing mixed convection and Lewis
number is observed in Figures 7a and 8a, particularly in the non-isothermal case (m* = 1),
which has important physical implications for heat and mass transfer dynamics around the
slender needle. The Lewis number, the ratio of thermal diffusivity to mass diffusivity, indi-
cates the relative rates of heat and mass transport. A higher Le suggests that heat diffuses
more rapidly than mass, which alters the concentration distribution of the microorganisms
in the vicinity of the needle. In the context of the non-isothermal needle, where temperature
gradients are present, this enhanced thermal diffusivity leads to more effective heat transfer,
creating a steeper temperature gradient that influences the movement of microorganisms.
As Le increases, the concentration boundary layer becomes thinner, indicating that mass
transfer is becoming more efficient relative to heat transfer. This results in a more pro-
nounced reduction in the concentration profile, as shown in Figure 7b, due to the slender
nature of the needle, which exacerbates the effects of heat on the mass distribution.

Overall, the diminishing boundary layer thickness for both isothermal and non-
isothermal configurations, illustrated in Figure 8b, underscores the interplay between
heat and mass transfer processes. This phenomenon highlights the importance of carefully
considering the Lewis number in the design and analysis of systems involving microbial
transport, as it significantly impacts the concentration of microorganisms near the heat
source, ultimately influencing their behaviour and distribution in fluid environments. In
practical applications, such as in the design of biosensors or microfluidic devices, under-
standing how the Lewis number and needle geometry affect microbial flow is essential. For
instance, in scenarios where the precise control of microbial concentration is required, opti-
mizing the needle’s slenderness and adjusting the Lewis number can be vital in achieving
desired outcomes in processes involving heat and mass transfer.

4.4. Analysis of Microorganism Profile

The results depicted in Figures 9–11 highlight the complex interactions between
various dimensionless parameters and the behaviour of motile microorganisms around
the vertical thin needle. In Figures 9a, 10a and 11a, as the mixed convection parameter,
Bioconvection Lewis number, and Bioconvection Peclet number increase, the observed
reduction in microorganism profiles indicates that enhanced fluid mobility significantly
affects microbial distribution. The increase in these parameters facilitates a more vigorous
fluid flow, effectively redistributing motile microorganisms, and leading to a thinning of
the microbial layer. This thinning effect is consistent across both isothermal (m* = 0.5) and
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non-isothermal (m* = 1.0) conditions, suggesting that the underlying dynamics are robust
across different thermal scenarios.
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Moreover, Figures 9b, 10b and 11b demonstrate that reducing the diameter of the
needle further contributes to a thinner boundary layer in the microorganism profile. A
smaller needle size increases the surrounding fluid’s velocity, which enhances motile
microorganisms’ transport. This accelerated transport results in a diminished boundary
layer thickness, as microorganisms are swept away more efficiently by the flow, reducing
their local concentration near the needle surface. This practical insight is particularly
relevant in applications where controlling the thickness of microbial layers is critical, such
as in bioengineering processes or designing efficient cooling systems where microbial
presence must be minimized.

4.5. Analysis of Surface Heat, Concentration, and Motile Microorganism Density

The observations presented in Figures 12–14 illustrate the significant impact of the
mixed convection parameter on surface temperature, fluid concentration, and motile
microbe density. As ε increases, the corresponding decrease in surface temperature reflects
the enhanced cooling effect driven by a combination of forced and buoyant flows. This
cooling is more pronounced in non-isothermal conditions, where the temperature gradient
around the needle intensifies, facilitating greater heat transfer away from the surface.
The reduction in fluid concentration and motile microbe density, along with the drop
in surface temperature, highlights the interconnected nature of thermal and microbial
dynamics. As the mixed convection parameter increases, the enhanced fluid motion not
only transports heat away from the surface but also disrupts the local concentration of
motile microorganisms. This leads to a more effective dispersion of microbes into the bulk
fluid, resulting in a lower density of microorganisms near the needle.

The use of a slender needle further exacerbates this effect. Slender geometry increases
the surface area-to-volume ratio, promoting more effective heat transfer and consequently
lowering wall temperatures. Additionally, the reduced diameter accelerates the flow
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velocity around the needle, enhancing the transport of both heat and microorganisms. This
results in an even greater dilution of motile microorganisms in the fluid, as they are swept
away from the needle surface more efficiently. This understanding is vital for optimizing
operations where temperature and concentration control are critical, such as biomedical
devices or chemical reactors. For example, by modifying the mixed convection parameter
and needle geometry, these systems can be fine-tuned to accomplish desired outcomes,
such as increasing the efficiency of cooling mechanisms or improving the precision of
microbial growth control in bioreactors.
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5. Conclusions
This study provides a theoretical and numerical investigation of mixed convection

flow around a vertical thin needle, integrating the dynamics of gyrotactic microorganisms
under variable surface heat, mass, and microbial flux conditions. The analysis highlights
the significant influence of dimensionless parameters such as mixed convection, buoyancy,
and Bioconvection Lewis and Peclet numbers on velocity, temperature, concentration, and
microorganism profiles. The findings reveal that increasing the mixed convection parameter
enhances velocity profiles while reducing temperature, concentration, and microorganism
profiles. Similarly, buoyancy parameters increase fluid velocity while suppressing the
temperature gradient. It also demonstrates that slender needle geometries amplify fluid
motion and heat transfer efficiency, leading to reduced thermal and microbial boundary
layer thickness. These results have practical implications for optimizing heat and mass
transfer processes in applications ranging from biomedical devices to industrial cooling
systems. Furthermore, the study underscores the critical role of gyrotactic microorganisms
in bioconvective systems, which can be leveraged to enhance fluid transport and nutrient
mixing in bioengineering applications.

Future research should focus on the experimental validation of these findings to further
establish their applicability in real-world scenarios. Additionally, extending the current
framework to include unsteady flows, non-Newtonian fluids, or anisotropic porous media
could provide deeper insights. Practical applications may also be influenced by factors such
as turbulence transition and surface roughness. These factors may alter microorganism
behaviour, increase energy losses, and modify buoyancy and drag forces. A comprehensive
understanding of these effects is essential for optimizing the performance of systems
utilizing mixed convection flows around thin needles.
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