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Abstract: The most commonly used objective function in structural optimization is weight
minimization. Nodal displacements, compliance, the first natural frequency of vibration,
the critical load factor concerning global stability, and others can also be considered
additional objective functions. This paper aims to propose seven innovative many-objective
structural optimization problems (MOSOPs) applied to 25-, 56-, 72-, 120-, and 582-bar
trusses, not yet presented in the literature, in which the main objectives, in addition to
the structure’s weight, refer to the structures’ vibrational and stability aspects. These
characteristics are essential in designing structural models, such as the natural frequencies
of vibration and load factors concerning global stability. Such new MOSOPs have more than
three objective functions and are called many-objective structural optimization problems.
The chosen objective functions refer to the structure’s weight, the natural frequencies of
vibration, the difference between some of the natural frequencies of vibration, the critical
load factor concerning the structure’s global stability, and the difference between some
of its load factors. The sizing design variables are the cross-sectional areas of the bars
(continuous or discrete). The methodology involves the finite element method (FEM) to
obtain the objective functions and constraints and multi-objective evolutionary algorithms
(MOEAs) based on differential evolution to solve the MOSOPs analyzed in this study. In
addition, multi-criteria decision-making (MCDM) is adopted to extract the solutions from
the Pareto fronts according to the artificial decision-maker’s (DM) preference scenarios,
and the complete data for each chosen solution are provided. For the MOSOP with seven
objective functions, it is possible to observe variations in the final weights of the optimum
designs, considering the hypothetic scenarios, of 21.09% (25-bar truss), 289.73% (56-bar
truss), 70.46% (72-bar truss), 45.35% (120-bar truss), and 74.92% (582-bar truss).

Keywords: many-objective structural optimization; differential evolution; multi-criteria
decision-making; natural frequencies of vibration; global stability

1. Introduction
In a real-world structural optimization problem, a designer or decision-maker (DM)

wants to find a structural configuration that satisfies the requirements imposed by a
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standard or a usually recommended practice. Most of these optimization problems concern
the structure’s weight, mass, or total costs and use single-objective functions. On the
other hand, multi-objective structural optimization problems (MOSOPs) can be formulated
with the combination of several other conflicting objective functions. The most addressed
MOSOPs concerning truss structures set only two objective functions: minimizing the
weight and maximum nodal displacement, subjected to the allowable stresses on the bars.
MOSOPs with more than three objective functions are called many-objective structural
optimization problems.

In addition to weight and maximum nodal displacement, other objectives, such as
natural frequencies of vibration, critical load factor, and compliance, may interest the
designer when formulating structural optimization problems simultaneously. For example,
studies presented by Carvalho et al. [1,2], which precede those presented in this paper,
combined these objective functions in various formulations with two, three, and four
objectives. In these studies, the importance of considering the natural frequencies of
vibration and the critical load factors related to the global stability of the structure was
emphasized, both of which must be maximized in conflict with the minimization of the
structure’s weight. For example, maximizing the first natural frequency of vibration
prevents the possibility of resonance with low frequencies caused by dynamic loads,
preventing the collapse of the structure. Similarly, maximizing the first critical load factor
can ensure the structure’s integrity, even if it is subjected to loads greater than those
considered in its original designs.

The primary objective of this paper is to advance the field of structural optimization
by introducing and addressing novel multi-objective structural optimization problems
(MOSOPs) that have not yet been explored in the existing literature. These newly proposed
MOSOPs integrate multiple objectives to provide a more comprehensive framework for
structural design. Specifically, this study aims to simultaneously optimize several objective
functions in addition to the structure’s weight, including maximizing the first natural
frequency of vibration and the first critical load factor, which are fundamental parameters
for structural stability and dynamic behavior.

Furthermore, this paper introduces an innovative approach by incorporating the
maximization of the differences between selected natural frequencies and critical load
factors. This unique objective seeks to minimize the risk of mode superposition, which
occurs when vibration or instability modes have closely spaced frequencies or load factors.
Such superpositions can lead to resonance or compounded instabilities, significantly
compromising structural integrity and safety. By maximizing these differences, the
proposed framework enhances the robustness and reliability of the structure under dynamic
and static loading conditions.

In total, seven novel MOSOPs are formulated in this study, encompassing four
to seven distinct objective functions. This comprehensive formulation expands the
scope of structural optimization by addressing a broader range of performance criteria.
Additionally, this study emphasizes a balanced treatment of objectives and constraints.
When natural frequencies or critical load factors are not considered as primary objectives,
they are incorporated into the optimization process as constraints, ensuring that these
critical parameters meet predefined thresholds. This approach maintains the structural
performance while accommodating the complexity of multi-objective optimization. By
combining these advancements, the proposed framework addresses key challenges in
structural design, providing a scientifically rigorous methodology for enhancing structural
safety, performance, and resilience. The results of this study are expected to contribute
significantly to developing advanced optimization strategies and practical applications
in engineering.



Dynamics 2025, 5, 3 3 of 33

Proposed by [3], differential evolution (DE) is currently one of the most popular
evolutionary algorithms for solving optimization problems in different domains. Three
DE-based multi-objective evolutionary algorithms (MOEAs) are adopted in this paper to
solve the proposed MOSOPs, such as the success-history-based adaptive multi-objective
differential evolution (SHAMODE) and its variation using whale optimization (SHAMODE-
WO) [4], in addition to the multi-objective meta-heuristic with iterative parameter
distribution estimation (MM-IPDE) [5]. Some studies have demonstrated that these MOEAs
perform well on MOSOPs [1,6–8].

Since the MOSOPs proposed in this paper present more than three objective functions,
normalized parallel coordinates show the non-dominated solutions. At the same time,
multi-criteria decision-making (MCDM) [1,2,9,10] is adopted to extract solutions from the
Pareto fronts (PFs) according to the DM’s preferences. The MOSOPs analyzed in this
paper considered the 25-, 56-, 72-, 120-, and 582-bar trusses inspired by the benchmark
optimization problems widely discussed in the literature. The sizing design variables
(discrete or continuous) are the cross-sectional areas of the bars.

In summary, this work significantly contributes to the field by addressing gaps in the
existing literature. The research’s contributions and its novelty are highlighted below:

• Seven novel MOSOPs are proposed. They contain four to seven objective functions,
such as maximizing the first natural frequency of vibration and the first critical
load factor and also maximizing the difference between some natural frequencies
of vibration and the difference between some critical load factors. Due to having more
than three objective functions, these seven MOSOPs are classified as many-objective
structural optimization problems.

• This study aims to fill the gap regarding broader formulations containing multiple
objectives simultaneously, in addition to the two usually considered, reaching up
to seven objective functions. This certainly avoids the solution of several structural
optimization problems with few objectives, providing the decision-maker with a
broader and more complete Pareto front that facilitates and improves the choice of the
non-dominated solutions of their preference.

• Three DE-based MOEAs (SHAMODE, SHAMODE-WO, and MM-IPDE) are employed
to tackle these new MOSOPs. A comparative analysis is conducted to evaluate the
performance of these algorithms on the MOSOPs using several indicators.

• Although many-objective structural optimization problems have the potential to
provide the DM with a more comprehensive understanding of the problem, allowing
them to make more robust and reliable decisions, these problems have received scant
attention in the literature, particularly those with more than four objective functions.
Therefore, this study is a significant advancement in filling this gap.

The remainder of this paper is organized as follows. Section 2 presents a literature
review on structural optimization problems similar to those discussed in this paper. The
MOSOPs proposed in this paper are summarized in Section 3. Section 4 briefly describes the
DE-based MOEAs adopted in this paper, the performance indicators used to compare the
robustness of each MOEA, and the adopted MCDM used to extract preferred solutions from
the PFs. The numerical experiments are described in Section 5. The results are provided
and analyzed in Section 6. Finally, Section 7 describes conclusions and future work.

2. Literature Review
For a comprehensive overview of relevant research on structural multi- and many-

objective problems incorporating objective functions and constraints within the context of
this paper, Table 1 was derived and revised from [1]. One can observe that most works
in this table formulated the weight and nodal displacements as the only two conflicting



Dynamics 2025, 5, 3 4 of 33

objective functions, besides the fact that many-objective structural optimization problems
have scarcely been explored in the literature.

In Table 1, W represents the weight or total mass of the structure according to each
work. fk represents the i-th natural frequency of vibration, u is the maximum nodal
displacement, λm is the buckling constraint for member m of the structure, and σ is the
allowable stress. NCST is the number of different cross-section types. FRF is the frequency
response function, FT is the force transmissibility crest parameter concerning fk, RMC is
the ratio between the maximum compressive load and the critical buckling load at each bar,
PE is the Euler buckling critical load, β is a measure of reliability, and Pf is the probability
of failure. CMA is the constrained mass average, SDCV is the standard deviation of the
constraints’ violations, RI is the reliability index, and RC is the reliability constraint. TPE
is the total potential energy, LCC means life-cycle costs, GC refers to geometric constraints,
while λi indicates the i-th load factor concerning the elastic critical load (global stability).

Other related work to multi-objective structural optimization, including new methodologies,
algorithms, applications, etc., can be found in Carvalho et al. [6].

Table 1. Literature review, adapted from [1].

References Domain Type Objective Functions Constraints

[7,11] 2D Frame W, NCST σ, λm, u

[6] 2D–3D Truss W, NCST σ, λm, u

[12] 2D Frame CMA, SDCV σ, λm, u

[13] 3D Truss M, 1/ ∑3
i=1(Fiui) σ

[14–16] 2D Truss W,u σ

[10,17–29] 2D–3D Truss W,u σ

[30] 2D–3D Truss W, LCC σ
W, f1 σ, λm, u

[31] 2D Truss W, RI RC
W, f1 + f2 + f3 λm

W, 1/ ∑3
i=1 FRF( fk) ad hoc

W, 1/ ∑3
i=1 FT( fk)

[32,33] 2D–3D Truss, frame W, u σ

[34] 2D–3D Truss W, TPE, RMC, f1, f2, f3 u, σ, PE

[35] 2D Frame W, LCCs GC, PH

[36] 2D–3D Truss W, u, f1, TPE σ
W, u, f1 σ, u
W, u σ

[4,37] 2D–3D Truss W, β Pf

[2] 2D–3D Truss W, f1 σ, λ1, u
W, λ1 σ, f1, u
W, u σ, λ1, f1

[1] 2D–3D Truss W, f1, u σ, λ1
W, λ1, u σ, f1
W, f1, λ1 σ, u
W, f1, u, λ1 σ

[38] 2D–3D Truss W, f1 σ, u

This study 3D Truss W, f1, f2 − f1, f3 − f2 σ, u, λ1
W, λ1, λ2 − λ1, λ3 − λ2 σ, u, f
W, f1, f2 − f1, f3 − f2, f4 − f3 σ, u, λ1
W, λ1, λ2 − λ1, λ3 − λ2, λ4 − λ3 σ, u, f
W, λ1, λ2, λ3, λ2 − λ1, λ3 − λ2 σ, u, f
W, f1, f2, f3, f2 − f1, f3 − f2 σ, u, λ1
W, f1, f2, f3, λ1, λ2, λ3 σ, u
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3. Many-Objective Structural Optimization Problems
The proposition, formulation, and solution of the seven new MOSOPs presented in this

paper are justified since a designer may be very interested in optimizing truss structures
with outstanding behaviors regarding their dynamic and global stability performance.

