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Abstract: Spin models like the Heisenberg Hamiltonian effectively describe the interactions of open-
shell transition-metal ions on a lattice and can account for various properties of magnetic solids and
molecules. Numerical methods are usually required to find exact or approximate eigenstates, but
for small clusters with spatial symmetry, analytical solutions exist, and a few Heisenberg systems
have been solved in closed form. This paper presents a simple, generally applicable approach to
analytically solve isotropic spin clusters, based on adapting the basis to both total spin and point
group symmetry to factor the Hamiltonian matrix into sufficiently small blocks. We demonstrate
applications to small rings and polyhedra, some of which are straightforward to solve by successive
spin-coupling for Heisenberg terms only; additional interactions, such as biquadratic exchange or
multi-center terms necessitate symmetry adaptation.
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1. Introduction

Spin Hamiltonians are used to model the properties of exchange-coupled magnetic
solids and molecules, particularly those of the first transition-metal series [1], such as
magnetic susceptibilities and heat capacities or magnetic-resonance and neutron-scattering
spectra. Based on matrix diagonalization, all physical quantities within the framework of
the model can be calculated exactly. While the Hilbert space grows exponentially with the
number of centers, the system size limit for numerically exact or quasi-exact calculations [2]
can be increased by taking advantage of symmetries [3–11]. However, for simulating large
systems, various approximations are essential [12].

On the opposite side of the range, small clusters allow closed-form solutions, espe-
cially if the Hamiltonian is isotropic and invariant with respect to spin permutations [8]
corresponding to spatial symmetries of the molecule or cluster. In addition to their peda-
gogical value, analytical solutions yield insights that might be obscured or unavailable in
numerical data. For example, they can facilitate parametric plots of spectra and provide
exact expressions for phase boundaries in parameter space to map precise quantum-phase
diagrams, which would only be approximated in numerical computations. Analytical in-
sights can also assist in aligning the spin model with experimental observations, potentially
reducing the need for numerical explorations.

Some Heisenberg systems are trivially integrable—solved without diagonalization
or explicit adaptation to spatial symmetries—by Kambe’s coupling method [13], which
relies on successively forming subsystem spins in a hierarchical manner to ultimately
produce total spin multiplets. However, not all analytically solvable cases can be subjected
to this approach, as it requires certain conditions on the coupling topology [14]. Moreover,
as explained in Section 3, Kambe’s method ceases to be applicable when the model
is extended to include additional isotropic terms, such as biquadratic exchange or
multi-site interactions.

Here we find closed-form solutions for small isotropic clusters by exploiting spin
and point group (PG) symmetries to factorize the Hamiltonian into blocks, with each
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block corresponding to a specific irreducible representation (irrep) of SU(2) (quantum
number S) and the point group (irrep label Γ). If the size of a block does not exceed
4 × 4, then closed-form solutions for eigenvalues (energies) are guaranteed to exist and
have already been obtained for some Heisenberg clusters [15–18]. Specifically, for s = 1

2
rings with N = 5, 6, 7 sites [15,16], simultaneous adaptation to the z-component of spin
(magnetization quantum number M) and the cyclic point group CN was sufficient to obtain
subspaces of manageable sizes. For s = 1

2 , N = 8 or s = 1, N = 5, adaptation to total spin
(S and M) and CN was achieved by a recursive technique designed for rings [17]. Finally,
the ground state of the antiferromagnetic s = 1

2 Heisenberg icosahedron was derived in a
similar manner as presented here, but without explaining the method [18]. Our purpose is
thus to provide a clear and easy-to-follow procedure to diagonalize any isotropic cluster
that allows analytical solutions.

In the upcoming Section 2, we briefly revisit the symmetries of isotropic spin models
and discuss various existing approaches for partitioning the Hamiltonian. We then explain
our strategy of setting up a generalized (non-orthogonal) eigenvalue problem within a
selected subspace by applying Löwdin’s spin projector and a PG projector to random states
in an uncoupled basis. Our priority is to provide a procedure that is as simple as possible
to implement, rather than being the most computationally efficient. Additional practical
advice on implementing PG symmetry to ensure the paper is self-contained is given in
the Appendix A.

For small rings and polyhedra with various local spin values s, Section 3 tabulates the
dimensions of subspaces, provides selected energy expressions and boundary conditions
in parameter space, and explores the ground state as a function of independent parameters.
General isotropic spin Hamiltonians can involve a multitude of free parameters [19] making
extensive tabulations of spectra or derived properties impractical. Our results are not
directly intended to provide new insights into any exchange-coupled cluster but should
assist in verifying independent implementations of the analytical diagonalization process,
which could include additional terms. However, similar systems to some of those we
address here, such as square or tetrahedral configurations of spin centers (see, e.g., [1,20]
and references cited therein), do exist, and analytical approaches could be useful for
analyzing their properties.

