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Abstract: We conduct a numerical investigation into the stability of a quadruple-Q
skyrmion crystal, a structure generated by the superposition of four spin density waves
traveling in distinct directions within three-dimensional space, hosted on a centrosym-
metric body-centered tetragonal lattice. Using simulated annealing applied to an effective
spin model that includes momentum-resolved bilinear and biquadratic interactions, we
construct a magnetic phase diagram spanning a broad range of model parameters. Our
study finds that a quadruple-Q skyrmion crystal does not emerge within the phase diagram
when varying the biquadratic interaction and external magnetic field. Instead, three distinct
quadruple-Q states with topologically trivial spin textures are stabilized. However, we
demonstrate that the quadruple-Q skyrmion crystal can become the ground state when
an additional high-harmonic wave–vector interaction is considered. Depending on the
magnitude of this interaction, we obtain two types of quadruple-Q skyrmion crystals
exhibiting the skyrmion numbers of one and two. These findings highlight the emergence
of diverse three-dimensional multiple-Q spin states in centrosymmetric body-centered
tetragonal magnets.

Keywords: skyrmion crystal; biquadratic interaction; high-harmonic wave–vector interaction;
magnetic field; body-centered tetragonal lattice; multiple-Q state

1. Introduction
The skyrmion was initially introduced by Tony Skyrme in particle physics as a topo-

logically stable object, which is characterized by a topological integer that remains invariant
under continuous transformations [1,2]. In condensed matter physics, such topologically
nontrivial objects have been explored in various contexts, such as crystalline liquids [3–7],
quantum Hall magnets [8–14], and Bose–Einstein condensates [15–20]. Among these sys-
tems, magnetic skyrmion crystals (SkXs) featuring swirling spin textures in helical magnets
have attracted significant attention in both theoretical and experimental studies [21–25]. The
SkXs arise as superpositions of multiple spin density waves and have been identified in di-
verse materials. In noncentrosymmetric lattice structures, the Dzyaloshinskii–Moriya (DM)
interaction plays a key role in their stabilization [23,26–31]. In centrosymmetric lattice struc-
tures, frustrated exchange interactions and/or multi-spin interactions are crucial [32–34].
Representative materials in the former category include MnSi [35,36], Fe1−xCoxSi [37,38],
Cu2OSeO3 [39,40], Co8Zn8Mn4 [41,42], and EuPtSi [43,44]. Examples in the latter category
include Gd2PdSi3 [45,46], Gd3Ru4Al12 [47,48], GdRu2Si2 [49,50], NiMnIn [51], and NiM-
nGa [51]. Materials hosting SkXs are promising candidates for realizing giant emergent
electromagnetic responses like the topological Hall and Nernst effects [36,52–59], as well as
robust current-induced motions [60–67].
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SkXs can be classified into several types based on their internal degrees of freedom.
For instance, the helicity and vorticity degrees of freedom give rise to Néel-type, Bloch-type,
and anti-type SkXs [24]. These variations are closely associated with the DM interaction,
whose form depends on the types of noncentrosymmetric lattice structures [21,22,68,69].
Another distinguishing feature of SkXs is the phase degree of freedom [70,71]. The relative
phases among the constituent spin density waves influence spin configurations, resulting in
structures such as the meron–antimeron crystals [45,72–75], tetra-axial vortex crystals [70],
and SkXs with high skyrmion numbers [76,77], thereby altering their topological properties.
Furthermore, the number of constituent waves also influences the SkX structure. For
example, a double-Q superposition of the spiral waves produces a square SkX, while a
triple-Q superposition results in a triangular SkX. These constituent spin density waves
are often determined by the rotational symmetry of the two-dimensional lattice structures.
Specifically, the double-Q wave vectors in the square SkX correspond to the fourfold
rotational symmetry of the square lattice, while the triple-Q wave vectors in the triangular
SkX correspond to the threefold rotational symmetry of the triangular lattice. Recent studies
have further demonstrated the possibility of multiple-Q SkXs in three-dimensional systems,
such as the sextuple-Q SkX on the cubic lattice [78].

In this study, we investigate the emergence of multiple-Q SkXs driven by three-
dimensional ordering wave vectors. We focus on a centrosymmetric body-centered tetrag-
onal lattice and examine an effective spin model using simulated annealing techniques.
The choice of the body-centered tetragonal lattice is owed to its simple lattice structure,
where the DM and frustrated interactions play a lesser role in stabilizing the SkX, although
materials hosting SkXs have been found, such as GdRu2Si2 [49,50,79–81]. Our results
reveal a variety of instabilities, including in SkXs and other multiple-Q states. We identify
three types of quadruple-Q states that arise from distinct superpositions of ordering wave
vectors, depending on the strength of the four-spin biquadratic interaction and the external
magnetic field. We further demonstrate the appearance of a quadruple-Q SkX with a
skyrmion number of one when high-harmonic wave–vector interactions are introduced.
Additionally, a quadruple-Q SkX with a skyrmion number of two emerges when these
interactions become comparable in strength to the dominant exchange interaction. These
findings suggest that magnetic systems with three-dimensional ordering wave vectors
provide a versatile platform for realizing diverse and topologically nontrivial spin textures.

