Unraveling the Magnetic Properties of NiO Nanoparticles: From Synthesis to Nanostructure
Abstract
:1. Introduction
2. Structural and Magnetic Properties of NiO NPs: Analysis and Characterization Techniques
2.1. Structure vs. Magnetism in NiO NPs
2.2. Magnetic and Structural Characterization Techniques
2.2.1. Magnetic Characterization of NiO NPs
2.2.2. Transmission Electron Microscopy (TEM)
2.2.3. Scanning Electron Microscopy (SEM)
2.2.4. X-ray Diffraction (XRD)
2.2.5. X-ray Photoelectron Spectroscopy (XPS)
3. Chemical Approaches to Synthesized NiO NPs
Synthesis Method | NP Range of Sizes (nm) | Morphologies | Pros | Cons |
---|---|---|---|---|
Co-precipitation [31,72,73] | ~10–100 nm | spheres, cubes | Straightforward, low-cost, easy to scale up | Poor control over crystal quality and morphology compared with other methodologies |
Hydrothermal [12,17,29,35,74] | ~10 nm up to microns | spheres, rods, plates, flowers | Decent control over composition, relatively simple experimental setups | Lower crystallinity unless posterior annealing, need for specific instrumentation, lengthy reaction times, and difficulty in monitoring reaction |
Sol-gel [32,33,34,39] | ~10–100 nm | spheres, cubes, rods | Simple, cost-efficient process, high reaction yields, and scalability | Limited control over particle morphology, often involves a last-step calcination |
Thermal decomposition [36,37,75,76,77,78,79] | ~5–50 nm | spheres, cubes, hexagons, branches | Precise control over size, morphology, crystallinity, and composition | Requires many reagents, challenging to scale up and to reproduce |
Microwave Assisted [25,28,80,81] | ~5–50 nm | spheres, cubes | Rapid synthesis, high reaction yields, and scalability | High initial setup cost, limited size control |
3.1. The Coprecipitation Method
3.2. Hydrothermal Synthesis of NiO NPs
3.3. Thermal Decomposition
3.4. Sol–Gel Synthesis Route
3.5. Outlook on the Main Chemical Routes for Synthesizing NiO NPs
4. The Impact of Structural and Compositional Variations on the Magnetic Behavior of NiO NPs
4.1. Finite-Size and Surface Effects
4.2. Impact of Structure and Coating on the Magnetic Behavior of NiO NPs
4.3. Influence of Oxygen Stoichiometry and Metallic Nickel Presence on the Magnetic Properties of NiO NPs
4.4. Outlook on the Impact of Structural and Compositional Variations on the Magnetic Behavior of NiO NPs
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 1118211499. [Google Scholar]
- Batlle, X.; Labarta, A. Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. J. Phys. D Appl. Phys. 2002, 35, 15–42. [Google Scholar]
- Liu, X.; Wang, K. Antiferromagnetic Materials and Their Manipulations. In Spintronics: Materials, Devices and Applications; Wiley Online Library: Hoboken, NJ, USA, 2022; ISBN 978-1119698975. [Google Scholar]
- Batlle, X.; Moya, C.; Escoda-Torroella, M.; Iglesias, Ò.; Fraile Rodríguez, A.; Labarta, A. Magnetic Nanoparticles: From the Nanostructure to the Physical Properties. J. Magn. Magn. Mater. 2022, 543, 168594. [Google Scholar] [CrossRef]
- Müller, K.H.; Sawatzki, S.; Gauß, R.; Gutfleisch, O. Permanent Magnet Materials and Applications in Handbook of Magnetism and Magnetic Materials; Springer International Publishing: Cham, Switzerland, 2021; ISBN 9783030632083. [Google Scholar]
- Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y.K. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. [Google Scholar] [CrossRef]