2. Theory

Symmetries of isotropic Hamiltonians. In the Heisenberg model, pairwise interac-
tions are parametrized by coupling constants Jij, Equation (1),

ĤJ = ∑
i<j

Jij
^
si·

^
sj, (1)

where
^
si = (ŝx,i, ŝy,i, ŝz,i) is the local spin vector of site i. Biquadratic exchange is another

isotropic term, Equation (2),

ĤK = ∑
i<j

Kij(
^
si·

^
sj)

2
(2)

Note that (
^
si·

^
sj)

2
is a linear combination of scalar couplings of local spin operators of

spherical tensor rank 1 (a Heisenberg-type contribution) and rank 2 [19]. The construction of
rank-2 operators requires s > 1

2 , and therefore ĤJ is the only isotropic pairwise interaction
for s = 1

2 . However, for N ≥ 4, multi-center terms occur, see Section 3.
Isotropy means invariance with respect to spin rotations [group SU(2)], due to

commutation of the Hamiltonian with all components of the total spin
^
S = ∑i

^
si,

[Ĥ, Ŝα] = 0 (α = x, y, z). Each level of an isotropic Ĥ is a multiplet encompassing 2S + 1
states with z-projections (Ŝz eigenvalues) ranging from M = −S to M = +S. All states
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of a single multiplet have an
^
S

2

eigenvalue of S(S + 1). The basis can be spin-adapted by
successive coupling, and the Hamiltonian matrix in a subspace with definite S is computed
based on irreducible tensor techniques, as explained in detail elsewhere [1,21]. In the frame
of exact diagonalization of the Heisenberg model, the resulting reduction in matrix sizes is
highly useful, and computational packages make such calculations accessible for studying
various magnetic properties [22].

In addition to spin symmetry, the Heisenberg model, and indeed any isotropic spin
model, is symmetric under permutations of sites according to the spatial symmetries of
the cluster [8]. This spin-permutational symmetry (SPS) is often referred to as point group
(PG) symmetry. However, it is important to note that not all distinct PG symmetries of the
electronic Hamiltonian are necessarily reflected in the isotropic spin model. For example, a
planar hexanuclear cluster belonging to the molecular point group D6h could be represented
as an N = 6 Heisenberg ring, with the latter model exhibiting only D6 SPS. The full group
D6h = D6 ⊗ σh would pertain to an anisotropic spin Hamiltonian (not considered here)
that more completely represents the physics by including the consequences of spin–orbit
coupling [23]; some of the group operations would then represent combinations of spin
permutations and spin rotations [24–26].

Combining total spin (
^
S

2

and Ŝz) with PG is significantly more complex than using
either of these two symmetries separately. It is usually impossible to successively couple
individual sites into larger subsystems and ultimately into a total spin multiplet in a way
that is compatible with the full point group, making demanding transformations between
different coupling schemes unavoidable [8] (which are still manageable under specific
circumstances [10,11]). Consequently, the application of PG symmetry is frequently limited
either to a compatible subgroup [8] or—far more commonly—the full PG symmetry is

utilized only in conjunction with Ŝz (instead of
^
S

2

and Ŝz) by working in an uncoupled basis
|m1, . . . , mN⟩ of definite local z-projections, M = ∑i mi [8,9,27,28]. For a concise practical
explanation of the latter strategy, see Ref. [9]. We briefly mention that an alternative
technique for complete adjustment to full spin and PG symmetry relies on concepts from
valence bond theory but has not been widely adopted [29]. Finally, for a unitary and
symmetric group approach for spin-1/2 systems, see, Ref. [30].

In contrast, we combine a PG projection operator (see below) with Löwdin’s
projector [31] for full symmetry adaptation, with the aim of sufficiently reducing the
dimensions of Hamiltonian blocks to enable analytical diagonalization. When used on a
random state with definite M, Löwdin’s projector, Equation (3),

P̂S = ∏
l ̸=S

^
S

2

− l(l + 1)
S(S + 1)− l(l + 1)

, (3)

affords a pure-spin state |S, M⟩; all other contributions (l ̸= S) are eliminated. A similar
approach (also in conjunction with spatial symmetry) has occasionally been applied in
numerical calculations, e.g., in Lanczos exact diagonalization for triangular-lattice cluster
models [6] but was apparently not yet employed to obtain analytical solutions.

The PG projector P̂Γ
λ for irrep Γ and component λ (the latter must be specified for

multi-dimensional irreps, dΓ > 1) is defined in Equation (4),

P̂Γ
λ =

dΓ

h

h

∑
g=1

[DΓ
λλ(g)]

∗
Ĝ(g), (4)

where h is the order of the group (the total number of elements g), DΓ
λλ(g) is a diagonal

entry of the irrep matrix DΓ(g), and Ĝ(g) is the respective symmetry operation in spin
space; the asterisk (*) denotes complex conjugation. Technical details on the practical
construction of the PG projector are provided in Appendix A.
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Generalized eigenvalue problem. Symmetry projectors are idempotent, P̂2 = P̂,
and self-adjoint, P̂† = P̂, where the dagger (†) denotes the Hermitian adjoint (complex
conjugate transpose). Hence, their eigenvalues can only be 0 or 1. The dimension d
of the respective subspace is given by the trace, d = Tr(P̂). We calculate the Hamilto-
nian and overlap matrices, h and s (the latter is not to be mixed up with a spin vector),
in a space R = (r1, . . . , rd) of state vectors ri comprising small random integers in a
symbolic representation,

h = R†HPSPΓ
λR, (5)

s = R†PSPΓ
λR, (6)

where H, PS and PΓ
λ are the Hamiltonian, spin and PG projector representations, re-

spectively, in the uncoupled basis |m1, . . . , mN⟩ for the selected magnetization M and
d(S, M, Γ, λ) = Tr(PSPΓ