The structure of this paper is as follows: In Section 2, we introduce the effective spin
model defined on a body-centered tetragonal lattice and outline the numerical approach
based on simulated annealing. In Section 3, we present the magnetic phase diagram ob-
tained by varying the biquadratic interaction and external magnetic field. We demonstrate
the emergence of three distinct quadruple-Q states, although none exhibit skyrmion char-
acteristics. We then show that the introduction of high-harmonic wave–vector interactions
stabilizes two quadruple-Q SkXs with skyrmion numbers of one and two. Finally, Section 4
provides a summary of our findings and conclusions.

2. Model and Method
We focus on a three-dimensional body-centered tetragonal lattice characterized by

the primitive translational vectors a1 = (a, 0, 0), a2 = (0, a, 0), and a3 = (a/2, a/2, c/2),
where we set a = c = 1 without loss of generality. The space group of this lattice is
I4/mmm. The lattice structure is shown in the right panel of Figure 1. The body-centered
tetragonal lattice serves as a representative structure for realizing SkX phases, as observed
in materials like GdRu2Si2 [49,50]. Based on this framework, the effective classical spin
model is expressed as
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H =− 2J ∑
ν

(ανSQν · S−Qν) +
2K
N ∑

ν

(ανSQν · S−Qν)
2 − H ∑

i
Sz

i , (1)

where SQν = (Sx
Qν

, Sy
Qν

, Sz
Qν

) and Si = (Sx
i , Sy

i , Sz
i ) represent the localized spin vectors

in momentum and real spaces, respectively, with the two being related via a Fourier
transformation. The subscripts i in Si and Qν in SQν stand for the site and wave vector
indices, respectively, both ranging from 1 to N, where N represents the number of sites. We
set the spin length of each vector Si to unity, i.e., |Si| = 1.
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Figure 1. Magnetic phase diagram in the K-H parameter space, where K represents the biquadratic
interaction and H is the applied magnetic field, on the body-centered tetragonal lattice at α = 0.
Moreover, 1Q, 2Q, and 4Q denote the single-Q state, the double-Q state, and the quadruple-Q state,
respectively. In these phases, Q and Q′ mean the isotropic and anisotropic intensities at multiple
ordering wave vectors, respectively. The crystal structure of the body-centered tetragonal lattice is
shown in the right panel.

The first term represents the bilinear exchange interaction in momentum space, whose
real-space counterpart is given by pairs of two-spin interactions Si · Sj. We set J = 1 as
the energy unit of the model and introduce αν to account for the variations in interac-
tions across different wave–vector channels. We suppose that the interactions at a few
particular ordering wave vectors play a dominant role in determining the low-temperature
phase diagram close to the ground state. This approximation is valid when Fermi surface
nesting occurs at the relevant wave vectors, as in the case of the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction within the itinerant electron model [82–84]. We choose the
three-dimensional ordering wave vectors of Q1 = (π/5, 0, π/5), Q2 = (0, π/5, π/5),
Q3 = (π/5, 0,−π/5), and Q4 = (0, π/5,−π/5) by setting αν = 1 for ν = 1–4. Addi-
tionally, we include the effects of interactions at higher-harmonic wave vectors of Q1–Q4,
since it tends to lead to the multiple-Q instability [85]; we set Q5 = Q1 + Q4 = Q2 + Q3

and Q6 = −Q1 + Q2 = −Q3 + Q4 with α5 = α6 = α < 1. The prefactor of 2 denotes the
contributions from −Q1 to −Q6. Interactions at other wave vectors within the Brillouin
zone are neglected, as their influence on the ground-state energy is minimal when the
magnetic states are predominantly governed by the superposition of Q1–Q4. For simplicity,
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we also disregard the effect of symmetry-allowed magnetic anisotropies under the I4/mmm
symmetry, such as the Ising-type and bond-dependent anisotropies, although such an effect
often gives rise to instability toward the SkX, as found in the case of the easy-axis Ising-type
anisotorpy [86,87]. It is noted that the DM interaction, which tends to favor the SkX [28,88],
is absent due to the centrosymmetric nature of the lattice.

The second term represents the biquadratic exchange interaction with the coupling
constant K, whose real-space counterpart is generally given by four-spin interactions
(Si · Sj)(Sk · Sl). This interaction originates from the higher-order RKKY interaction in
itinerant electron systems, which can be derived through perturbation analysis with respect
to the spin-charge coupling [89,90]. Since this interaction increases the energy of the
single-Q spiral state compared to the multiple-Q state, it serves as a driving force for
multiple-Q states, such as SkX, vortex, and bubble states [91], in centrosymmetric itinerant
magnets. These states have been observed in materials like UCu5 [92], Y3Co8Sn4 [93],
and GdRu2Si2 [50]. The final term in Equation (1) stands for the Zeeman term with the
magnitude H, which accounts for the effect of an external magnetic field applied along
the z-direction.