- Bonomo, M. Synthesis and Characterization of NiO Nanostructures: A review. J. Nanopart. Res. 2018, 20, 222. [Google Scholar] [CrossRef]
- Narender, S.S.; Varma, V.V.S.; Srikar, C.S.; Ruchitha, J.; Varma, P.A.; Praveen BV, S. Nickel Oxide Nanoparticles: A Brief Review of Their Synthesis, Characterization, and Applications. Chem. Eng. Technol. 2022, 45, 397–409. [Google Scholar] [CrossRef]
- Ahmad, W.; Chandra Bhatt, S.; Verma, M.; Kumar, V.; Kim, H. A Review on Current Trends in the Green Synthesis of Nickel Oxide Nanoparticles, Characterizations, and Their Applications. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100674. [Google Scholar] [CrossRef]
- Rostamnejadi, A.; Bagheri, S. Optical, Magnetic, and Microwave Properties of Ni/NiO Nanoparticles. Appl. Phys. A Mater. Sci. Process. 2017, 123, 233. [Google Scholar] [CrossRef]
- Hugel, J.; Carabatos, C. Band Structure and Optical Properties of NiO. I. Band Structure Calculations. J. Phys. C Solid State Phys. 1983, 16, 6713. [Google Scholar] [CrossRef]
- Tian, J.; Shao, Q.; Dong, X.; Zheng, J.; Pan, D.; Zhang, X.; Cao, H.; Hao, L.; Liu, J.; Mai, X.; et al. Bio-Template Synthesized NiO/C Hollow Microspheres with Enhanced Li-Ion Battery Electrochemical Performance. Electrochim. Acta 2018, 261, 236–245. [Google Scholar] [CrossRef]
- Kannan, K.; Radhika, D.; Sadasivuni, K.K.; Reddy, K.R.; Raghu, A.V. Nanostructured Metal Oxides and Its Hybrids for Photocatalytic and Biomedical Applications. Adv. Colloid Interface Sci. 2020, 281, 102178. [Google Scholar] [CrossRef]
- Ata-ur-Rehman; Iftikhar, M.; Latif, S.; Jevtovic, V.; Ashraf, I.M.; El-Zahhar, A.A.; Abdu Musad Saleh, E.; Mustansar Abbas, S. Current Advances and Prospects in NiO-Based Lithium-Ion Battery Anodes. Sustain. Energy Technol. Assess. 2022, 53, 102376. [Google Scholar] [CrossRef]
- Spinner, N.S.; Palmieri, A.; Beauregard, N.; Zhang, L.; Campanella, J.; Mustain, W.E. Influence of Conductivity on the Capacity Retention of NiO Anodes in Li-Ion Batteries. J. Power Sources 2015, 276, 46–53. [Google Scholar] [CrossRef]
- Fan, Z.; Liang, J.; Yu, W.; Ding, S.; Cheng, S.; Yang, G.; Wang, Y.; Xi, Y.; Xi, K.; Kumar, R.V. Ultrathin NiO Nanosheets Anchored on a Highly Ordered Nanostructured Carbon as an Enhanced Anode Material for Lithium Ion Batteries. Nano Energy 2015, 16, 152–162. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Xu, Y.; Wang, B.; Liu, J.; Yu, M. Hierarchical Heterostructures of NiO Nanosheet Arrays Grown on Pine Twig-like Β-NiS@Ni3S2 Frameworks as Free-Standing Integrated Anode for High-Performance Lithium-Ion Batteries. Chem. Eng. J. 2019, 356, 245–254. [Google Scholar] [CrossRef]
- Sivagami, M.; Asharani, I.V. Phyto-Mediated Ni/NiO NPs and Their Catalytic Applications-a Short Review. Inorg. Chem. Commun. 2022, 145, 110054. [Google Scholar] [CrossRef]
- Delgado, D.; Sanchis, R.; Solsona, B.; Concepción, P.; López Nieto, J.M. Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane. Top. Catal. 2020, 63, 1731–1742. [Google Scholar] [CrossRef]
- Abbas, S.A.; Iqbal, M.I.; Kim, S.H.; Jung, K.D.; Shim, H.; Dutta, P.; Seehra, M.S.; Bonevich, J.; Jafari, A.; Pilban Jahromi, S.; et al. Catalytic Activity of Urchin-like Ni Nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution. Electrochim. Acta 2017, 227, 382–390. [Google Scholar] [CrossRef]