λ). The generalized eigenvalue problem,

hv = Esv, (7)

where v is an eigenvector, has real eigenvalues E (energy levels). When solving Equation (7)
with symbolic computer algebra packages like Mathematica (Eigenvalues[h,s]) or the
MATLAB symbolic toolbox (eig(h, s)), the energy expressions in spaces with d = 3 or d = 4
are usually very long, even when explicitly assuming symbolic Hamiltonian parameters to
be real, and the built-in functions for algebraic simplification might not always produce
significantly shorter forms. We observed that it is sometimes possible to obtain more
concise results by a similarity transformation of h, Equation (8),

⌣
h = L−1h(L−1)

†
, (8)

based on the Cholesky decomposition, s = LL†;
⌣
h has the same eigenvalues as the original

problem, but, in contrast to s−1h, it is Hermitian. Still, most solutions of cubic (d = 3) or
quartic (d = 4) polynomial equations are impracticably lengthy functions of the parame-
ters. Therefore, Section 3 presents only a few illustrative and reasonably concise results
for brevity.

Additional considerations. The only prerequisites for following our recipe are sym-

bolic representations of the
^
si and the generators C for site permutations with their corre-

sponding irrep matrices DΓ. Instead of constructing the
^
si, one can directly compute the

scalar products
^
si·

^
sj of all relevant pairs in a magnetization subspace and build the projec-

tors and all model terms considered in this paper (Heisenberg, biquadratic and four-center
terms) from them (typically, M = 0 or M = 1

2 , which encompasses all multiplets). This
avoids working in the full Hilbert space throughout.

A symbolic calculation of PS (with a significant fraction of non-zero elements) can
become a bottleneck. Therefore, one may choose to first build the (M, Γ, λ) basis. A direct
full diagonalization of PΓ

λ, keeping only the eigenvectors with eigenvalue 1, is not always
feasible with symbolic computer algebra, but is indeed not required, because the (M, Γ, λ)
space can be generated by scanning the rows of PΓ

λ and selecting only the first column
with a non-zero entry, discarding all other columns of PΓ

λ that have a non-zero entry in
the given row. (The described construction of a (M, Γ, λ) subspace does not explicitly
require the PΓ

λ matrices and could instead be achieved as detailed in Ref. [9]. However,
we believe that our current method, which applies (at least conceptually) a combined PG
and spin projector to random states, offers more pedagogical clarity and would be slightly
simpler to implement. Forming PΓ

λ in a symbolic representation usually does not pose
a significant computational cost for systems that are small enough to have closed-form
solutions.) The idea behind this procedure is that each uncoupled state |m1, .., mN⟩ appears
in at most one distinct state in the (M, Γ, λ) basis. (As noted in Ref. [25], this is not true
for all multidimensional irreps in all point groups if one does not separate components
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λ but instead uses a simplified projector, P̂Γ = (dΓ/h)∑g χ∗(g)Ĝ(g), based on characters,
χ(g) = Tr[DΓ(g)], that summarily includes all components λ of a multidimensional irrep Γ.)
The thus selected columns of PΓ

λ are subsequently normalized and collected in a rectangular

matrix pΓ
λ, which represents a complete orthonormal set in the (M, Γ, λ) space, (pΓ

λ)
†pΓ

λ = 1.

Spin and Hamiltonian matrices are transformed accordingly,
~
S

2
= (pΓ

λ)
†S2pΓ

λ, and
~
H = (pΓ

λ)
†HpΓ

λ, and
~
PS is constructed from

~
S

2
instead of S2. Finally,

~
H and

~
PS are applied

to a set of random states to set up the generalized eigenvalue problem in (S, M, Γ, λ).

As long as d(S, M, Γ, λ) ≤ 4 for all S, it may be possible to directly diagonalize
~
H, even

when d(M, Γ, λ) > 4. On the other hand, if spin adaptation is necessary, an alternative to

forming
~
PS is to diagonalize

~
S

2
and to then transform

~
H into the space with the desired

S. This method parallels how Schumann solved the Hubbard model on a square [32].
(Schumann additionally used so-called pseudospin symmetry, where applicable. This
symmetry of bipartite Hubbard lattices does not exist in spin-only models. He adapted
a basis with definite particle number and spin magnetization first to pseudospin, then

to total spin, and lastly to PG symmetry.) However, there is no guarantee that
~
S

2
can be

diagonalized in symbolic form (at least not within a practical time frame), and this has
indeed turned out to be impossible in some cases, like M = 0 and Γ = Eg (d = 12) in the

s = 1 octahedron. Therefore, the diagonalization of
~
S

2
is not a universal alternative to

using Löwdin’s projector.
We performed symmetry adaptation and diagonalization using a custom-written

MATLAB program. Further analyses, such as deriving analytical conditions for phase
boundaries as a function of free parameters, which also form the basis for creating the
phase diagrams, were carried out in Mathematica.