The MOSOPs proposed in this paper are divided into seven formulations, in which
the first objective function, the same for all of them, is the minimization of the structure’s
weight (W(x)), given by

W(x) =
N

∑
i=1

ρAiLi, (1)

where ρ is the material’s specific mass, while Ai and Li are the cross-sectional area and
the length of the i-th bar of the structure, respectively. The number of bars of the truss
is denoted by N. The design variables are x = {A1, A2, . . . , AN}, where Ai are the sizing
design variables indicating the cross-sectional areas of the bars (continuous or discrete).
The seven formulations of the MOSOPs are defined in Table 2.

Table 2. Description of each MOSOP.

MOSOP Type Objective Functions Constraints

1 min W(x),− f1(x),−( f2(x)− f1(x)),−( f3(x)− f2(x)) σi(x) ≤ σ, uj(x) ≤ uj, λ1(x) ≥ 1
2 min W(x),−λ1(x),−(λ2(x)− λ1(x)),−(λ3(x)− λ2(x)) σi(x) ≤ σ, uj(x) ≤ uj, fk(x) ≥ fk
3 min W(x),− f1(x),−( f2(x)− f1(x)),−( f3(x)− f2(x)),−( f4(x)− f3(x)) σi(x) ≤ σ, uj(x) ≤ uj, λ1(x) ≥ 1
4 min W(x),−λ1(x),−(λ2(x)− λ1(x)),−(λ3(x)− λ2(x)),−(λ4(x)− λ3(x)) σi(x) ≤ σ, uj(x) ≤ uj, fk(x) ≥ fk
5 min W(x),−λ1(x),−λ2(x),−λ3(x),−(λ2(x)− λ1(x)),−(λ3(x)− λ2(x)) σi(x) ≤ σ, uj(x) ≤ uj, fk(x) ≥ fk
6 min W(x),− f1(x),− f2(x),− f3(x),−( f2(x)− f1(x)),−( f3(x)− f2(x)) σi(x) ≤ σ, uj(x) ≤ uj, λ1(x) ≥ 1
7 min W(x),− f1(x),− f2(x),− f3(x),−λ1(x),−λ2(x),−λ3(x) σi(x) ≤ σ, uj(x) ≤ uj

In Table 2, fk(x) is the k-th natural frequency of vibration, λl(x) is the l-th load factor
related to the structure’s global stability, uj(x) is the displacement of the truss’s j-th node,
and σi(x) is the axial stress at its i-th bar. σ are uj are the maximum values allowed for the
stresses and nodal displacements, respectively, while fk is the minimum value defined for
the i-th natural frequency of vibration. If the natural frequency of vibration or the critical
load factor are not set as primary objective functions, they are incorporated into the array
of constraints. The search space of the design variables is defined by the lower (xL) and
upper (xU) bounds.

The constraints are normalized in the problem formulations, such as

σi(x)
σ̄

− 1 ≤ 0, 1 ≤ i ≤ mσ, (2)

uj(x)
ū

− 1 ≤ 0, 1 ≤ j ≤ mu, (3)

1 − fk(x)
f̄

≤ 0, 1 ≤ k ≤ m f , (4)

1 − λ1(x)
1

≤ 0, (5)

where mu is the number of degrees of freedom of the structure, mσ = N is the total number
of bars, and m f is the total number of constrained natural frequencies of vibration. The first
critical load factor must be greater than 1, so the load applied to the truss must be no greater
than the elastic critical load estimated for the structure, maintaining its global stability.
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The static equilibrium equation for a discrete system of bars is used to find the nodal
displacements {u}, written as

[K]{u} = {p}, (6)

where [K] is the stiffness matrix and {p} are the load components [39].
The natural frequencies of vibration are obtained by solving the eigenvalues of

Equation (7):
([K]− ωi(x)2[M]){Φi(x)} = 0 (7)

where [M] is the mass matrix, ωi(x) is the i-th natural angular frequency of vibration,
and their respective eigenvectors (Φi(x)) represent the structure’s vibration modes. The
smallest eigenvalue (ω1(x)) corresponds to the first natural angular frequency of vibration,
the second smallest (ω2(x)) to the second angular frequency, and so on.

The load factors λ concerning the global stability are obtained by calculating the
eigenvalues of Equation (8):

([K] + λl(x)[KG]){∆i(x)} = 0 (8)

where [KG] is the geometric matrix of the structure, the eigenvalues λl(x) are the load
factors of the structure, and the eigenvectors ∆i(x) are the respective instability modes
corresponding to each of the critical load factors. The smallest eigenvalue (λ1(x))
corresponds to the first critical load factor, the second smallest (λ2(x)) to the second load
factor, and so on. The matrices [K], [M], and [KG] can be assembled after transformation to
a global axis.

4. Differential Evolution Algorithms, Performance Indicators, and
Multi-Criteria Decision-Making (MCDM)

The DE-based MOEAs used to solve the MOSOPs formulated in this paper are the
success-history-based adaptive multi-objective differential evolution (SHAMODE) and its
variation using whale optimization (SHAMODE-WO), both proposed by Panagant et al. [4],
in addition to the multi-objective meta-heuristic with iterative parameter distribution
estimation (MM-IPDE) proposed by Wansasueb et al. [5]. These three MOEAs were
adopted in this paper due to their superior performance in MOSOPs, which was recently
analyzed by Carvalho et al. [6], providing a comparative study involving 15 MOEAs,
such as NSGA-II (Deb et al. [40], 2002), GDE3 (Kukkonen and Lampinen [41], 2005),
MOEA/D (Zhang and Li [42], 2007), DEMO (Tušar and Bogdan [43], 2009), UPS-EMOA
(Aittokoski and Miettinen [44], 2010), RPBILDE (Pholdee and Bureerat [45], 2013), MOWCA
(Sadollah et al. [46], 2015), MODA (Mirjalili [47], 2016), MOGWO
(Mirjalili et al. [48], MOALO (Mirjalili et al. [49], 2017), MSSA (Mirjalili et al. [50], 2017),
MOMVO (Mirjalili et al. [51], 2017), and MOGOA (Mirjalili et al. [52], 2018).

SHAMODE is an adaptive differential evolution algorithm for multi-objective
optimization problems. It is characterized by adapting the parameters F and Pcr of the
original DE based on successful results in previous generations of solutions. This adaptation
method was initially proposed by Tanabe and Fukunaga [53]. A random population starts
SHAMODE, subjected to an evolution process involving mutation, cross-over, and selection.
Creating an empty external file (A0) is initially necessary. At the end of each generation,
the index i of individuals that survived the evolutionary process is stored in the vector sind.
From these indices, the vectors xsind,g, which generated successful descendants, are sent to
the external file Ag+1. If sind is not an empty vector, the mean values of the parameters
F and Pcr of its individuals are calculated. These mean values are stored in the memory
vectors MF and MPcr . SHAMODE-WO is a variation of SHAMODE, which differs from its
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predecessor in the mutation process, in which the Spiral Movement Operator (extracted
from the whale optimization algorithm [54]) is added.

The last algorithm used was the MM-IPDE. This meta-heuristic also adapts the DE
parameters. However, while SHAMODE and SHAMODE-WO adapt the parameters F
and Pcr based on the success of previous individuals, MM-IPDE performs this process
through an optimization algorithm that acts in binary search spaces, called population-
based incremental learning for multi-objective optimization (PBILM), developed in [55].
In addition to the parameter adaptation, PBILM is also used to choose the mutation
and crossover processes to be applied in the evolutionary process of the multi-objective
optimization problems. This algorithm is based on population-based incremental learning
(PBIL), proposed in [56] for single-objective problems.

Studies in the literature show that these MOEAs are effective for MOSOPs [1,6–8].
For instance, Carvalho et al. [6] showed that MM-IPDE outperformed 15 other MOEAs.
Constraint handling utilized either the constraint-based non-dominated sorting technique [40]
or constraint dominance principles. Under these principles, the following points occur:
(i) feasible solutions are prioritized over infeasible ones; (ii) among infeasible solutions,
those with smaller constraint violations are ranked higher; and (iii) among feasible solutions,
dominance determines the ranking. In the computational experiments conducted here, the
algorithms were configured according to the parameters specified in their original references.

One of the objectives of this study is to compare the performances of the meta-
heuristics used to solve the formulated MOSOPs. For this purpose, well-known
performance indicators from the literature are applied, such as the hypervolume (HV) [57]
and the IGD+ [58], from which the performance profiles (PPs) [59] of the algorithms
are drawn. PPs were introduced by Dolan and Moré [59], and they can compare the
performance of several algorithms concerning a total set of the numerical results of a set
of numerical experiments. According to Barbosa et al. [60], the area under the curve of
the PPs generated by a given algorithm is an indicator of the general performance of the
algorithm in solving a subset of the whole set of problems. This metric is also used to
compare the meta-heuristics applied in this work. The larger the obtained area, the better
the efficiency of the analyzed algorithm.

Once the Pareto fronts are obtained, the DM faces the task of selecting the solutions
of interest. In this study, the multi-criteria tournament decision (MTD) method proposed
by Parreiras and Vasconcelos [9] is employed to extract the desired solutions from the
Pareto fronts obtained in each MOSOP. Derived from the MCDM framework, this method
ranks the best and worst solutions based on the objective function values and the weights
(wi) assigned to them by the decision-maker. The proposed methodology of this study is
illustrated in the flowchart provided in Figure 1.

Figure 1. Flowchart of the proposed methodology.



Dynamics 2025, 5, 3 8 of 33

5. Computational Experiments
This section presents the spatial trusses to be optimized in this paper. The 25-, 56-,

72-, 120-, and 582-bar trusses are depicted in Figures 2–6 and are subjected to the seven
MOSOPs described in Section 3, solved through the three DE-based algorithms described
in Section 4. In the results, these trusses are denoted by T25, T56, T72, T120, and T582.
Characteristics and descriptions of the trusses, such as loading cases, materials, search
spaces, the grouping of the bars, etc., are detailed and can be found, for instance, in [1,61].
The population sizes were 20 and 30 for the 25- and 56-bar trusses, respectively, and 50 for
the 72-, 120-, and 582-bar trusses. The number of generations was 100 for the 25- and 56-bar
trusses and 200 for the 72-, 120-, and 582-bar trusses. The maximum number of function
evaluations was 2000 for the 25-bar truss and 3000 for the 56-bar truss, whereas for the 72-,
120-, and 582-bar trusses, it was 10000. The independent runs were 30 and 10 for the 25-
and 56-bar trusses, respectively, and 20 for the 72-, 120-, and 582-bar trusses.
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6. Results
This section presents the results obtained with the solution of the MOSOPs in the

proposed trusses through the three DE-based algorithms. PFs using parallel coordinates
provide the non-dominated solutions obtained for the problems by each algorithm. The
desired solutions are extracted from these PFs through the MTD method according to
the DM’s preferences. Finally, the HV and IGD+ performance indicators compare the
algorithm’s performance.