- Silva, T.L.; Meinerz, V.H.; Vidart, J.M.M.; Gimenes, M.L.; Vieira, M.G.A.; Silva, M.G.C. Metallic Affinity of Toxic and Noble Metals by Particles Produced from Sericin, Alginate and Poly-(Ethylene Glycol). Chem. Eng. Trans. 2017, 56, 1903–1908. [Google Scholar]
- Li, Q.; Zeng, W.; Li, Y. NiO-Based Gas Sensors for Ethanol Detection: Recent Progress. J. Sens. 2022, 2022, 1855493. [Google Scholar] [CrossRef]
- Din, S.U.; Iqbal, H.; Haq, S.; Ahmad, P.; Khandaker, M.U.; Elansary, H.O.; Al-Harbi, F.F.; Abdelmohsen, S.A.M.; Zin El-Abedin, T.K. Investigation of the Biological Applications of Biosynthesized Nickel Oxide Nanoparticles Mediated by Buxus Wallichiana Extract. Crystals 2022, 12, 146. [Google Scholar] [CrossRef]
- Isa khan, M.; Nawaz, M.; Bilal Tahir, M.; Iqbal, T.; Pervaiz, M.; Rafique, M.; Aziz, F.; Younas, U.; Alrobei, H. Synthesis, Characterization and Antibacterial Activity of NiO NPs against Pathogen. Inorg. Chem. Commun. 2020, 122, 108300. [Google Scholar] [CrossRef]
- Anand, G.T.; Nithiyavathi, R.; Ramesh, R.; John Sundaram, S.; Kaviyarasu, K. Structural and Optical Properties of Nickel Oxide Nanoparticles: Investigation of Antimicrobial Applications. Surf. Interfaces 2020, 18, 100460. [Google Scholar] [CrossRef]
- Moriyama, T.; Oda, K.; Ohkochi, T.; Kimata, M.; Ono, T. Spin Torque Control of Antiferromagnetic Moments in NiO. Sci. Rep. 2018, 8, 14167. [Google Scholar] [CrossRef] [PubMed]
- Kwon, U.; Kim, B.G.; Nguyen, D.C.; Park, J.H.; Ha, N.Y.; Kim, S.J.; Ko, S.H.; Lee, S.; Lee, D.; Park, H.J. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells. Sci. Rep. 2016, 6, 30759. [Google Scholar] [CrossRef]
- Kuwa, M.; Harada, M.; Sato, R.; Teranishi, T. Ligand-Stabilized CoO and NiO Nanoparticles for Spintronic Devices with Antiferromagnetic Insulators. ACS Appl. Nano Mater. 2020, 3, 2745–2755. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Pradeep, R.; Yeh, Y.C.; Li, T.Y.; Wang, C.Y.; Hayakawa, Y.; Wu, S.Y. Understanding the Magnetic Memory Effect in Fe-Doped NiO Nanoparticles for the Development of Spintronic Devices. ACS Appl. Nano Mater. 2019, 2, 278–290. [Google Scholar] [CrossRef]
- Néel, L. Antiferromagnetism and Ferrimagnetism. Proc. Phys. Soc. Sect. A 1952, 65, 869–885. [Google Scholar] [CrossRef]
- Kodama, R.H.; Makhlouf, S.A.; Berkowitz, A.E. Size Effects in Antiferromagnetic NiO Nanoparticles. Phys. Rev. Lett. 1997, 79, 1393–1396. [Google Scholar] [CrossRef]
- Proenca, M.P.; Sousa, C.T.; Pereira, A.M.; Tavares, P.B.; Ventura, J.; Vazquez, M.; Araujo, J.P. Size and Surface Effects on the Magnetic Properties of NiO Nanoparticles. Phys. Chem. Chem. Phys. 2011, 13, 9561–9567. [Google Scholar]
- Tadic, M.; Nikolic, D.; Panjan, M.; Blake, G.R. Magnetic Properties of NiO (Nickel Oxide) Nanoparticles: Blocking Temperature and Neel Temperature. J. Alloys Compd. 2015, 647, 1061–1068. [Google Scholar] [CrossRef]
- Jafari, A.; Pilban Jahromi, S.; Boustani, K.; Goh, B.T.; Huang, N.M. Evolution of Structural and Magnetic Properties of Nickel Oxide Nanoparticles: Influence of Annealing Ambient and Temperature. J. Magn. Magn. Mater. 2019, 469, 383–390. [Google Scholar] [CrossRef]
- Cooper, J.F.K.; Ionescu, A.; Langford, R.M.; Ziebeck, K.R.A.; Barnes, C.H.W.; Gruar, R.; Tighe, C.; Darr, J.A.; Thanh, N.T.K.; Ouladdiaf, B. Core/Shell Magnetism in NiO Nanoparticles. J. Appl. Phys. 2013, 114, 083906. [Google Scholar] [CrossRef]