3. Results

We focused on two rings (symmetric triangle and square) and three polyhedra (tetra-
hedron, octahedron and cube). Incidentally, except for the cube, these specific systems
are trivially integrable within the Heisenberg model (see below), but they require matrix
diagonalization when other isotropic terms are included. Tables of wave functions, energies
or other properties [24] are usually based on implicit assumptions about which indepen-
dent parameters are negligible. The systematic construction of all possible terms, whose
number rises quickly with N and s, was described in Ref. [19]. For instance, the isotropic
Hamiltonian for a group of four s = 1

2 sites has 9 independent parameters, whereas ten
sites permit 8523 parameters [19] (this number, which corresponds to the independent
ways of coupling ten rank-1 operators to form a scalar, would be lowered by spatial sym-
metries), although most of these would be negligibly small in practice. In our analysis, we
primarily consider nearest-neighbor (NN) Heisenberg exchange and additionally consider
biquadratic exchange or four-center terms. Our tables therefore do not aspire to be useful
for analyzing all specific cases but should allow others to effectively verify independent
implementations. To apply our method, only the spin and point group symmetry need to
be present, and any additional spin Hamiltonian terms that have these symmetries can
be just as easily integrated into the framework. All energies are reported in units of the
uniform NN coupling constant J, which is chosen to be antiferromagnetic, that is, we set
J = 1.

Triangle. An s = 1
2 triangle with three different coupling constants is the smallest

system that necessitates matrix diagonalization, because there are two S = 1
2 levels. On the

other hand, an isosceles triangle has exchange symmetry, [Ĥ, P̂12] = 0; with J13 = J23, the
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square of the pair spin
^
s12 =

^
s1 +

^
s2 is a good quantum number, [ĤJ ,

^
s

2

12] = 0. This pair

spin is then coupled with
^
s3 to obtain a total spin multiplet,

ĤJ = J12
^
s1·

^
s2 + J13(

^
s1 +

^
s2)·

^
s3 =

J12
2 [

^
s

2

12 − 2s(s + 1)] + J13
2 [

^
S

2

− ^
s

2

12 − s(s + 1)]
, (9)

yielding the spectrum of Equation (10):

EJ =
J12

2
[s12(s12 + 1)− 2s(s + 1)] +

J13

2
[S(S + 1)− s12(s12 + 1)− s(s + 1)]. (10)

This is the simplest example of Kambe’s method [33]. In the symmetric triangle, all

three couplings are equal, thus Equation (9) becomes ĤJ =
J
2 [

^
S

2

− 3s(s + 1)], meaning that
all multiplets with the same S are degenerate [1].

However, when including biquadratic exchange in the isosceles triangle (K13 = K23 ̸= 0),

P̂12 remains a symmetry, [ĤK, P̂12] = 0, but
^
s

2

12 is no longer a good quantum number,

because [(
^
s1·

^
s3)

2
+ (

^
s2·

^
s3)

2
,

^
s

2

12] ̸= 0, rendering Kambe’s method inapplicable.
Table 1 lists the subspace dimensions for symmetric triangles up to s = 13

2 , which is the
smallest s that does not permit obtaining the full spectrum in closed form, because there are
five (S = 6, Γ = E) levels. Note that Griffith had already classified terms in triangles, albeit
for smaller s [34]. Table 1 shows that up to s = 3

2 , there is at most one level in each (S, Γ)
sector, so symmetry adaptation suffices to determine the eigenfunctions, and all energies
depend linearly on any parameters; phase boundaries in a two- or three-dimensional
parameter space would then be straight lines or planes, respectively.

Table 1. Dimensions of combined spin and PG subspaces (S, Γ) in symmetric triangles (point group
D3) for various values s (first column). Each cell represents the number of multiplets for ascending
total spin values S a.

s A1 A2 E
1/2 0 1 0 0 0 0 1 0 0

1 0 1 0 1 1 0 0 0 0 1 1 0
3/2 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0

2 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 2 1 1 1 0
5/2 0 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 2 2 1 1 1 0

3 0 1 0 2 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 2 2 2 2 1 1 1 0
7/2 0 1 1 1 2 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 2 3 2 2 2 1 1 1 0

4 1 0 1 1 2 1 2 1 1 1 1 0 1 0 1 0 2 1 1 1 1 0 1 0 0 0 0 1 2 2 3 3 2 2 2 1 1 1 0
9/2 0 1 1 1 2 2 1 2 1 1 1 1 0 1 0 1 1 1 2 1 1 1 1 0 1 0 0 0 1 1 2 3 3 3 3 2 2 2 1 1 1 0

5 0 1 0 2 1 2 2 2 1 2 1 1 1 1 0 1 1 0 1 1 2 1 2 1 1 1 1 0 1 0 0 0 0 1 2 2 3 4 3 3 3 2 2 2 1 1 1 0
11/2 0 1 1 1 2 2 2 2 2 1 2 1 1 1 1 0 1 0 1 1 1 2 2 1 2 1 1 1 1 0 1 0 0 0 1 1 2 3 3 4 4 3 3 3 2 2 2 1 1 1 0

6 1 0 1 1 2 1 3 2 2 2 2 1 2 1 1 1 1 0 1 0 1 0 2 1 2 2 2 1 2 1 1 1 1 0 1 0 0 0 0 1 2 2 3 4 4 4 4 3 3 3 2 2 2 1 1 1 0
13/2 0 1 1 1 2 2 2 3 2 2 2 2 1 2 1 1 1 1 0 1 0 1 1 1 2 2 2 2 2 1 2 1 1 1 1 0 1 0 0 0 1 1 2 3 3 4 5 4 4 4 3 3 3 2 2 2 1 1 1 0

a For example, for s = 1
2 , there are 0, 1 and 0 multiplets with PG label A1 for S = 0, 1 and 2, respectively.