6.1. Parallel Coordinates and Extracted Solutions

As mentioned in Section 5, each truss in this study is subjected to the seven MOSOPs
presented in Section 3 and solved through the three DE-based algorithms described in
Section 4. The MTD method extracts the desired solution from the PFs for each problem
according to the DM’s preferences, setting weights wi of importance, in which the sum
of wi must be equal to 1 (see [9] for details on these weights). For this purpose, the DM
must indicate the weight/importance of each objective function in this selection process.
In this paper, two comparison scenarios are used: sc1 with equal weights for all objective
functions (four objectives: w1 = 1/4, w2 = 1/4, w3 = 1/4, and w4 = 1/4; five objectives:
w1 = 1/5, w2 = 1/5, w3 = 1/5, w4 = 1/5, and w5 = 1/5; seven objectives: w1 = 1/7,
w2 = 1/7, w3 = 1/7, w4 = 1/7, w5 = 1/7, w6 = 1/7, and w7 = 1/7) and sc2 with a weight
of 0.5 for the minimization of W(x) and equal weights amongst themselves to the other
objective functions (four objectives: w1 = 0.5, w2 = 0.5/3, w3 = 0.5/3, and w4 = 0.5/3; five
objectives: w1 = 0.5, w2 = 0.5/4, w3 = 0.5/4, w4 = 0.5/4, and w5 = 0.5/4; seven objectives:
w1 = 0.5, w2 = 0.5/6, w3 = 0.5/6, w4 = 0.5/6, w5 = 0.5/6, w6 = 0.5/6, and w7 = 0.5/6),
favoring the extraction of lighter structural solutions.

Each solution’s objective function values are normalized to generate the parallel
coordinates. Knowing that o fmax, o fmin and o f (x) are, respectively, the maximum value
obtained, the minimum value, and the value of the objective function o f in the solution x,
this normalization is calculated by

o f (x)− o fmin
o fmax − o fmin

. (9)

The y-axis varies from 0 to 1, from the minimum to the maximum value obtained for
each objective function among all non-dominated solutions. The x-axis has values from 1
to NF (number of objectives in the problem) to indicate the normalized values obtained for
each function. Each line drawn is one non-dominated solution obtained, following the color
pattern: red for MM-IPDE solutions, blue for SHAMODE, and yellow for SHAMODE-WO.
The parallel coordinate PFs for the MOSOPs are presented in the traditional flat form
and from a three-dimensional point of view, highlighting the solutions provided by each
applied algorithm.

To illustrate the results concerning the PFs of the seven MOSOPs, MOSOPs 1, 4, and 7
are selected and exhibited.

6.2. Pareto Fronts for MOSOP1

The MTD solutions obtained in the sc1 scenario are highlighted in green, and the
solutions extracted with the sc2 weights are highlighted in cyan in the respective PFs
presented in the next subsection.

From the PF obtained for the 25-bar truss in Figure 7a,b (MOSOP1), where each line
represents a non-dominated solution, it is possible to observe that these lines intersect
between the four objectives, indicating a conflict between them. For example, the weight
W(x) is the first objective function (minimized), and the natural frequency of vibration
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f1(x) is the second objective function (maximized). The same happens between the weight
and the other objective functions, such as ( f2(x)− f1(x), ( f3(x)− f2(x)). Regarding the
extracted solutions, according to the sc1 and sc2 scenarios, it can be observed that for sc2,
where 50% is prioritized for the weight, the MTD indicated, as expected, a non-dominated
solution with a weight of the order of 20% (0.2 on the vertical axis of Figure 7a) of the
heaviest non-dominated solution. On the other hand, the second objective function is in
the order of 75% of the non-dominated solution with the highest natural frequency of
vibration. The other objective functions of the extracted solutions presented values close to
20% and 40% for the two scenarios. The complete details of the extracted solutions, such
as the values of the design variables, objective functions, and constraints, are shown in
tables presented further in this text. From Figure 7b, it is important to observe that the PFs
obtained by the three MOEAs present a similar distribution of non-dominated solutions.

(a) (b)

Figure 7. Normalized parallel coordinates PF for the 25-bar truss dome for MOSOP1. (a) Two
dimensions. (b) Three dimensions.

Figure 8a,b present the PFs for the 56-bar truss. As in the PFs obtained for the 25-bar
truss, a crossing of the lines corresponding to each non-dominated solution is observed,
indicating the conflict between the objective functions. It is noted that the extracted
solutions, according to the preferences of the artificial DM, coincidentally indicated the
same solutions for both sc1 and sc2. However, several other non-dominated solutions could
be extracted by the artificial DM. Furthermore, for sc1, where the weight is prioritized
at 50% compared to the other objective functions, the solution found obtained 0.2 of the
normalized value corresponding to the non-dominated solution with the highest weight.
From Figure 8b, it is important to observe that the PFs obtained by the three MOEAs present
a similar distribution of non-dominated solutions.

Figure 9a,b present the PFs for the 72-bar truss. The intersection of the lines
representing the non-dominated solutions can be observed, indicating that the objective
functions are conflicting. The extracted solutions were approximately 30%, 40%, 10%, and
40%, respectively, of the maximum values for sc1 and 41%, 68%, 20%, and 50%, respectively,
of the maximum values for sc2. From Figure 9b, it is important to note that the PFs obtained
by the three MOEAs present a similar distribution of non-dominated solutions.

Figure 10a,b present the PFs for the 120-bar truss. The extracted non-dominated
solutions were approximately 40%, 78%, 80%, and 0%, respectively, of the maximum values
for sc1 and 20%, 63%, 70%, and 0%, respectively, of the maximum values for sc2. For the
fourth objective function, the artificial DM indicated non-dominated solutions with the
lowest values among all the PFs. From Figure 10b, it is important to observe that the PFs
obtained by the three MOEAs present a similar distribution of non-dominated solutions.
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(a) (b)

Figure 8. Normalized parallel coordinates PF for the 56-bar truss dome for MOSOP1. (a) Two
dimensions. (b) Three dimensions.

(a) (b)

Figure 9. Normalized parallel coordinates PF for the 72-bar truss dome for MOSOP1. (a) Two
dimensions. (b) Three dimensions.

(a) (b)

Figure 10. Normalized parallel coordinates PF for the 120-bar truss dome for MOSOP1. (a) Two
dimensions. (b) Three dimensions.

Figure 11a,b present the PFs for the last MOSOP1, referring to the 582-bar truss, where
a very evident behavior regarding the conflict of the objective functions is again observed,
as occurred in the 25-bar and 56-bar trusses. The extracted solutions were approximately
30%, 42%, 50%, and 62%, respectively, of the maximum values for sc1 and 18%, 40%, 38%,
and 58%, respectively, of the maximum values for sc2. From Figure 11b, it is important
to observe that the PFs obtained by the three MOEAs present a similar distribution of
non-dominated solutions.
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(a) (b)

Figure 11. Normalized parallel coordinates PF for the 582-bar truss dome for MOSOP1. (a) Two
dimensions. (b) Three dimensions.

6.3. Pareto Fronts for MOSOP4

Figure 12a,b present the PFs for the 25-bar truss. Figure 12a shows that the PFs
obtained by the three MOEAs present a similar distribution of non-dominated solutions.
In this experiment, despite being conflicting, there is no significant crossover between
objectives one and two. However, this occurs among the other objectives, for example,
between objectives two, three, four, and five. The extracted solutions were approximately
57%, 62%, 40%, 22%, and 63%, respectively, of the maximum values for sc1 and 35%, 56%,
38%, 22%, and 60%, respectively, of the maximum values for sc2.

(a) (b)

Figure 12. Normalized parallel coordinates PF for the 25-bar truss dome for MOSOP4. (a) Two
dimensions. (b) Three dimensions.

Figure 13a,b present the PFs for the 56-bar truss. In the case of this computational
experiment, in addition to a very similar behavior among the solutions obtained by the
three MOEAs, a good distribution of solutions along the lower and upper limits for the
objective functions was also observed. The extracted solutions were approximately 58%,
56%, 42%, 70%, and 22%, respectively, of the maximum values for sc1 and 30%, 35%, 28%,
39%, and 18%, respectively, of the maximum values for sc2.

Figure 14a,b present the PFs for the 72-bar truss. From the PFs shown in Figure 14a,b,
it can be observed that there is a good distribution of solutions not dominated by the three
MOEAs for all objective functions except for the third one, which concentrated most of the
solutions in the lowest normalized values (i.e., close to zero). The extracted solutions were
approximately 42%, 75%, 0%, 40%, and 20%, respectively, of the maximum values for sc1

and 30%, 58%, 0%, 24%, and 20%, respectively, of the maximum values for sc2. Again, the
three MOEAs achieved very similar PFs.
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(a) (b)

Figure 13. Normalized parallel coordinates PF for the 56-bar truss dome for MOSOP4. (a) Two
dimensions. (b) Three dimensions.

(a) (b)

Figure 14. Normalized parallel coordinates PF for the 72-bar truss dome for MOSOP4. (a) Two
dimensions. (b) Three dimensions.

Figure 15a,b present the PFs for the 120-bar truss. There is a good distribution of
non-dominated solutions between the maximum and minimum values of each objective
function in addition to the similar PFs obtained by each MOEA. The extracted solutions
were approximately 40%, 95%, 90%, 22%, and 85%, respectively, of the maximum values for
sc1 and 28%, 60%, 55%, 15%, and 50%, respectively, of the maximum values for sc2. Again,
the three MOEAs achieved very similar PFs.

(a) (b)

Figure 15. Normalized parallel coordinates PF for the 120-bar truss dome for MOSOP4. (a) Two
dimensions. (b) Three dimensions.

Figure 16a,b present the PFs for the 582-bar truss. Observing the PFs obtained for this
experiment, it is noted that the MOEAs did not present much similarity except between
those obtained by the SHAMODE and SHAMODE-WO algorithms. However, this is a
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very interesting characteristic because the PFs complement each other, providing a more
comprehensive distribution of non-dominated solutions. The extracted solutions were
approximately 24%, 38%, 22%, 16%, and 18%, respectively, of the maximum values for sc1

and 17%, 18%, 19%, 13%, and 16%, respectively, of the maximum values for sc2.

(a) (b)

Figure 16. Normalized parallel coordinates PF for the 582-bar truss dome for MOSOP4. (a) Two
dimensions. (b) Three dimensions.

6.4. Pareto Fronts for MOSOP7

Figure 17a,b present the PFs for the 25-bar truss. For this experiment, again, the PFs
obtained by each MOEA are quite similar, and there is also a good distribution of solutions
between the maximum and minimum values of each objective function. The extracted
solutions were approximately 50%, 90%, 22%, 82%, 78%, 72%, 71%, and 40%, respectively,
of the maximum values for sc1 and 22%, 88%, 79%, 42%, 41%, 50%, and 20%, respectively,
of the maximum values for sc2.

(a) (b)

Figure 17. Normalized parallel coordinates PF for the 25-bar truss dome for MOSOP7. (a) Two
dimensions. (b) Three dimensions.