- Sharma, S.K.; Vargas, J.M.; De Biasi, E.; Béron, F.; Knobel, M.; Pirota, K.R.; Meneses, C.T.; Kumar, S.; Lee, C.G.; Pagliuso, P.G.; et al. The Nature and Enhancement of Magnetic Surface Contribution in Model NiO Nanoparticles. Nanotechnology 2010, 21, 035602. [Google Scholar] [CrossRef]
- Dubey, P.; Kaurav, N.; Devan, R.S.; Okram, G.S.; Kuo, Y.K. The Effect of Stoichiometry on the Structural, Thermal and Electronic Properties of Thermally Decomposed Nickel Oxide. RSC Adv. 2018, 8, 5882–5890. [Google Scholar] [CrossRef] [PubMed]
- Rooksby, H.P. Structure of Nickel Oxide. Nature 1943, 152, 304. [Google Scholar] [CrossRef]
- Gomonay, O.; Bossini, D. Spin Dynamics in Antiferromagnets. J. Phys. D Appl. Phys. 2021, 54, 374004. [Google Scholar] [CrossRef]
- Arai, K.; Okuda, T.; Tanaka, A.; Kotsugi, M.; Fukumoto, K.; Ohkochi, T.; Nakamura, T.; Matsushita, T.; Muro, T.; Oura, M.; et al. Collinear Spin Structure in NiO: Antiferromagnetic Superexchange Interaction and Magnetostriction. Phys. Rev. B 2012, 85, 104418. [Google Scholar] [CrossRef]
- Adiba; Pandey, V.; Munjal, S.; Ahmad, T. Structural, Morphological and Magnetic Properties of Antiferromagnetic Nickel Oxide Nanoparticles Synthesized via Sol-Gel Route. Mater. Today Proc. 2019, 26, 3116–3118. [Google Scholar]
- Popkov, S.I.; Krasikov, A.A.; Dubrovskiy, A.A.; Volochaev, M.N.; Kirillov, V.L.; Martyanov, O.N.; Balaev, D.A. Size Effects in the Formation of an Uncompensated Ferromagnetic Moment in NiO Nanoparticles. J. Appl. Phys. 2019, 126, 103904. [Google Scholar] [CrossRef]
- Kramers, H.A. Théorie Générale de La Rotation Paramagnétique Dans Les Cristaux. Proc. Acad. Amst. 1930, 33, 959–972. [Google Scholar]
- Sandler, S.E.; Fellows, B.; Thompson Mefford, O. Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Anal. Chem. 2019, 91, 14159–14169. [Google Scholar] [CrossRef]
- Bean, C.P.; Livingston, J.D. Superparamagnetism. J. Appl. Phys. 1959, 30, S120. [Google Scholar] [CrossRef]
- Batlle, X.; Obradors, X.; Medarde, M.; Rodríguez-Carvajal, J.; Pernet, M.; Vallet-Regí, M. Surface Spin Canting in BaFe12O19 Fine Particles. J. Magn. Magn. Mater. 1993, 124, 228–238. [Google Scholar] [CrossRef]
- Batlle, X.; Garcia del Muro, M.; Tejada, J.; Pfeiffer, H.; Garnett, P.; Sinn, E. Magnetic Study of M-Type Doped Barium Ferrite Nanocrystalline Powders. J. Appl. Phys. 1993, 74, 3333. [Google Scholar] [CrossRef]
- Moya, C.; Iglesias, Ó.; Batlle, X.; Labarta, A. Quantification of Dipolar Interactions in Fe3-XO4 Nanoparticles. J. Phys. Chem. C 2015, 119, 24142–24148. [Google Scholar] [CrossRef]
- Anjum, D.H. Characterization of Nanomaterials with Transmission Electron Microscopy. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 146. [Google Scholar]
- Lee, B.; Yoon, S.; Lee, J.W.; Kim, Y.; Chang, J.; Yun, J.; Ro, J.C.; Lee, J.S.; Lee, J.H. Statistical Characterization of the Morphologies of Nanoparticles through Machine Learning Based Electron Microscopy Image Analysis. ACS Nano 2020, 14, 17125–17133. [Google Scholar] [CrossRef]
- Smith, D.J. Characterization of Nanomaterials Using Transmission Electron Microscopy. In Nanocharacterisation; Kirkland, A.I., Haigh, S.J., Eds.; Royal Society of Chemistry: Cambridge, UK, 2015; pp. 1–29. ISBN 978-1-84973-805-7. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Escoda-Torroella, M.; Moya, C.; Rodríguez, A.F.; Batlle, X.; Labarta, A. Selective Control over the Morphology and the Oxidation State of Iron Oxide Nanoparticles. Langmuir 2021, 37, 35–45. [Google Scholar] [CrossRef]