For s = 2 and s = 5
2 , we exemplarily collect the full spectra as a function of the

biquadratic exchange constant K in Tables 2 and 3, respectively. (Our Hamiltonian is not
exhaustive, e.g., three-center terms, which would occur for s > 1

2 , are ignored.)
The ground states as a function of K and magnetic field strength B (Zeeman term,

ĤB = BŜz) are plotted in Figure 1 (s = 2) and Figure 2 (s = 2). These phase diagrams were
built on simple analytical conditions, which resemble the ground state conditions in the
last columns of Tables 2 and 3, respectively, but also consider the magnetic field strength B
as another independent parameter.
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Table 2. Full spectrum of an s = 2 triangle as a function of biquadratic exchange (K), with J = 1. The
second column attributes numbers to all levels for easy comparison with Figure 1. Conditions on K
for a specific level to be the ground state are given in the last column.

(S,Γ) # Energy Ground State

(0, A1) 1 27K − 9
2 − 1

30 ≤ K ≤ 1
4

(1, A2) 2 40K − 4 ∅

(1, E) 3 31K − 4 ∅

(2, A1) 4 72K − 3 K ≤ − 1
30

(2, E) 5
6

93
2 K ± 3

2

√
193

∣∣∣K∣∣∣−3
∅
∅

(3, A1) 7 33K − 3
2 ∅

(3, A2) 8 15K − 3
2 K ≥ 1

4

(3, E) 9 51K − 3
2 ∅

(4, A1) 10 37K + 1
2 ∅

(4, E) 11 19K + 1
2 ∅

(5, E) 12 24K + 3 ∅

(6, A1) 13 48K + 6 ∅

Table 3. Energy spectrum and ground state conditions for an s = 5
2 triangle as a function of

biquadratic exchange (K), with J = 1.

(S,Γ) # Energy Ground State

(1/2, E) 1 1
16 (975K − 102) − 1

46 ≤ K ≤ 1
9

(3/2, A1) 2 1
16 (867K − 90) 1

9 ≤ K ≤ 7
39

(3/2, A2) 3 1
16 (1155K − 90) ∅

(3/2, E) 4 1
16 (1443K − 90) ∅

(5/2, A1) 5 1
16 (2447K − 70) K ≤ − 1

46

(5/2, A2) 6 1
16 (1295K − 70) ∅

(5/2, E) 7
8

1
16 (−70 + 1679K ± 24

√
19

∣∣∣K∣∣∣) ∅
∅

(7/2, A1) 9 1
16 (1971K − 42) ∅

(7/2, E) 10
11

3
16 (−14 + 401K ± 32

√
34

∣∣∣K∣∣∣) ∅
∅

(9/2, A1) 12 1
16 (783K − 6) ∅

(9/2, A2) 13 1
16 (399K − 6) K ≥ 7

39

(9/2, E) 14 1
16 (1359K − 6) ∅

(11/2, A1) 15 1
16 (1091K + 38) ∅

(11/2, E) 16 1
16 (611K + 38) ∅

(13/2, E) 17 1
16 (975K + 90) ∅

(15/2, A1) 18 1
16 (1875K + 150) ∅
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2 triangle (J = 1). For further details,
see caption to Figure 1.

Square. The Heisenberg square, with sites numbered consecutively, is again integrable

by Kambe’s method [1,35], because [ĤJ ,
^
s

2

13] = [ĤJ ,
^
s

2

24] = 0, but
^
s

2

13 or
^
s

2

24 do not commute
with the biquadratic ĤK. In addition, there exist two independent four-center interactions
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in the s = 1
2 square (For s > 1

2 , additional four-center (and three-center) interactions involve
local rank-2 operators): the frequently discussed cyclic exchange,

ĤC = C
[
(

^
s1·

^
s2)(

^
s3·

^
s4) + (

^
s1·

^
s4)(

^
s2·

^
s3)− (

^
s1·

^
s3)(

^
s2·

^
s4)

]
, (11)

and the less common non-cyclic exchange [19],

ĤC̃ = C̃
[
(

^
s1·

^
s2)(

^
s3·

^
s4) + (

^
s1·

^
s4)(

^
s2·

^
s3) + 6(

^
s1·

^
s3)(

^
s2·

^
s4)

]
. (12)

Except for s = 1
2 , ĤC and ĤC̃ do not commute with

^
s

2

13 and
^
s

2

24. In other words,
biquadratic exchange and multi-center interactions generally prevent trivial spin-coupling
solutions. Dimensions of the (S, Γ) sectors are listed in Table 4, and the spectrum for s = 1
as a function of biquadratic and cyclic exchange (K and C, respectively) is given in Table 5.

Table 4. Dimensions of the (S, Γ) spaces in the square (point group D4). For further information, see
caption and footnote to Table 1.

s A1 A2 B1 B2 E

1 2 0 2 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 2 1 1 0

3/2 2 0 3 1 2 0 1 0 1 1 1 0 0 0 2 0 2 0 1 0 0 0 2 1 2 1 1 0 0 3 2 3 1 1 0

2 3 0 4 1 4 1 2 0 1 0 2 1 2 1 1 0 0 0 2 0 3 1 2 0 1 0 0 0 2 2 3 2 2 1 1 0 0 4 3 5 3 3 1 1 0

5/2 3 0 5 2 5 2 4 1 2 0 1 0 2 2 3 2 2 1 1 0 0 0 3 0 4 1 4 1 2 0 1 0 0 0 3 2 4 3 4 2 2 1 1 0 0 5 4 7 5 6 3 3 1 1 0

Table 5. Spectrum for an s = 1 square as a function of biquadratic (K) and four-center coupling (C), at
J = 1. The ground state conditions with K set to zero are defined in the last column.