Figure 18a,b present the PFs for the 56-bar truss. It is noted that the PFs obtained
by the three MOEAs for this experiment comprise one of the most distributed solutions
between the maximum and minimum values of the seven objective functions among the
experiments analyzed in this paper. This indicates that the DM can choose many solutions
according to their preferences. The extracted solutions were approximately 43%, 78%, 78%,
85%, 48%, 45%, and 46%, respectively, of the maximum values for sc1 and 21%, 50%, 50%,
100%, 20%, 20%, and 21%, respectively, of the maximum values for sc2.
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(a) (b)

Figure 18. Normalized parallel coordinates PF for the 56-bar truss dome for MOSOP7. (a) Two
dimensions. (b) Three dimensions.

Figure 19a,b present the PFs for the 72-bar truss. One can observe, again, that the PFs
obtained by the three MOEAs for this experiment comprise, as in the case of the 56-bar
truss, one of those that most distributed solutions along the maximum and minimum
values among the seven objective functions. Again, as in the previous case, this is a good
indication for the DM of the possibility of choosing numerous solutions according to their
preferences. The extracted solutions were approximately 42%, 68%, 68%, 74%, 52%, 52%,
and 50%, respectively, of the maximum values for sc1 and 21%, 42%, 43%, 43%, 30%, 30%,
and 33%, respectively, of the maximum values for sc2.

(a) (b)

Figure 19. Normalized parallel coordinates PF for the 72-bar truss dome for MOSOP7. (a) Two
dimensions. (b) Three dimensions.

Figure 20a,b present the PFs for the 120-bar truss. The PFs obtained by the three
MOEAs in this experiment, similar to those for the 56-bar and 72-bar trusses, demonstrate
evenly distributed sets of solutions across the maximum and minimum values of the seven
objective functions. As in the previous cases, this gives the DM a strong indication of the
availability of numerous solutions based on their preferences. The extracted solutions were
approximately 21%, 97%, 95%, 96%, 98%, 98%, and 98%, respectively, of the maximum
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values for sc1 and 50%, 83%, 82%, 82%, 57%, 56%, and 56%, respectively, of the maximum
values for sc2.

(a) (b)

Figure 20. Normalized parallel coordinates PF for the 120-bar truss dome for MOSOP7. (a) Two
dimensions. (b) Three dimensions.

Figure 21a,b present the PFs for the 582-bar truss. This experiment shows a good
distribution of non-dominated solutions between the maximum and minimum values of
the normalized objective functions, except for the fourth and seventh objective functions.
The extracted solutions were approximately 28%, 57%, 58%, 62%, 34%, 36%, and 22%,
respectively, of the maximum values for sc1 and 17%, 28%, 28%, 64%, 20%, 19%, and 18%,
respectively, of the maximum values for sc2.

(a) (b)

Figure 21. Normalized parallel coordinates PF for the 582-bar truss dome for MOSOP7. (a) Two
dimensions. (b) Three dimensions.

6.5. Complete Data of the Non-Dominated Extracted Solutions

Table 3 provides detailed information on the extracted non-dominated solutions
for scenarios sc1 and sc2 of MOSOP1. This table presents the design variables (cross-
sectional areas of the bars), the DE-based algorithm that provided the extracted solution,
and the values of the objective functions. For the 25-bar truss, the final weight of the
truss considering sc2 (i.e., the weight has a 50% preference over the other objectives) was
276.97 kg vs. 310.62 kg for sc1, where the preferences are equal among all objectives. The
sc2 solution is 10.83% lighter.
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As stated earlier in this text, the solutions extracted by the artificial DM were the
same for both scenarios for the 56-bar truss, presenting the final weight equal to 1039.89 kg.
The weight of the solution extracted for the 72-bar truss was 754.86 kg considering sc1

and 576.96 for sc2, resulting in approximately a 31.14% difference between the largest
and smallest weights. For the 120-bar truss, the weights of the extracted solutions were
29,054.60 kg and 19,863.97 kg for sc1 and sc2, respectively, resulting in a difference of 46.27%.
Finally, 804,249.40 kg and 441,471.98 kg were the weights of the solutions extracted from
the 582-bar truss, leading to a difference of 82.17%. These results show how multi-objective
optimization can generate a set of solutions with significant differences in the optimal
design’s final weight, which may interest the DM according to their preferences.

Table 3. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP1.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE SHAMODE SHAMODE SHAMODE SHAMODE SHAMODE SHAMODE MM-IPDE MM-IPDE MM-IPDE

1 2.5806 1.2903 5.2029 5.2029 3.2346 11.4148 77.3516 62.9779 145.8062 276.7736
2 5.1613 5.8064 4.9074 4.9074 19.2092 9.8772 32.1194 27.9390 806.4500 398.7089
3 15.4838 16.1290 5.1576 5.1576 7.6113 5.3282 16.3207 18.4665 156.7739 178.7093
4 11.6129 1.2903 - - 0.9813 3.1062 85.5466 61.6680 1148.3848 193.5480
5 6.4516 2.5806 - - 6.8117 23.5284 73.3268 59.8157 212.2576 136.1288
6 12.9032 8.3871 - - 21.1769 12.4921 34.8597 39.4141 366.4509 87.0966
7 19.3548 18.0645 - - 0.8122 1.8269 49.7527 7.2751 181.9351 193.5480
8 16.1290 18.0645 - - 5.7710 1.1051 - - 76.1289 275.4833
9 - - - - 22.9382 13.6429 - - 94.1934 39.7419
10 - - - - 19.4474 15.5892 - - 337.4187 210.9673
11 - - - - 6.7520 8.8941 - - 64.5160 366.4509
12 - - - - 1.1405 3.3575 - - 864.5144 189.6770
13 - - - - 16.5387 8.1441 - - 487.7410 159.9997
14 - - - - 20.4564 13.7697 - - 81.2902 101.9353
15 - - - - 1.2561 8.6291 - - 1148.3848 305.8058
16 - - - - 4.2488 1.7057 - - 651.6116 145.8062
17 - - - - - - - - 1264.5136 227.7415
18 - - - - - - - - 276.7736 68.3870
19 - - - - - - - - 39.7419 39.7419
20 - - - - - - - - 651.6116 248.3866
21 - - - - - - - - 301.2897 39.7419
22 - - - - - - - - 39.7419 39.7419
23 - - - - - - - - 948.3852 276.7736
24 - - - - - - - - 76.1289 39.7419
25 - - - - - - - - 94.8385 39.7419
26 - - - - - - - - 478.0636 178.7093
27 - - - - - - - - 66.4515 72.2579
28 - - - - - - - - 39.7419 167.0964
29 - - - - - - - - 176.1287 113.5482
30 - - - - - - - - 216.1286 39.7419
31 - - - - - - - - 56.7096 127.0965
32 - - - - - - - - 149.6771 39.7419

W (kg) 310.62 276.97 1039.89 1039.89 754.86 576.96 29,054.60 19,863.97 804,249.40 441,471.98
f1 (Hz) 37.42 38.35 26.20 26.20 3.79 3.11 5.52 5.17 1.56 1.51

f2 − f1 (Hz) 7.77 7.05 0 0 0 0 0.12 0.10 0.09 0.07
f3 − f2 (Hz) 10.77 8.95 10.31 10.31 2.80 2.34 0 0 2.60 2.44

Table 4 provides detailed information on the extracted non-dominated solutions for
scenarios sc1 and sc2 of MOSOP4. For the 25-bar truss, the weights of the non-dominated
extracted solutions were 373.86 kg and 313.35 kg, respectively, for the sc1 and sc2 scenarios,
resulting in a difference of approximately 19.31% in favor of the heavier structure. A
difference of 59.55% was found between the final weights of the solutions extracted by
the sc1 and sc2 scenarios of the 56-bar truss, i.e., 2507.94 kg and 1571.82 kg. For the
72-bar truss, the difference was 15.63% between the weights of the two extracted solutions,
i.e., 988.60 kg vs. 854.96 kg. For the 120-bar truss, the weights of the extracted solutions
were 35,124.35 vs. 23,863.82 kg, resulting in a difference of approximately 47.18% more for
the heavier structure. For the 582-bar truss, the difference was 65.79% for the weights of
967,602.87 kg vs. 583,624.36 kg.
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Table 4. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP4.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE SHAMODE-WO SHAMODE-WO MM-IPDE SHAMODE SHAMODE MM-IPDE SHAMODE SHAMODE SHAMODE-WO

1 18.0645 5.1613 8.8874 7.7869 18.0534 22.1119 83.9015 51.7107 227.7415 359.9993
2 16.7742 9.6774 16.3196 9.3201 17.5776 8.6566 33.6933 44.5132 1045.1592 181.9351
3 18.0645 18.0645 12.7513 6.6403 20.9335 9.8552 18.5951 14.1340 226.4512 129.0320
4 10.9677 19.3548 - - 2.5878 3.2963 140.0000 85.6471 193.5480 183.8706
5 16.7742 15.4838 - - 12.6018 16.7091 70.7834 38.3752 212.2576 183.8706
6 16.7742 13.5484 - - 16.9417 15.6065 35.9559 28.0943 1387.0940 129.0320
7 12.9032 12.2580 - - 9.2325 15.4614 15.5746 11.7173 231.6124 589.6762
8 20.6451 16.1290 - - 3.5346 1.7020 - - 278.7091 189.6770
9 - - - - 25.6897 24.3596 - - 399.9992 66.4515
10 - - - - 25.3886 21.8002 - - 76.1289 110.3224
11 - - - - 22.8431 15.5750 - - 193.5480 129.0320
12 - - - - 12.4678 2.2205 - - 948.3852 589.6762
13 - - - - 25.6171 25.3965 - - 399.9992 250.3221
14 - - - - 19.7497 24.9362 - - 197.4190 178.7093
15 - - - - 10.7487 1.3154 - - 864.5144 257.4188
16 - - - - 6.1029 13.2372 - - 216.1286 107.7417
17 - - - - - - - - 1045.1592 250.3221
18 - - - - - - - - 178.7093 398.7089
19 - - - - - - - - 45.6773 66.4515
20 - - - - - - - - 578.0634 227.0963
21 - - - - - - - - 637.4181 178.7093
22 - - - - - - - - 197.4190 277.4188
23 - - - - - - - - 528.3860 248.3866
24 - - - - - - - - 277.4188 193.5480
25 - - - - - - - - 578.0634 250.3221
26 - - - - - - - - 49.3547 81.2902
27 - - - - - - - - 41.8709 221.9350
28 - - - - - - - - 277.4188 94.8385
29 - - - - - - - - 227.7415 193.5480
30 - - - - - - - - 104.5159 123.2256
31 - - - - - - - - 66.4515 41.8064
32 - - - - - - - - 181.9351 307.7413

W (kg) 373.86 313.35 2507.94 1571.82 988.60 854.96 35,124.35 23,863.82 967,602.87 583,624.36
λ1 144.41 124.96 80.82 56.90 662.58 551.58 11.11 7.90 172.65 91.37

λ2 − λ1 106.81 98.64 52.80 32.30 0 0 1.24 0.83 77.22 63.08
λ3 − λ2 321.22 236.12 19.55 10.31 738.76 445.03 0 0 60.98 29.13
λ4 − λ3 973.43 890.12 15.00 6.53 191.38 175.84 4.86 3.20 66.61 53.19

Table 5 provides detailed information on the extracted non-dominated solutions for
scenarios sc1 and sc2 of MOSOP7. For the 25-bar truss, the weights of the non-dominated
extracted solutions were 354.86 kg and 290.61 kg, respectively, for the sc1 and sc2 scenarios,
resulting in a difference of approximately 22.10% in favor of the heavier structure. A
difference of 68.00% was found between the final weights of the solutions extracted by the
sc1 and sc2 scenarios of the 56-bar truss, i.e., 2141.14 kg and 1274.42 kg. For the 72-bar truss,
the difference was 53.29% between the weights of the two extracted solutions, i.e., 768.83 kg
vs. 501.54 kg. For the 120-bar truss, the weights of the extracted solutions were 38,356.29
vs. 19,948.30 kg, resulting in a difference of approximately 92.27% more for the heavier
structure. Finally, for the 582-bar truss, the difference was 68.80% for the weights of
839,131.86 kg vs. 497,109.47 kg.