- Kiss, L.B.; Söderlund, J.; Niklasson, G.A.; Granqvist, C.G. New Approach to the Origin of Lognormal Size Distributions of Nanoparticles. Nanotechnology 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Phakatkar, A.H.; Shokuhfar, T.; Shahbazian-Yassar, R. Nanoscale Chemical and Structural Investigation of Solid Solution Polyelemental Transition Metal Oxide Nanoparticles. iScience 2023, 26, 106032. [Google Scholar] [CrossRef]
- Vladár, A.E.; Hodoroaba, V.-D. Characterization of Nanoparticles by Scanning Electron Microscopy. In Characterization of Nanoparticles: Measurement Processes for Nanoparticles; Hodoroaba, V.-D., Unger, W., Shard, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 7–27. ISBN 978-0-12-814182-3. [Google Scholar]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-Ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer Equation versus the “Debye-Scherrer Equation”. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Peck, M.A.; Langell, M.A. Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS. Chem. Mater. 2012, 24, 4483–4490. [Google Scholar] [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992; ISBN 0962702625. [Google Scholar]
- Khashan, K.S.; Sulaiman, G.M.; Hamad, A.H.; Abdulameer, F.A.; Hadi, A. Generation of NiO Nanoparticles via Pulsed Laser Ablation in Deionised Water and Their Antibacterial Activity. Appl. Phys. A Mater. Sci. Process. 2017, 123, 190. [Google Scholar] [CrossRef]
- Das, S.; Kumar, A.; Singh, J.; Kumar, M. Fabrication and Modeling of Laser Ablated NiO Nanoparticles Decorated SnO2 Based Formaldehyde Sensor. Sens. Actuators B Chem. 2023, 387, 133824. [Google Scholar] [CrossRef]
- Sherif El-Eskandarany, M.; Al-Hazza, A.; Al-Hajji, L.A.; Ali, N.; Al-Duweesh, A.A.; Banyan, M.; Al-Ajmi, F. Mechanical Milling: A Superior Nanotechnological Tool for Fabrication of Nanocrystalline and Nanocomposite Materials. Nanomaterials 2021, 11, 2484. [Google Scholar] [CrossRef]
- Bizyaev, D.A.; Bukharaev, A.A.; Lebedev, D.V.; Nurgazizov, N.I.; Khanipov, T.F. Nickel Nanoparticles and Nanowires Obtained by Scanning Probe Lithography Using Point Indentation Technique. Tech. Phys. Lett. 2012, 38, 645–648. [Google Scholar] [CrossRef]
- Mohseni Meybodi, S.; Hosseini, S.A.; Rezaee, M.; Sadrnezhaad, S.K.; Mohammadyani, D. Synthesis of Wide Band Gap Nanocrystalline NiO Powder via a Sonochemical Method. Ultrason. Sonochem. 2012, 19, 841–845. [Google Scholar]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A.B.; Puente-Orench, I.; Olivi, L.; Blanco, J.A. Size Effects on the Neél Temperature of Antiferromagnetic NiO Nanoparticles. AIP Adv. 2016, 6, 056104. [Google Scholar] [CrossRef]
- Seehra, M.S.; Shim, H.; Dutta, P.; Manivannan, A.; Bonevich, J. Interparticle Interaction Effects in the Magnetic Properties of NiO Nanorods. J. Appl. Phys. 2005, 97, 2003–2006. [Google Scholar] [CrossRef]
- Ascencio, F.; Bobadilla, A.; Escudero, R. Study of NiO Nanoparticles, Structural and Magnetic Characteristics. Appl. Phys. A Mater. Sci. Process. 2019, 125, 279. [Google Scholar] [CrossRef]