(S,Γ) # Energy Ground State
(K = 0)

Ground State
(C = 0)

(0, A1) 1
2 8K + 3

2 C − 3
2 ± 1

2

√
64K2 + 96KC − 32K + 41C2 − 34C + 9

∅
C ≤ 1

4

∅
K ≤ 1

2

(0, B1) 3 8K + 3C − 1 ∅ ∅

(1, A2) 4 5K − 2C − 1
2 ∅ ∅

(1, B2) 5 9K + 2C − 5
2 C = 1

4 ∅

(1, E) 6
7

11
2 K + C − 3

4 ± 1
2

√
9K2 + 20KC − K + 20C2 − 10C + 9

4
∅
∅

∅
K = 1

2

(2, A1) 8
9

13
2 K − 3

4 ± 1
2

√
25K2 − 48KC + K + 32C2 + 8C + 9

4
∅

1
4 ≤ C ≤ 13

2

∅
K ≥ 1

2

(2, B1) 10 5K + 1
2 ∅ ∅

(2, B2) 11 4K ∅ ∅

(2, E) 12 7K − 2C − 1
2 ∅ ∅

(3, B2) 13 4K − 3C C ≥ 13
2 ∅

(3, E) 14 4K + C + 1 ∅ ∅

(4, A1) 15 4K + C + 2 ∅ ∅

The (K, C) ground state criteria are rather complicated and thus not shown here.
However, one clear observation, which could not be obtained directly from numerical
computations, is that, under the assumption of antiferromagnetic Heisenberg coupling,
J = 1, none of the levels 1, 3, 4, 6, 8, 10, 11, 12, 14 or 15 are the ground states for any set
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(K, C). Phase diagrams including a magnetic field, setting either K = 0 or C = 0, are shown
in Figure 3.
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Figure 3. Ground state regions (numbers defined in the second column of Table 5) for K = 0 (plot (a))
and C = 0 (plot (b)) in the s = 1 square (J = 1). For further details, see caption to Figure 1 and
main text.

Polyhedra. Here we shall summarily discuss a few highly symmetric polyhedra. In
the tetrahedron, all possible pairs are coupled equally, like in the triangle. Therefore, ĤJ is

proportional to
^
S

2

, ĤJ =
J
2 [

^
S

2

− 4s(s + 1)]. Biquadratic exchange again lifts degeneracies

because it does not commute with pair spins, [ĤK,
^
s

2

12] ̸= 0, etc. For s = 1
2 , where a single

four-center term is compatible with Td symmetry,

ĤT = T[(
^
s1·

^
s2)(

^
s3·

^
s4) + (

^
s1·

^
s4)(

^
s2·

^
s3) + (

^
s1·

^
s3)(

^
s2·

^
s4)], (13)

the pair spins commute with ĤT , but, as in the case of the square, the respective commuta-
tors are non-zero for s > 1

2 . The dimensions of symmetry subspaces are shown in Table 6.
The dimensions for s = 2 were previously reported in Table 4 of Ref. [36].

Table 6. Dimensions of the (S, Γ) spaces in the tetrahedron (point group Td).

s A1 A2 E T1 T2

1/2 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0

3/2 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 2 0 1 0 0 0 1 1 1 0 0 0 0 2 1 2 1 1 0

2 1 0 2 0 2 1 1 0 1 0 0 1 0 0 0 0 0 0 2 0 2 1 2 0 1 0 0 0 2 1 2 1 1 0 0 0 0 2 2 3 2 2 1 1 0

5/2 1 0 2 1 2 1 2 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 2 0 3 1 3 1 2 0 1 0 0 0 2 2 3 2 2 1 1 0 0 0 0 3 2 4 3 4 2 2 1 1 0

3 2 0 2 1 3 1 3 1 2 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 2 0 4 1 4 2 3 1 2 0 1 0 0 0 3 2 4 3 4 2 2 1 1 0 0 0 0 3 3 5 4 5 4 4 2 2 1 1 0

The complete analytical spectrum for the s = 3
2 tetrahedron as a function of K and T is

exemplarily provided in Table 7.
For most of the levels, the (K, T) criteria for a level to be the lowest-energy state are

again quite complex. For J = 1, none of the levels 4, 5, 7, 8, 10, 11, 14, 16, 17, 19 or 20 can be
the ground states for any (K, T), and 1 is a ground state only on the line T = −2, K ≥ − 1

28 .
Figure 4 shows phase diagrams including a magnetic field, setting K = 0 or T = 0.
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Table 7. Spectrum of the s = 3
2 tetrahedron (J = 1) as a function of biquadratic and four-center

coupling, K and T.