Table 5. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP7.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE-WO SHAMODE-WO MM-IPDE MM-IPDE SHAMODE-WO SHAMODE-WO MM-IPDE SHAMODE SHAMODE-WO SHAMODE

1 5.1613 14.8387 10.9450 7.5308 3.6968 6.1328 139.8199 102.6235 216.1286 165.1610
2 19.3548 8.3871 12.4298 7.4917 15.0061 8.3677 36.3627 42.2049 651.6116 275.4833
3 16.7742 20.6451 8.9216 4.3630 5.4932 5.2807 53.3606 14.3509 212.2576 216.1286
4 14.8387 7.7419 - - 4.9654 10.4095 140.0000 62.0051 359.9993 107.7417
5 3.2258 4.5161 - - 15.0674 9.2059 106.9050 38.6835 200.6448 129.6772
6 14.8387 13.5484 - - 18.2431 9.0692 16.0526 7.1106 231.6124 66.4515
7 14.1935 8.3871 - - 16.0103 11.1653 4.4191 5.1719 1148.3848 257.4188
8 19.3548 19.3548 - - 4.6311 2.7151 - - 183.8706 275.4833
9 - - - - 10.6598 6.0772 - - 193.5480 138.7094

10 - - - - 16.3891 11.6792 - - 359.9993 94.8385
11 - - - - 10.2074 8.0994 - - 487.7410 156.7739
12 - - - - 3.4620 2.7687 - - 1148.3848 227.0963
13 - - - - 24.7314 22.6756 - - 637.4181 478.0636
14 - - - - 18.2237 10.4959 - - 221.9350 163.2255
15 - - - - 8.6529 4.5785 - - 703.2244 359.9993
16 - - - - 7.2635 1.9435 - - 637.4181 127.0965
17 - - - - - - - - 528.3860 359.9993
18 - - - - - - - - 248.3866 140.6449
19 - - - - - - - - 307.7413 74.1934
20 - - - - - - - - 276.7736 278.7091
21 - - - - - - - - 57.0321 94.8385
22 - - - - - - - - 123.2256 140.6449
23 - - - - - - - - 278.7091 398.7089
24 - - - - - - - - 117.4191 94.8385
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Table 5. Cont.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE-WO SHAMODE-WO MM-IPDE MM-IPDE SHAMODE-WO SHAMODE-WO MM-IPDE SHAMODE SHAMODE-WO SHAMODE

25 - - - - - - - - 136.1288 187.7416
26 - - - - - - - - 123.2256 145.8062
27 - - - - - - - - 129.0320 159.3545
28 - - - - - - - - 216.1286 94.8385
29 - - - - - - - - 183.8706 81.2902
30 - - - - - - - - 90.9676 74.1934
31 - - - - - - - - 113.5482 49.0967
32 - - - - - - - - 159.9997 136.1288

W (kg) 354.80 290.61 2141.14 1274.42 768.83 501.54 38,356.29 19,948.30 839,131.86 497,109.47
f1 (Hz) 43.28 39.48 25.42 23.95 3.85 3.14 6.19 5.65 1.91 1.40
f2 (Hz) 45.58 43.78 25.42 23.95 3.85 3.14 6.19 5.73 1.98 1.42
f3 (Hz) 56.33 46.93 36.89 37.44 6.12 4.74 6.22 5.73 3.57 3.72

λ1 152.94 96.26 77.59 49.29 482.02 311.58 11.33 6.66 159.83 118.99
λ2 243.53 200.03 121.81 67.36 482.02 311.58 12.58 7.35 274.02 175.44
λ3 610.10 357.44 135.50 74.86 1173.63 840.96 12.58 7.35 291.03 185.08

Tables A1–A4, provided in the Appendix, show the detailed information on the
extracted non-dominated solutions for scenarios sc1 and sc2 of MOSOPs 2, 3, 5, and 6.

6.6. Analysis of Results

Observing the results from the extracted solutions of MOSOP1 (Figures 7–11 and
Table 3) the 56-bar, 72-bar, and 120-bar trusses presented very low values for some
differences between natural frequencies of vibrations, being more susceptible to problems
related to overlapping their vibration modes. It is also observed that the solutions obtained
with sc2 provide considerably lighter structures than those of sc1 (except for 56-bar, for
which the same solution was extracted in both cases). At the same time, the other objectives
present less significant variations.

Regarding the results found for MOSOP4 (Figures 12–16 and Table 4), 72-bar and
120-bar trusses have the smallest differences between successive critical load factors, which
can intensify their instability and displacements. It is also noted that the 120-bar truss
has the smallest values of λ1(x), which is more likely to have stability problems than the
other trusses.

Analyzing the results concerning MOSOP7 (Figures 17–21 and Table 5), the extracted
solutions of sc2 provided lighter structural configurations without leading a significant
impact on the other objective functions. Furthermore, the 120-bar truss presented the least
stable truss among the analyzed structures concerning global stability.

Table 6 summarizes the weight of all non-dominated solutions extracted from the
Pareto fronts of scenarios sc1 and sc2. This table makes it possible to evaluate the impact of
the other objective functions, such as the natural frequencies of vibration, the critical load
factors, and the differences between some of these values on the first objective function,
which is the structure’s weight. This table highlights in bold the maximum and minimum
values of the weights among the seven MOSOPs and the percentage values of these
differences. The minimum percentage difference refers to the 25-bar truss with the lowest
weight of 308.16 kg (MOSOP 4) and the highest of 373.86 kg (MOSOP 6), equivalent to a
percentage difference of 21.09%. On the other hand, the largest percentage difference of
289.73% occurred in the 56-bar truss with a minimum weight of 643.50 kg (MOSOP3) and a
maximum of 2507.94 kg (MOSOP5). Both cases refer to extracted solutions from sc1. These
analyses will help the DM adapt their preferences, for example, whether vibrational aspects
will be prioritized over the structure’s weight or aspects related to stability will be more
important, among other possibilities.
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Table 6. Weights of extracted non-dominated solutions of all experiments (kg).

T25 T56 T72 T120 T582

MOSOP sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

1 310.62 276.97 1039.89 1039.89 754.86 576.96 29,054.60 19,863.97 804,249.40 441,471.98
2 354.78 323.68 2479.70 1726.74 931.34 817.84 32,850.85 24,505.25 905,978.93 691,222.55
3 321.84 278.88 643.50 643.50 822.17 510.03 32,372.67 20,992.16 862,839.71 436,577.63
4 373.86 313.35 2507.94 1571.82 988.60 854.96 35,124.35 23,863.82 967,602.87 583,624.36
5 360.01 310.69 2430.72 1457.44 1001.50 800.19 35,477.15 22,608.72 864,962.04 492,201.58
6 308.16 261.08 784.73 425.42 832.58 518.57 27,973.61 16,858.52 678,888.75 395,151.83
7 354.80 290.61 2141.14 1274.42 768.83 501.54 38,356.29 19,948.30 839,131.86 497,109.47

21.09% 23.98% 289.73% 168.33% 32.67% 70.46% 37.11% 45.35% 42.53% 74.92%

Finally, an additional critical analysis is carried out due to some interesting results
observed in the characteristics of the extracted solutions. For example, in MOSOP1, the
second objective function, which is the difference between the frequencies f1 and f2, must
be maximized, and the values for 56-bar, 72-bar, and 582-bar are very close to 0 in both
scenarios. Similarly, this occurs for the third objective function, concerning the difference
between f3 and f2 for the 120-bar truss in both extraction scenarios. This is due to the
structure’s characteristics, such as the symmetry of the bars and topology, which causes
neighboring natural frequencies to have similar values. It is crucial for the DM to carefully
consider adopting these extracted solutions given that if not managed effectively, it could
potentially lead to undesirable situations, including the risk of structural collapse. Given
the availability of other non-dominated solutions, the DMs can select different extraction
preferences for these structures based on their understanding of the design’s requirements
and the specified limits for the objective functions. Therefore, it is emphasized that when
this occurs, the results of the MOSOPs analyzed in this paper illustrate the importance of
this type of “warning” to the DM to extract alternative solutions, if applicable. Similar
situations can be observed in other solutions obtained for other MOSOPs, also in terms of
critical load factors.

6.7. Performance Indicators—Hypervolume (HV) and IGD+

After the MOSOPs in the analyzed trusses are solved, the algorithms’ performances
are compared using two well-known indicators in the literature: HV, whose relative values
were also presented and discussed in the previous sections, and IGD+.

Table 7 provides the percentage of non-dominated solutions provided by each
algorithm and the ratios between each algorithm’s HV and the HV of the total set of
non-dominated solutions (in parentheses). The values in bold in this table indicate the
MOEA that contributed with the most non-dominated solutions in the unified PF. From the
results presented in Table 7, it is possible to observe that MM-IPDE was the algorithm that
provided more non-dominated solutions for the unified PFs of all trusses.

Tables 8–14 present the mean and standard deviation of the values obtained for HV
and IGD+ from the independent executions of MOSOPs 1 to 7 in each truss. Regarding
the HV, bigger values indicate better performances of the algorithms, while for the IGD+
smaller results designate better performances. The best values are highlighted in bold. The
symbol (+) means that there is a statistically significant difference (p-value < 0.05) between
the results of the algorithms compared to the one with the best performance according to
the non-parametric Wilcoxon test.
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Table 7. Percentage of non-dominated solutions provided by each algorithm and the ratios between
each algorithm’s HV and the HV of the total set of non-dominated solutions (in parentheses).