- Liu, P.; Ming, V.; Ng, H.; Yao, Z.; Zhou, J.; Lei, Y.; Yang, Z.; Lv, H.; Kong, L.B. Facile Synthesis and Hierarchical Assembly of Flower-like NiO Structures with Enhanced Dielectric and Microwave Absorption Properties. ACS Appl. Mater. Interfaces 2017, 9, 16404–16416. [Google Scholar] [CrossRef] [PubMed]
- Rahal, H.T.; Awad, R.; Abdel-Gaber, A.M.; Bakeer, D.E.S. Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles. J. Nanomater. 2017, 2017, 7460323. [Google Scholar] [CrossRef]
- Patil, S.; Jagadale, S. Co-Precipitation Methods for the Synthesis of Metal Oxide Nanostructures, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2023; ISBN 9780128243534. [Google Scholar]
- Zenkin, K.; Durmuş, S.; Emre, D.; Bilici, A.; Yılmaz, S. Salvia Officinalis Leaf Extract-Stabilized NiO NPs, ZnO NPs, and NiO@ZnO Nanocomposite: Green Hydrothermal Synthesis, Characterization and Supercapacitor Application. Biomass Convers. Biorefinery 2024, 14, 355–365. [Google Scholar]
- Farhadi, S.; Roostaei-Zaniyani, Z. Preparation and Characterization of NiO Nanoparticles from Thermal Decomposition of the [Ni(En)3](NO3)2 Complex: A Facile and Low-Temperature Route. Polyhedron 2011, 30, 971–975. [Google Scholar] [CrossRef]
- Ibrahim, E.M.M.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Elshafaie, A.; Hamdan, S.K.; Ahmed, A.M. The Synthesis of CuO and NiO Nanoparticles by Facile Thermal Decomposition of Metal-Schiff Base Complexes and an Examination of Their Electric, Thermoelectric and Magnetic Properties. Mater. Res. Bull. 2018, 107, 492–497. [Google Scholar] [CrossRef]
- Jeremić, D.; Andjelković, L.; Milenković, M.R.; Šuljagić, M.; Šumar Ristović, M.; Ostojić, S.; Nikolić, A.S.; Vulić, P.; Brčeski, I.; Pavlović, V. One-Pot Combustion Synthesis of Nickel Oxide and Hematite: From Simple Coordination Compounds to High Purity Metal Oxide Nanoparticles. Sci. Sinter. 2020, 52, 481–490. [Google Scholar] [CrossRef]
- Barakat, A.; Al-Noaimi, M.; Suleiman, M.; Aldwayyan, A.S.; Hammouti, B.; Hadda, T.B.; Haddad, S.F.; Boshaala, A.; Warad, I. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex. Int. J. Mol. Sci. 2013, 14, 23941–23954. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, S.; Xu, Y.; Wang, X.; Liu, X. Characterization and Growth Mechanism of One-Dimensional NiO Nanostructures. Chem. Phys. Lett. 2002, 364, 428–434. [Google Scholar]
- Ahmad, W.; Kaur, N. Microwave-Assisted Single Step Green Synthesis of NiO Nanoparticles Using Coleus Scutellariodes Leaf Extract for the Photocatalytic Degradation of Rufloxacin. MRS Adv. 2023, 8, 835–842. [Google Scholar] [CrossRef]
- Salleh, N.A.; Mohammad, A.H.; Zakaria, Z.; Deghfel, B.; Yaakob, M.K.; Rahiman, W.; Kheawhom, S.; Mohamad, A.A. Microwave Assisted Synthesis of Nickel Oxide Nanoparticles at Different PH via Sol Gel Method: Experimental and First-Principles Investigations. Inorg. Chem. Commun. 2024, 164, 112415. [Google Scholar] [CrossRef]
- Sabouri, Z.; Akbari, A.; Hosseini, H.A.; Darroudi, M. Facile Green Synthesis of NiO Nanoparticles and Investigation of Dye Degradation and Cytotoxicity Effects. J. Mol. Struct. 2018, 1173, 931–936. [Google Scholar] [CrossRef]