(S,Γ) # Energy

(0, A1) 1 327
8 K + 327

16 T − 15
4

(0, A2) 2 135
8 K + 135

16 T − 15
4

(0, E) 3 423
8 K + 423

16 T − 15
4

(1, T1) 4 179
8 K + 99

16 T − 13
4

(1, T2) 5
6

299
8 K + 227

16 T − 13
4 ±

√
81K2 + 120KT + 46T2

(2, A1) 7 315
8 K + 267

16 T − 9
4

(2, E) 8
9

243
8 K + 51

16 T − 9
4 ± 3

2

√
36K2 + 36KT + 37T2

(2, T1) 10 219
8 K + 27

16 T − 9
4

(2, T2) 11 219
8 K − 69

16 T − 9
4

(3, A1) 12 303
8 K − 297

16 T − 3
4

(3, T1) 13 159
8 K − 81

16 T − 3
4

(3, T2) 14
15

279
8 K − 93

16 T − 3
4 ± 3

4

√
144K2 − 360KT + 289T2

(4, A1) 16 287
8 K − 153

16 T + 5
4

(4, E) 17 143
8 K + 63

16 T + 5
4

(4, T2) 18 191
8 K − 153

16 T + 5
4

(5, T2) 19 171
8 K + 27

16 T + 15
4

(6, A1) 20 243
8 K + 243

16 T + 27
4
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For the octahedron, a formulation of ĤJ as in Equation (14),

ĤJ =
J
2
(

^
S

2

− ^
s

2

14 −
^
s

2

25 −
^
s

2

36), (14)
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shows that eigenstates have definite pair spins for diametrically opposite sites. Accidental
degeneracies between terms belonging to different (S, Γ) sectors are lifted when incor-
porating multi-center terms [19] or biquadratic exchange. Table 8 shows that the s = 1

2
octahedron is solved directly by spin and PG adaptation, and that the full spectrum can be
obtained in closed form for s = 1 (not detailed here, due to excessively long expressions for
solutions in three- and four-dimensional spaces).

Table 8. Dimensions of the (S, Γ) spaces in the octahedron (point group Oh).

s A1g A2g A1u A2u Eg Eu T1g T2g T1u T2u

1/2 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0

1 3 0 3 1
2 0 1

0 2 0 2
0 0 0

1 0 0 0
0 0 0

0 1 0 1
0 0 0

1 2 4 2
2 1 0

0 1 1 0
0 0 0

0 2 1 1
0 0 0

2 1 3 1
1 0 0

0 4 2 3
1 1 0

1 2 3 2
1 0 0

3/2
0 5 2 7
3 4 2 2
0 1

3 1 4 3
4 1 2 0
0 0

0 2 0 2
0 0 0 0
0 0

3 0 3 1
2 0 1 0
0 0

1 6 8 8
7 6 3 2
1 0

1 2 4 2
2 1 0 0
0 0

2 4 6 5
4 2 1 0
0 0

0 7 5 8
4 4 1 1
0 0

5 4 11 7
9 4 4 1
1 0

1 7 7 9
6 5 2 1
0 0

Finally, the Heisenberg cube cannot be solved by Kambe’s method, as it lacks con-
served subsystem spins. The dimensions of the symmetry spaces for s = 1

2 , the only s
value for which the cube is fully solvable, are collected in Table 9. As far as we know,
the complete spectrum of ĤJ was not derived previously, and we therefore present it in
Table 10. We note accidental degeneracies for E = −1, 0,+1,−1 ±

√
2.

Table 9. Dimensions of the (S, Γ) spaces in the s = 1
2 cube (point group Oh).

A1g A2g A1u A2u Eg Eu T1g T2g T1u T2u

3 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 1 0 2 0 2 0 0 0 1 1 0 0 0 2 0 0 0 1 2 2 1 0 0 3 1 1 0 1 1 1 0 0

Table 10. Spectrum of the s = 1
2 Heisenberg cube.

(S,Γ) # Energy

(0, A1g)
1
2
3

− 5
3 + 2

√
7

3 cos α ± 2
√

21
3 sin α

− 5
3 − 4

√
7

3 cos α

(0, A1u) 4 0

(0, Eg) 5
6 −1 ±

√
2

(0, T2g) 7 −1

(0, T2u) 8 −2

(1, A2u) 9
10

−4
0

(1, Eu) 11 −1

(1, T1g) 12
13 − 1

2 (1 ±
√

5)

(1, T2g) 14
15 − 1

2 (3 ±
√

5)

(1, T1u)
16
17
18

− 2
3 −

√
10
3 cos β ±

√
30
3 sin β

− 2
3 + 2

√
10

3 cos β

(1, T2u) 19 0

(2, A1g) 20
21 −1 ±

√
2
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Table 10. Cont.

(S,Γ) # Energy

(2, Eg) 22
23

1
2 (1 ±

√
5)

(2, Eu) 24 0

(2, T2g) 25
26 ±1

(2, T1u) 27 −1

(2, T2u) 28 1

(3, A2u) 29 0

(3, T2g) 30 1

(3, T1u) 31 2

(4, A1g) 32 3

α = 1
3 tan−1

(
3
√

591
13

)
, β = 1

3 tan−1
(

3
√

111
)

.

4. Summary and Conclusions

While numerical methods are commonly used to investigate spin models of magnetic
solids and molecules, small clusters with spatial symmetry allow for analytical diagonaliza-
tion of the Hamiltonian, and a symbolic representation of spectra or wave functions may
provide deeper insights that go beyond mere numerical data. To factor the Hamiltonian
into symmetry subspaces and thus enable analytical diagonalization, we provided a simple
yet effective approach to adapt the basis to both total spin (using Löwdin’s projector) and
point group (PG) symmetry. The construction of PG projectors was extensively discussed.
Overall, our procedure for employing spin and PG symmetry to set up a generalized eigen-
value problem in a subspace is not intended to be computationally optimal but designed
to be easily followed and implemented. We chose small rings and polyhedra as examples
and elucidated how additional interactions (beyond the Heisenberg model) prevent trivial
integrability. Our aim was not to compile exhaustive tables but rather to highlight specific
results that may be useful for verifying independent implementations of the analytical
diagonalization scheme.