MOSOP Algorithm T25 T56 T72 T120 T582

1 MM-IPDE 36.43 (0.8651) 39.81 (0.6382) 41.60 (0.7485) 39.48 (0.9601) 72.01 (0.9077)
SHAMODE 34.84 (0.7849) 31.28 (0.9509) 31.15 (0.8390) 30.83 (0.1832) 12.83 (0.7036)

SHAMODE-WO 28.73 (0.8498) 28.91 (0.8486) 21.25 (0.8468) 29.69 (0.2642) 15.16 (0.6580)

2 MM-IPDE 35.03 (0.9564) 28.49 (0.8763) 51.35 (0.8469) 39.29 (0.7961) 42.37 (0.9747)
SHAMODE 31.73 (0.6061) 36.03 (0.9236) 27.43 (0.8717) 33.06 (0.8432) 25.79 (0.2716)

SHAMODE-WO 33.24 (0.6056) 35.48 (0.9390) 21.22 (0.6928) 27.65 (0.9737) 31.84 (0.3406)

3 MM-IPDE 33.94 (0.7613) 40.30 (0.7185) 38.25 (0.6989) 41.42 (0.8989) 62.47 (0.8149)
SHAMODE 34.89 (0.8459) 28.54 (0.7612) 33.33 (0.7995) 27.61 (0.5176) 14.65 (0.6767)

SHAMODE-WO 31.17 (0.8441) 31.16 (0.8959) 28.42 (0.8355) 30.97 (0.6178) 22.88 (0.7884)

4 MM-IPDE 30.42 (0.8243) 28.70 (0.6042) 46.59 (0.8371) 41.30 (0.9470) 40.26 (0.9632)
SHAMODE 33.05 (0.7069) 35.58 (0.9356) 32.72 (0.5534) 34.60 (0.6966) 28.04 (0.1261)

SHAMODE-WO 36.53 (0.7553) 35.72 (0.8773) 20.69 (0.2645) 24.10 (0.6988) 31.70 (0.3306)

5 MM-IPDE 32.65 (0.9602) 30.29 (0.8447) 47.39 (0.8546) 41.93 (0.7457) 42.53 (0.9840)
SHAMODE 31.31 (0.4831) 34.72 (0.9281) 29.90 (0.8437) 31.74 (0.9428) 28.59 (0.0854)

SHAMODE-WO 36.04 (0.5168) 34.99 (0.9346) 22.71 (0.7121) 26.33 (0.8999) 28.88 (0.1707)

6 MM-IPDE 33.77 (0.8426) 41.16 (0.6453) 46.91 (0.9146) 37.28 (0.9219) 59.60 (0.7109)
SHAMODE 36.73 (0.8433) 29.54 (0.8584) 24.43 (0.7664) 35.69 (0.6101) 18.80 (0.7109)

SHAMODE-WO 29.50 (0.8272) 29.30 (0.8433) 28.66 (0.7757) 27.03 (0.3801) 21.60 (0.7109)

7 MM-IPDE 33.71 (0.9235) 38.16 (0.9509) 43.01 (0.9849) 50.30 (0.9791) 40.05 (0.9035)
SHAMODE 31.97 (0.6723) 31.24 (0.9099) 22.93 (0.8825) 31.45 (0.9827) 30.45 (0.2394)

SHAMODE-WO 34.32 (0.6723) 30.60 (0.9173) 34.06 (0.8648) 18.25 (0.9691) 29.50 (0.2319)

Table 8. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP1.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.06849 0.01582 0.07462 0.02458 0.07195 0.02777
56 3.5546 × 10−13(+) 7.7277 × 10−14 4.6955 × 10−13 9.9883 × 10−14 4.8235 × 10−13 8.5249 × 10−14

72 0.24389 0.03068 0.24318 0.04776 0.25383 0.03773
120 3.7414 × 10−13 1.6780 × 10−13 3.5029 × 10−13 3.0102 × 10−14 3.5353 × 10−13 3.5352 × 10−14

582 0.33236 0.07968 0.30646 0.06429 0.28673 0.05954

IGD+
25 0.09448 0.01652 0.17654 (+) 0.05426 0.18683 (+) 0.05894
56 0.05068 0.01752 0.06282 0.02180 0.05516 0.02015
72 0.07193 0.00979 0.07288 0.01315 0.07222 0.01325

120 0.02684 0.00514 0.03268 (+) 0.00902 0.03018 (+) 0.00585
582 0.11368 0.04272 0.11479 0.02536 0.11803 0.03285

Table 9. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP2.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.16173 0.00651 0.08679 (+) 0.01841 0.09068 (+) 0.01830
56 0.17462 (+) 0.02190 0.20324 0.01214 0.20436 0.01422
72 1.1255 × 10−12 1.3393 × 10−13 9.9229 × 10−13 (+) 1.7876 × 10−13 9.7009 × 10−13 (+) 1.3212 × 10−13

120 0.40913 0.07430 0.41571 0.07796 0.46354 0.10581
582 0.13261 0.06859 0.03323 (+) 0.01115 0.04300 (+) 0.01320

IGD+
25 0.11630 0.01075 0.14272 (+) 0.03861 0.13556 0.03756
56 0.07845 (+) 0.01383 0.06795 (+) 0.00975 0.06093 0.00644
72 0.04109 0.01286 0.05550 (+) 0.01918 0.05685 (+) 0.01788
120 0.04220 (+) 0.00989 0.03301 0.01218 0.03060 0.01026
582 0.09697 0.05015 0.16957 (+) 0.02903 0.15280 (+) 0.02198
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Table 10. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP3.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.04072 (+) 0.00936 0.05887 0.02774 0.05523 0.02738
56 0.23312 0.03591 0.22096 0.05955 0.27748 0.10347
72 0.11459 0.02660 0.13047 0.02807 0.13088 0.02859
120 6.2191 × 10−13 1.5094 × 10−13 5.5836 × 10−13 6.5117 × 10−14 5.7339 × 10−13 7.0279 × 10−14

582 0.21841 0.04574 0.16308 (+) 0.04811 0.19451 0.04820

IGD+
25 0.16269 0.02512 0.20308 0.12629 0.22604 0.13110
56 0.10500 0.01640 0.13456 (+) 0.03011 0.12231 0.03308
72 0.08741 0.01395 0.09313 0.01886 0.09115 0.01085
120 0.03952 0.00979 0.04382 (+) 0.00852 0.03821 0.00747
582 0.12890 0.02319 0.19376 (+) 0.03742 0.16669 (+) 0.04111

Table 11. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP4.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.03217 (+) 0.00743 0.03455 (+) 0.01244 0.04165 0.01143
56 0.02441 (+) 0.00517 0.03844 0.00890 0.03666 0.00694
72 0.05365 0.01074 0.02338 (+) 0.01069 0.01280 (+) 0.00520
120 0.49518 0.14716 0.46922 0.09729 0.45157 0.09659
582 0.03144 0.01901 0.00439 (+) 0.00211 0.00696 (+) 0.00719

IGD+
25 0.16389 0.01947 0.17649 0.06406 0.16256 0.06372
56 0.09480 0.01188 0.08827 0.01399 0.08699 0.00899
72 0.08726 0.01143 0.11821 (+) 0.02003 0.13368 (+) 0.01842
120 0.03583 (+) 0.00698 0.02617 0.00541 0.02798 0.00586
582 0.12124 0.04508 0.15910 (+) 0.02058 0.15172 (+) 0.02906

Table 12. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP5.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.07751 0.00529 0.02534 (+) 0.01039 0.03012 (+) 0.00845
56 0.11661 (+) 0.00965 0.13300 0.00658 0.12820 0.00855
72 7.1324 × 10−13 1.0568 × 10−13 6.2953 × 10−13 (+) 1.6890 × 10−13 6.0320 × 10−13 (+) 1.0961 × 10−13

120 0.30210 0.05346 0.32763 0.07045 0.32857 0.07202
582 0.10763 0.08117 0.00701 (+) 0.00532 0.01428 (+) 0.01395

IGD+
25 0.12272 0.01540 0.16375 (+) 0.04651 0.14101 (+) 0.02718
56 0.07241 0.00930 0.06530 0.01133 0.06660 0.00975
72 0.05362 0.00990 0.05656 0.01099 0.05502 0.01392
120 0.04485 (+) 0.00830 0.02971 0.00619 0.03334 0.00866
582 0.11105 0.05938 0.21423 (+) 0.02507 0.18923 (+) 0.02859



Dynamics 2025, 5, 3 24 of 33

Table 13. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP6.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.04146 (+) 0.01238 0.05018 0.02381 0.05039 0.02047
56 2.7391 × 10−13 (+) 6.6070 × 10−14 3.5832 × 10−13 7.8220 × 10−14 3.2769 × 10−13 9.0439 × 10−14

72 0.16048 0.03350 0.14607 0.02555 0.15213 0.02226
120 4.4687 × 10−13 2.6312 × 10−13 3.3899 × 10−13 1.6413 × 10−13 3.0796 × 10−13 3.5778 × 10−14

582 0.21218 0.06466 0.17931 0.05733 0.17988 0.06640

IGD+
25 0.09980 0.01776 0.17156 (+) 0.04548 0.16210 (+) 0.04079
56 0.05216 0.02338 0.07800 (+) 0.01850 0.08670 (+) 0.01862
72 0.08697 0.01797 0.09482 0.01780 0.09096 0.01520

120 0.04265 0.00890 0.03879 0.00784 0.04465 (+) 0.01003
582 0.10246 0.02764 0.14331 (+) 0.03724 0.14669 (+) 0.05190

Table 14. Mean values and standard deviation (SD) of the results obtained for HV and IGD+ from the
independent executions of MOSOP7.

MM-IPDE SHAMODE SHAMODE-WO

Mean SD Mean SD Mean SD

Number of Bars HV

25 0.16068 0.00908 0.10341 (+) 0.01986 0.11562 (+) 0.01203
56 0.17052 0.01014 0.15620 (+) 0.00795 0.15065 (+) 0.01302
72 0.29019 0.01403 0.25604 (+) 0.03073 0.25814 (+) 0.02457
120 0.63033 0.00992 0.62332 0.01329 0.61440 (+) 0.01148
582 0.03429 0.02940 0.00814 (+) 0.00624 0.00994 (+) 0.00512

IGD+
25 0.12380 (+) 0.01913 0.12240 (+) 0.02984 0.10361 0.02047
56 0.06436 0.01258 0.08525 (+) 0.01606 0.08577 (+) 0.01760
72 0.05134 0.00950 0.06074 0.02180 0.05060 0.01091
120 0.01208 0.00363 0.01386 (+) 0.00301 0.01409 (+) 0.00214
582 0.20772 0.07871 0.24990 0.06891 0.22496 0.04277

6.8. Performance Profiles

As mentioned in Section 4, the area under the performance profile curve ρs(τ) is
an indicator of the general performance of the algorithm s in solving the problem set P
(number of problems np = 35, as there are seven MOSOPs for each of the five trusses). The
larger the area, the better the performance of the analyzed algorithm.

Figures 22 and 23 represent the PPs referring to the HV and IGD+ values, respectively,
presented in Tables 8–14. Each PP is related to the results of its performance indicator
in solving the respective MOSOP for all analyzed trusses. The areas under the curves
(normalized by the largest of them) are in the description of each figure, in the order MM-
IPDE, SHAMODE, and SHAMODE-WO, indicating the performance of the algorithms in
the resolution of the problems.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 22. Performance profiles referring to the HV values presented in Tables 8–14. The areas below
the curves (normalized by the largest of them) are in the description of each figure, in this order:
MM-IPDE, SHAMODE, and SHAMODE-WO: (a) 0.8312; 1.0000; 0.9802; (b) 1.0000; 0.7402; 0.8140;
(c) 0.7418; 0.7757; 1.0000; (d) 1.0000; 0.7713; 0.8001; (e) 1.0000; 0.7719; 0.8867; (f) 1.0000; 0.9533; 0.8525;
and (g) 1.0000; 0.7508; 0.8057.
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Figure 23. Performance profiles referring to the IGD+ values presented in Tables 8–14. The areas
below the curves (normalized by the largest of them) are in the description of each figure, in this
order: MM-IPDE, SHAMODE, and SHAMODE-WO: (a) 1.0000; 0.7241; 0.7478; (b) 1.0000; 0.7225;
0.8511; (c) 1.0000; 0.5120; 0.6551; (d) 1.0000; 0.8631; 0.8242; (e) 1.0000; 0.8262; 0.9000; (f) 1.0000; 0.5412;
0.4806; and (g) 1.0000; 0.4172; 0.7437.