- Gan, Y.X.; Jayatissa, A.H.; Yu, Z.; Chen, X.; Li, M. Hydrothermal Synthesis of Nanomaterials. J. Nanomater. 2020, 2020, 8917013. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Lin, J.G. Magnetic Resonance Study of Exchange-Biased Ni/NiO Nanoparticles. J. Phys. Condens. Matter 2017, 29, 215802. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.C.; Lin, J.G. Exchange Bias in Finite Sized NiO Nanoparticles with Ni Clusters. J. Magn. Magn. Mater. 2017, 424, 221–225. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nano-materials. Gels 2021, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Han, D.Y.; Yang, H.Y.; Shen, C.B.; Zhou, X.; Wang, F.H. Synthesis and Size Control of NiO Nanoparticles by Water-in-Oil Microemulsion. Powder Technol. 2004, 147, 113–116. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W.; Li, X.; Zhao, J.; Ma, J.; Liu, Y.; Lu, G. Preparation of NiO Nanoparticles in Microemulsion and Its Gas Sensing Performance. Mater. Lett. 2012, 68, 168–170. [Google Scholar] [CrossRef]
- Palanisamy, P.; Raichur, A.M. Synthesis of NiO Nanoparticles by Water-in-oil Microemulsion Technique. Int. Res. J. Pure Appl. Chem. 2014, 4, 494–506. [Google Scholar] [CrossRef]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A.B.; Fernández Barquín, L.; Rodríguez Fernández, J.; De Pedro, I.; Fdez-Gubieda, M.L.; Alonso, J.; Olivi, L.; et al. Interplay between Microstructure and Magnetism in NiO Nanoparticles: Breakdown of the Antiferromagnetic Order. Nanoscale 2014, 6, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [PubMed]
- Wesselinowa, J.M. Size and Anisotropy Effects on Magnetic Properties of Antiferromagnetic Nanoparticles. J. Magn. Magn. Mater. 2010, 322, 234–237. [Google Scholar] [CrossRef]
- Shim, H.; Dutta, P.; Seehra, M.S.; Bonevich, J. Size Dependence of the Blocking Temperatures and Electron Magnetic Resonance Spectra in NiO Nanoparticles. Solid State Commun. 2008, 145, 192–196. [Google Scholar] [CrossRef]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A.B.; Barquín, L.F.; Puente-Orench, I.; Blanco, J.A. Scrutinizing the Role of Size Reduction on the Exchange Bias and Dynamic Magnetic Behavior in NiO Nanoparticles. Nanotechnology 2015, 26, 305705. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, D.; Yang, D. Size-Dependent Magnetic Properties of Branchlike Nickel Oxide Nanocrystals. AIP Adv. 2017, 7, 015028. [Google Scholar] [CrossRef]
- Al Chaghouri, H.; Tuna, F.; Santhosh, P.N.; Thomas, P.J. Tiny Ni-NiO Nanocrystals with Exchange Bias Induced Room Temperature Ferromagnetism. Solid State Commun. 2016, 230, 11–15. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Crystal structure | Cubic (FCC) |
Symbol | Fm3m |
Length a = b = c (Å) | 4.19 |
Unit cell volume (Å3) | 73.37 |
Density (g·cm−3) | 6.76 |
(μB) | 2 |
(K) | 525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moya, C.; Ara, J.; Labarta, A.; Batlle, X. Unraveling the Magnetic Properties of NiO Nanoparticles: From Synthesis to Nanostructure. Magnetism 2024, 4, 252-280. https://doi.org/10.3390/magnetism4030017
Moya C, Ara J, Labarta A, Batlle X. Unraveling the Magnetic Properties of NiO Nanoparticles: From Synthesis to Nanostructure. Magnetism. 2024; 4(3):252-280. https://doi.org/10.3390/magnetism4030017
Chicago/Turabian StyleMoya, Carlos, Jorge Ara, Amílcar Labarta, and Xavier Batlle. 2024. "Unraveling the Magnetic Properties of NiO Nanoparticles: From Synthesis to Nanostructure" Magnetism 4, no. 3: 252-280. https://doi.org/10.3390/magnetism4030017
APA StyleMoya, C., Ara, J., Labarta, A., & Batlle, X. (2024). Unraveling the Magnetic Properties of NiO Nanoparticles: From Synthesis to Nanostructure. Magnetism, 4(3), 252-280. https://doi.org/10.3390/magnetism4030017