It is worth noting that a similar procedure would also be applicable to anisotropic

systems. Although a general anisotropic Hamiltonian does not conserve spin, [Ĥ,
^
S

2

] ̸= 0
and [Ĥ, Ŝz] ̸= 0, one can still make use of PG symmetry and apply respective projectors
to random states. With anisotropy, most site permutations must be combined with spin
rotations to represent symmetries [24,26], and this necessitates working with the respective
double group for systems with half-integer spin. Analytical solutions for anisotropic models
are more severely restricted in terms of system size, because the group is smaller (lacking
spin symmetry). Lastly, the present method could also be adapted for use with the Hubbard
model, whose additional pseudospin symmetry on a bipartite lattice allows to further block-
diagonalize the Hamiltonian [32,37]. However, the Hubbard model has itinerant electrons,
and, at half-filling, its state space is larger than that of the s = 1

2 Heisenberg model with the
same number of sites. Therefore, the limits on system size are stricter.

Note that we leveraged symmetry to factor H into subspaces for easier diagonalization,
but a classification of multiplets in terms of S and Γ holds qualitative value too, e.g., for
deducing spectroscopic selection rules [23,38,39] or for assessing the momentum-transfer
dependencies of inelastic neutron scattering intensities [23,39,40]. Symmetry classifications
also aid in analyzing the mixing of multiplets by anisotropic terms [26,38].

Analytical solutions can be directly transferred when adding a further spin that has
equal couplings to all other sites. The interaction of the original system with such a central
site can be handled with Kambe’s method, as detailed in Ref. [8]. However, the number
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of non-trivial systems that allow for the closed-form solutions of their entire spectrum is
naturally limited by the requirement that neither subspace dimension exceeds four. In
some situations, analytical diagonalization could still be used in the smaller spaces of
large S values, which are important to consider for ferromagnetic coupling or in high
magnetic fields.
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Appendix A. Construction of Point Group Projectors

Here we will give a basic explanation of how to construct the PG projection opera-
tors acting in spin space, where the point group is the set of SPS operations that leave
the isotropic Hamiltonian invariant. These operations usually correspond to rotations or
reflections of a geometrical shape that reflects the coupling topology, like a ring or a polyhe-
dron, with spins located at the corners. For N sites, the point group can be represented by
permutation matrices C of size N × N. To produce all C, we rely on a set of generators from
which all other group elements can be derived. In other words, every permutation matrix
in the group is obtained either by the repeated multiplication of the generators among
themselves (e.g., a cyclic group CN of order N has a single generator that corresponds
to a rotation by 2π

N ) or through the combinations and power of several generators. The
fundamental set of generators may not be unique, that is, different sets can generate the
same group. For possible choices of the generating elements of the most relevant point
groups, see, e.g., Ref. [41]. As an example, for the octahedral group Oh with inversion
(e.g., regular octahedron or cube), the minimal number of generators is two. These can
be chosen as any S6 axis with any S4 (or C4), where S6 is a six-fold improper rotation axis
and C4 is a four-fold proper rotation axis. Alternatively, based on the group O (without
inversion, isomorphic to Td, the group of the regular tetrahedron), which is generated by
any C4 with any C3, one can add the inversion Ci as a third generator to obtain the full
group Oh = O × Ci.

Through matrix multiplication, starting with the generators, new matrices are pro-
duced. This process is repeated until no new matrices are generated by any pairwise mul-
tiplications [42]. At this point, a faithful group representation in terms of N-dimensional
permutation matrices C has been obtained. To derive all irreducible representations (irreps),
we assign irrep matrices (listed, e.g., in the book by Herzig and Altman [43]) to each gener-
ator. When a new matrix C(k) emerges, C(i)C(j) = C(k), the irrep matrices are multiplied
similarly, DΓ(i)DΓ(j) = DΓ(k). Finally, the C and DΓ sets are used to construct the PG
projector P̂Γ

λ , defined in Equation (4).
As any permutation can be composed from pairwise exchanges, the exchange operator

P̂ij is needed to build Ĝ(g), cf. Figure A1. For s = 1
2 , P̂ij = 1 + 4

^
si·

^
sj [44], but the exchange

operator for arbitrary s is less well known. Following Brown [45], P̂ij is expanded in terms

of powers of
^
si·

^
sj, Equation (A1).

P̂ij =
2s

∑
n=0

An(
^
si·

^
sj)

n
(A1)
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The real coefficients An (collected in vector A) are derived from the linear system
of Equation (A2),

MA = v, (A2)

where the vector v contains the exchange parity (+1 or −1) of the coupled pair states with
spin sij; starting with the symmetric ferromagnetic state (sij = 2s), the coupled levels
are alternately symmetric (eigenvalue +1) and antisymmetric (−1) under exchange. The

elements of matrix M are the respective powers of the eigenvalues of
^
si·

^
sj =

1
2 [

^
s

2

ij − 2s(s+ 1)]:

M(sij, n) =
{

1
2
[sij(sij + 1)− 2s(s + 1)]

}n
. (A3)

It is then straightforward to construct the permutation operators Ĝ from the N × N
permutation matrices C and the exchange operators P̂ij by compounding pair exchanges.
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