Analyzing the PPs from Figure 22, related to the HV, it is possible to observe that
according to the normalized areas under the PPs, MM-IPDE had the best performances in
MOSOPs 2, 4, 5, 6, and 7, while SHAMODE was the best for MOSOP1 and SHAMODE-
WO for MOSOP3. Regarding the IGD+ indicator, MM-IPDE had the greatest areas and,
therefore, the best performance in all the analyzed MOSOPs. Concerning the definition
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of the most efficient algorithm for a given optimization problem, the difference between
results provided by different metrics has already been mentioned by Carvalho et al. in [1].

To evaluate according to each metric the performance of the meta-heuristics in solving
the total set of proposed MOSOPs, Figure 24 represents the general performance profiles
related to the HV and IGD+ values obtained in this study. To create these profiles, the areas
under the profile curves of each MOSOP (indicated in Figure 22 for HV and Figure 23 for
IGD+) were considered as the performance metric tp,s. Thus, it was possible to outline
the general performance profiles of each algorithm for both HV (Figure 24a) and IGD+
(Figure 24b). Again, the areas below the curves (normalized by the largest of them) are in
the graph description in the order: MM-IPDE, SHAMODE, and SHAMODE-WO.

(a) (b)

Figure 24. General performance profiles referring to the HV and IGD+. The areas below the curves
(normalized by the largest of them) are in the description of each figure, in this order: MM-IPDE,
SHAMODE, and SHAMODE-WO: (a) 1.0000; 0.4428; 0.7432; (b) 1.0000; 0.5570; 0.7148.

It is observed that the general performance profiles of both metrics point to MM-IPDE
as the algorithm with the best overall performance in solving the MOSOPs for the proposed
trusses, followed by SHAMODE-WO and, with the worst performance, SHAMODE.

Finally, to present a definitive conclusion about the algorithms that best performed
in the MOSOPs of this study, Figure 25 displays the global performance profiles referring
to the merged analysis of HV and IGD+. To make this analysis and obtain such profiles,
the areas under the profile curves of each MOSOP were used again (Figure 22 for HV and
Figure 23 for IGD+) as the performance metric tp,s. This time, however, the areas related to
HV and those obtained from the IGD+ graphs were analyzed together, providing a global
perspective on the algorithm’s performance in terms of both metrics.

Figure 25. Global performance profiles referring to the merged analysis of HV and IGD+. The areas
below the curves (normalized by the largest of them) are in the description of each figure, in this
order: MM-IPDE, SHAMODE, and SHAMODE-WO: 1.0000; 0.7162; 0.8275.
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Therefore, it can be seen in Figure 25 that, as expected, MM-IPDE presented the best
overall performance in solving the MOSOPs for the proposed trusses. SHAMODE-WO
provides the second-best overall performance, indicating that adding the WOA spiral
motion operator to the original algorithm improved results. The merged analysis also
pointed out SHAMODE as the algorithm with the worst overall performance in solving the
optimization problems addressed in this work.

7. Conclusions
The solution of MOSOPs with objective functions and constraints related to natural

frequencies of vibration and critical load factors is important in avoiding the effect of
resonance in the dynamic behavior of structures and guaranteeing their global stability. This
helps designers and engineers find structural solutions that meet their design requirements
concerning weight, safety, usability, and user comfort.

The main objective established for this paper referred to the formulation and
application of MOSOPs in spatial trusses, involving objectives and constraints related
to dynamic and global stability aspects. It is possible to conclude that this objective was
achieved with the solution of MOSOPs with four to seven objective functions, applied
in five different trusses, which provided a large number of non-dominated solutions,
allowing the DM to choose the structural configurations that best meet their needs and
intentions. Furthermore, one innovative aspect of this study was the consideration of
objective functions aiming to maximize the differences between the natural frequencies
of vibration and between the critical load factors of the structures, enabling the designer
to find solutions that are less susceptible to problems related to resonance between their
vibration modes and the overlapping of their buckling modes.

The proposed MOSOPs are classified as many-objective structural optimization
problems since they have more than three objective functions. Formulating structural
optimization problems as many-objective problems can provide DMs with a more complete
understanding of the problem, enabling them to make more robust and reliable decisions.
As these problems have not received the expected attention in the literature, this study is a
significant step forward in addressing this gap. Furthermore, the MTD method proved to
be very efficient in finding structures that met the DM’s criteria according to the importance
(weight) attributed to each objective function. Another objective achieved by this paper
was to compare the performances of the three state-of-the-art DE-based MOEAs used to
solve the proposed MOSOPs.

As future work, we expect to propose new MOSOPs considering the inclusion of
more objective functions, such as aspects related to critical loads in post-buckling behavior,
including inelastic characteristics of materials, with applications in the optimization of
trusses and shallow domes. Finally, we expect to apply machine learning algorithms
to minimize the high computational costs required to evaluate the objective functions
and constraints.
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Appendix A

Table A1. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP2.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE SHAMODE SHAMODE-WO SHAMODE MM-IPDE MM-IPDE SHAMODE SHAMODE-WO MM-IPDE SHAMODE

1 14.1935 6.4516 11.5485 9.4270 12.2294 9.3759 138.8009 122.0141 337.4187 66.4515
2 13.5484 10.3226 13.9002 9.1491 21.8062 22.2072 60.9155 61.4018 337.4187 578.0634
3 14.1935 15.4838 11.6346 7.2334 19.8998 9.8162 18.8396 20.8802 337.4187 478.0636
4 10.9677 12.9032 - - 2.9691 3.5996 124.9358 83.7655 337.4187 100.6450
5 12.9032 8.3871 - - 22.6512 11.1628 70.4793 31.0734 337.4187 178.7093
6 20.6451 20.6451 - - 16.6328 14.6773 6.5921 3.4781 337.4187 210.9673
7 12.9032 10.9677 - - 14.1773 14.2252 5.4838 7.1942 337.4187 275.4833
8 18.0645 16.1290 - - 0.8066 0.9947 - - 359.9993 90.9676
9 - - - - 23.3475 24.8685 - - 528.3860 118.0643

10 - - - - 17.5254 19.7926 - - 337.4187 94.8385
11 - - - - 25.8060 14.6551 - - 337.4187 221.9350
12 - - - - 2.1132 2.5302 - - 1045.1592 210.9673
13 - - - - 24.6398 25.2552 - - 337.4187 170.9674
14 - - - - 17.0898 16.6418 - - 193.5480 578.0634
15 - - - - 13.6292 4.8607 - - 337.4187 275.4833
16 - - - - 0.6516 0.8076 - - 337.4187 200.6448
17 - - - - - - - - 864.5144 537.4183
18 - - - - - - - - 68.3870 301.2897
19 - - - - - - - - 66.4515 200.6448
20 - - - - - - - - 337.4187 1148.3848
21 - - - - - - - - 337.4187 49.3547
22 - - - - - - - - 334.1929 366.4509
23 - - - - - - - - 337.4187 197.4190
24 - - - - - - - - 145.8062 307.7413
25 - - - - - - - - 337.4187 66.4515
26 - - - - - - - - 337.4187 178.7093
27 - - - - - - - - 110.3224 187.7416
28 - - - - - - - - 226.4512 94.1934
29 - - - - - - - - 337.4187 221.9350
30 - - - - - - - - 337.4187 305.8058
31 - - - - - - - - 337.4187 58.8386
32 - - - - - - - - 337.4187 53.2257

W (kg) 354.78 323.68 2479.70 1726.74 931.34 817.84 32,850.85 24,505.25 905,978.93 691,222.55
λ1 140.38 120.82 84.67 60.77 710.35 631.19 10.64 8.26 161.59 114.23

λ2 − λ1 107.27 118.21 59.60 39.34 0 0 1.17 0.86 82.75 84.60
λ3 − λ2 384.07 305.76 16.39 9.85 829.43 624.33 0 0 101.29 51.02

Table A2. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP3.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE-WO SHAMODE MM-IPDE MM-IPDE MM-IPDE MM-IPDE MM-IPDE SHAMODE-WO MM-IPDE MM-IPDE

1 3.2258 1.9355 3.5057 3.5057 11.9521 4.1954 83.9015 51.7107 334.1929 127.0965
2 5.8064 2.5806 2.7481 2.7481 9.4987 9.8330 33.6933 44.5132 250.3221 487.7410
3 19.3548 19.3548 3.1274 3.1274 4.6008 6.0389 18.5951 14.1340 1264.5136 227.7415
4 18.0645 7.0968 - - 14.3302 7.1399 140.0000 85.6471 703.2244 337.4187
5 7.7419 1.2903 - - 17.6678 8.9800 70.7834 38.3752 83.8708 66.4515
6 15.4838 10.9677 - - 24.1404 16.2796 35.9559 28.0943 94.8385 39.7419
7 16.1290 18.0645 - - 13.6265 6.0383 15.5746 11.7173 589.6762 441.9346
8 16.1290 16.1290 - - 18.4797 6.7039 - - 129.6772 192.2577
9 - - - - 24.2875 11.0618 - - 337.4187 39.7419
10 - - - - 19.2344 8.3536 - - 322.5800 276.7736
11 - - - - 1.2409 1.1206 - - 159.3545 49.3547
12 - - - - 6.7649 1.5663 - - 337.4187 305.8058
13 - - - - 12.4538 9.0592 - - 231.6124 275.4833
14 - - - - 14.7725 10.7972 - - 212.2576 144.5158
15 - - - - 11.6230 4.5120 - - 1045.1592 181.9351
16 - - - - 8.8315 11.9779 - - 399.9992 159.3545
17 - - - - - - - - 399.9992 307.7413
18 - - - - - - - - 201.2899 136.1288
19 - - - - - - - - 57.0967 39.7419
20 - - - - - - - - 337.4187 337.4187
21 - - - - - - - - 39.7419 39.7419
22 - - - - - - - - 39.7419 39.7419
23 - - - - - - - - 806.4500 337.4187
24 - - - - - - - - 81.2902 49.6128
25 - - - - - - - - 39.7419 39.7419
26 - - - - - - - - 193.5480 206.4512
27 - - - - - - - - 45.6773 101.9353
28 - - - - - - - - 197.4190 129.6772
29 - - - - - - - - 170.9674 58.9031
30 - - - - - - - - 183.8706 192.2577
31 - - - - - - - - 76.1289 206.4512
32 - - - - - - - - 129.0320 39.7419

W (kg) 321.84 278.88 643.50 643.50 822.17 510.03 32,372.67 20,992.16 862,839.71 436,577.63
f1 (Hz) 38.25 31.57 25.78 25.78 3.68 2.92 5.52 4.85 1.60 1.53

f2 − f1 (Hz) 7.06 14.17 0 0 0 0 0.12 0.11 0.06 0.06
f3 − f2 (Hz) 10.46 6.68 10.04 10.04 2.33 1.81 0 0 2.34 2.57
f4 − f3 (Hz) 20.60 16.90 2.81 2.81 4.20 2.97 0.41 0.38 0.72 0.73
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Table A3. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP5.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE SHAMODE SHAMODE-WO SHAMODE-
WO MM-IPDE SHAMODE SHAMODE SHAMODE-WO SHAMODE-WO MM-IPDE

1 5.8064 5.8064 11.9686 7.1438 9.6969 12.7043 139.9829 113.3343 478.0636 231.6124
2 20.6451 11.6129 13.1954 7.1243 22.6366 12.7204 47.2919 55.1637 68.3870 107.7417
3 15.4838 18.0645 11.1155 7.1993 12.7492 6.8221 40.2536 10.7307 250.3221 221.9350
4 16.7742 9.6774 - - 5.4101 5.0471 138.9559 70.1522 1148.3850 210.9673
5 1.9355 3.8710 - - 24.9356 16.8832 63.1236 46.2733 322.5800 107.7417
6 18.0645 19.3548 - - 18.0818 13.9176 10.2484 10.6235 167.0964 197.4190
7 13.5484 8.3871 - - 23.3592 14.3682 9.3118 6.0279 1387.0940 278.7091
8 16.7742 16.7742 - - 1.9442 3.9174 - - 189.6770 138.7094
9 - - - - 21.6753 25.8036 - - 227.7415 176.1287
10 - - - - 22.6436 19.2670 - - 90.96756 138.7094
11 - - - - 15.5379 10.7139 - - 123.2256 226.4512
12 - - - - 1.9781 9.9969 - - 537.4183 278.7091
13 - - - - 24.4922 24.8591 - - 1045.1590 178.7093
14 - - - - 20.3056 20.6456 - - 250.3221 210.9673
15 - - - - 15.1115 8.1389 - - 637.4181 192.2577
16 - - - - 4.8008 0.9820 - - 366.4509 117.4191
17 - - - - - - - - 1264.5140 210.9673
18 - - - - - - - - 159.9997 192.2577
19 - - - - - - - - 49.0967 278.7091
20 - - - - - - - - 169.0319 276.7736
21 - - - - - - - - 115.4836 76.12888
22 - - - - - - - - 110.3224 248.3866
23 - - - - - - - - 277.4188 163.2255
24 - - - - - - - - 216.1286 210.9673
25 - - - - - - - - 87.0966 117.4191
26 - - - - - - - - 94.8385 83.8708
27 - - - - - - - - 90.9676 94.8385
28 - - - - - - - - 62.6450 104.5159
29 - - - - - - - - 92.9030 178.7093
30 - - - - - - - - 108.3869 189.677
31 - - - - - - - - 275.4833 250.3221
32 - - - - - - - - 257.4188 129.0320

W (kg) 360.01 310.69 2430.72 1457.44 1001.50 800.19 35,477.15 22,608.72 864,962.04 492,201.58
λ1 148.92 101.70 83.39 46.84 720.81 621.69 11.16 7.42 139.30 78.55
λ2 255.30 227.17 142.50 87.76 720.81 621.69 12.39 8.19 241.14 132.47
λ3 596.21 512.42 157.59 94.86 1817.19 1165.98 12.39 8.19 381.45 169.30

λ2 − λ1 106.37 125.48 59.12 40.91 0 0 1.23 0.77 101.84 53.92
λ3 − λ2 340.91 285.24 15.09 7.11 1096.37 544.29 0 0 140.31 36.84

Table A4. Values obtained for the design variables and objective functions of the MTD solutions
extracted from MOSOP6.

Ai (cm2) T25 T56 T72 T120 T582

Scenario sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2 sc1 sc2

D. Var. SHAMODE SHAMODE SHAMODE SHAMODE SHAMODE SHAMODE-WO SHAMODE-WO SHAMODE MM-IPDE MM-IPDE

1 1.9355 3.8710 3.9666 2.0332 3.5125 5.9587 83.3357 47.0608 41.8064 39.7419
2 5.8064 3.2258 3.8622 2.2808 9.5892 5.6675 27.9777 39.6662 651.6116 337.4187
3 19.3548 19.3548 3.7546 2.0176 15.7317 6.0512 30.4049 24.4641 110.3224 110.3224
4 3.8710 1.9355 - - 6.5686 5.4587 86.1556 54.4415 651.6116 226.4512
5 3.8710 7.0968 - - 8.0164 2.9947 69.8433 44.2815 334.1929 337.4187
6 14.1935 6.4516 - - 20.4860 12.2111 30.6347 11.2129 231.6124 39.7419
7 18.0645 16.7742 - - 0.7670 4.1211 33.2887 10.7157 155.4836 159.3545
8 16.7742 18.0645 - - 11.5959 2.6549 - - 227.0963 123.2256
9 - - - - 20.3694 12.7197 - - 39.7419 94.8385
10 - - - - 21.2489 14.6734 - - 399.9992 305.8058
11 - - - - 8.8329 2.8922 - - 637.4181 85.8063
12 - - - - 13.3486 1.4531 - - 864.5144 337.4187
13 - - - - 16.5293 12.3645 - - 216.1286 193.5480
14 - - - - 24.0254 20.4339 - - 129.0320 127.0965
15 - - - - 11.0863 1.0462 - - 305.8058 301.2897
16 - - - - 2.1501 1.6375 - - 637.4181 64.5160
17 - - - - - - - - 589.6762 337.4187
18 - - - - - - - - 159.3545 159.3545
19 - - - - - - - - 39.7419 39.7419
20 - - - - - - - - 578.0634 307.7413
21 - - - - - - - - 39.7419 57.0321
22 - - - - - - - - 39.7419 39.7419
23 - - - - - - - - 337.4187 305.8058
24 - - - - - - - - 39.7419 39.7419
25 - - - - - - - - 39.7419 39.7419
26 - - - - - - - - 149.6771 90.9676
27 - - - - - - - - 94.1934 39.7419
28 - - - - - - - - 75.4837 104.5159
29 - - - - - - - - 212.2576 39.7419
30 - - - - - - - - 189.6770 178.7093
31 - - - - - - - - 189.6770 94.8385
32 - - - - - - - - 76.1289 227.7415

W (kg) 308.16 261.08 784.73 425.42 832.58 518.57 27,973.61 16,858.52 678,888.75 395,151.83
f1 (Hz) 38.44 33.39 26.08 26.18 3.83 3.09 5.58 4.69 1.62 1.47
f2 (Hz) 46.32 44.31 26.08 26.18 3.83 3.09 5.70 4.79 1.70 1.54
f3 (Hz) 57.27 49.68 36.65 36.43 6.68 5.58 5.70 4.79 4.20 3.77

f2 − f1 (Hz) 7.88 10.92 0 0 0 0 0.11 0.10 0.09 0.07
f3 − f2(Hz) 10.95 5.37 10.58 10.26 2.84 2.49 0 0 2.50 2.23
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43. Tušar, T.; Filipič, B. DEMO (Differential Evolution for Multiobjective Optimization); Institut “Jožef Stefan”: Ljubljana, Slovenia, 2009.
44. Aittokoski, T.; Miettinen, K. Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization,

UPS-EMOA. Optim. Methods Softw. 2010, 25, 841–858. [CrossRef]
45. Pholdee, N.; Bureerat, S. Hybridisation of real-code population-based incremental learning and differential evolution for

multiobjective design of trusses. Inf. Sci. 2013, 223, 136–152. [CrossRef]
46. Sadollah, A.; Eskandar, H.; Kim, J. Water cycle algorithm for solving constrained multi-objective optimization problems. Appl.

Soft Comput. 2015, 27, 279–298. [CrossRef]
47. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
48. Mirjalili, S.; Saremi, S.; Mirjalili, S.; Coelho, L. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion

optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]
49. Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving

engineering problems. Appl. Intell. 2017, 46, 79–95. [CrossRef]
50. Mirjalili, S.; Gandomi, A.; Mirjalili, S.; Saremi, S.; Faris, H.; Mirjalili, S. Salp Swarm Algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
51. Mirjalili, S.; Jangir, P.; Mirjalili, S.; Saremi, S.; Trivedi, I. Optimization of problems with multiple objectives using the multi-verse

optimization algorithm. Knowl.-Based Syst. 2017, 134, 50–71. [CrossRef]
52. Mirjalili, S.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization

problems. Appl. Intell. 2018, 48, 805–820. [CrossRef]

http://dx.doi.org/10.1007/s00366-019-00846-6
http://dx.doi.org/10.1007/s00521-018-3401-9
http://dx.doi.org/10.1007/s00366-020-01010-1
http://dx.doi.org/10.1016/j.engstruct.2021.112187
http://dx.doi.org/10.1007/s00707-011-0564-1
http://dx.doi.org/10.1007/s00158-011-0709-9
http://dx.doi.org/10.1016/j.advengsoft.2013.03.004
http://dx.doi.org/10.1016/j.advengsoft.2013.01.004
http://dx.doi.org/10.1016/j.asoc.2018.08.048
http://dx.doi.org/10.1007/s00158-017-1764-7
http://dx.doi.org/10.1007/s00366-018-0629-z
http://dx.doi.org/10.1007/s12065-022-00804-0
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1080/10556780903548265
http://dx.doi.org/10.1016/j.ins.2012.10.008
http://dx.doi.org/10.1016/j.asoc.2014.10.042
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1016/j.eswa.2015.10.039
http://dx.doi.org/10.1007/s10489-016-0825-8
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.knosys.2017.07.018
http://dx.doi.org/10.1007/s10489-017-1019-8


Dynamics 2025, 5, 3 33 of 33

53. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 71–78.

54. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
55. Bureerat, S.; Sriworamas, K. Population-based incremental learning for multiobjective optimisation. In Soft Computing in Industrial

Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 223–232.
56. Baluja, S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive

Learning; Technical Report; Carnegie Mellon University: Pittsburgh, PA, USA, 1994.
57. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE

Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
58. Ishibuchi, H.; Masuda, H.; Nojima, Y. Sensitivity of Performance Evaluation Results by Inverted Generational Distance to

Reference Points. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29
July 2016; pp. 1107–1114.

59. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213.
[CrossRef]

60. Barbosa, H.J.C.; Bernardino, H.S.; Barreto, A.M.S. Using performance profiles to analyze the results of the 2006 CEC constrained
optimization competition. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain,
18–23 July 2010; pp. 1–8.

61. Lemonge, A.C.; Barbosa, H.J. An adaptive penalty scheme for genetic algorithms in structural optimization. Int. J. Numer.
Methods Eng. 2004, 59, 703–736. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1002/nme.899

	Introduction
	Literature Review
	Many-Objective Structural Optimization Problems
	Differential Evolution Algorithms, Performance Indicators, and Multi-Criteria Decision-Making (MCDM)
	Computational Experiments
	Results
	Parallel Coordinates and Extracted Solutions
	Pareto Fronts for MOSOP1
	Pareto Fronts for MOSOP4
	Pareto Fronts for MOSOP7
	Complete Data of the Non-Dominated Extracted Solutions
	Analysis of Results
	Performance Indicators—Hypervolume (HV) and IGD+
	Performance Profiles

	Conclusions
	Appendix A
	References