We employ simulated annealing to search for the ground-state spin configuration of
the model described by Equation (1). For each set of parameters (K, H, α), the following
procedure is carried out independently: First, we initialize the system at high temperatures
T0 = 1–10, with a random initial spin configuration. The temperature is then gradually
decreased according to Tn+1 = 0.999999Tn after each Monte Carlo sweep, where local spins
are updated one by one using the Metropolis algorithm, where the transition probability
is determined by the temperature and the change in the energy during the update. Here,
Tn represents the temperature at the nth-step. The final temperature is set to T = 0.001,
which is much smaller than the energy scale of the model with J = 1. Once the system
reaches the final temperature, we perform between 105 and 106 Monte Carlo sweeps to
compute physical quantities, as outlined below. The system size is chosen to be N = 103,
and periodic boundary conditions are applied. We confirmed that the following results are
not qualitatively altered for larger system sizes, such as N = 203.

The magnetic phases obtained at the final temperature are distinguished by the spin
structure factor and scalar spin chirality. The spin structure factor for η = x, y, z is given by

Sηη
s (q) =

1
N ∑

i,j
Sη

i Sη
j eiq·(ri−rj), (2)

where ri is the position vector at site i and q is the wave vector in the first Brillouin zone.
The uniform magnetization along the field direction is given by M = (1/N)∑i Sz

i .
Meanwhile, the scalar spin chirality is defined as

χsc =
1
N ∑

i
∑

δ,δ′=±1
δδ′Si · (Si+δd̂1

× Si+δ′ d̂2
), (3)

where d̂1 (d̂2) represents a shift by a in the [100] ([010]) direction. The SkX phases are
characterized by a nonzero value of χsc. We also calculate the scalar spin chirality at site i,
which is defined as χsc = (1/N)∑i χsc

i .

3. Results
3.1. Without the High-Harmonic Wave–Vector Interaction

Initially, we neglect the influence of high-harmonic wave–vector interactions, setting
α = 0. We present the ground-state phase diagram in Figure 1, which reveals five distinct
magnetic phases, excluding the fully polarized state that emerges for H ≥ 2. None of these
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phases exhibit a uniform scalar spin chirality, implying that the SkX phase is absent when
α = 0.

When the biquadratic interaction K is set to zero, the single-Q spiral state, which is
denoted as 1Q in the phase diagram, appears irrespective of H. In this state, the spins
exhibit a conical spiral arrangement confined to the xy-plane. The ordering wave vector
can be selected from any of the four vectors, Q1–Q4. The real-space spin configuration of
the 1Q state is illustrated in Figure 2a. As we introduce a nonzero biquadratic interaction K,
the system undergoes a transformation in the low-field regime, where the 1Q state evolves
into a more complex double-Q state, denoted as 2Q′. The new state is characterized by a
mixture of two distinct modulation patterns. One component remains as a conical spiral at
one of the ordering wave vectors, while the second is a sinusoidal variation of the z-spin
component at another ordering wave vector, with the first modulation being significantly
stronger than the second. This dual modulation structure is what distinguishes the 2Q′

state. The prime symbol in Q′ emphasizes that this state exhibits anisotropic multiple-Q
features, where the intensities of the spin structure factors from different ordering wave
vectors are not equal. For this state, the two chosen wave vectors are picked from the set
Q1–Q4. We display the real-space spin configuration of the 2Q′ state in the case of the
dominant conical spiral modulation at Q3 and the sub-dominant sinusoidal modulation at
Q4 in Figure 2b. Since the spin configuration of the 2Q′ state is continuously connected to
that of the 1Q state by decreasing the intensity of the sub-dominant sinusoidal modulation,
the phase transition from the 2Q′ state to the 1Q state against H is characterized by the
second-order phase transition, as shown by the magnetization process in Figure 3a.

As the biquadratic interaction K is increased, a new magnetic phase, termed the 4Q′ I
state, emerges in the intermediate-field region, as shown in Figure 1. The spin configuration
of this phase is depicted in Figure 2c, where the bubble structure characterized by Sz

i = −1
appears in each xy plane. Since there is no vorticity around the bubble structure in terms of
the xy-spin component, this differs from the skyrmion; there is no emergence of uniform
scalar spin chirality in this phase. The transition between the 2Q′ and 4Q′ I states is found
to be a first-order phase transition, as evidenced by the abrupt change in the spin structure
factor. On the other hand, the transition between the 1Q state and the 4Q′ I state is smoother,
corresponding to a second-order phase transition, as indicated by the continuous change in
the magnetization curve shown in Figure 3a.

In the low-field region, the 2Q′ state is replaced by the 4Q I state when the biquadratic
interaction K exceeds a critical value of approximately K ≥ 0.13. The defining feature of
the 4Q I state is the equal intensity of the spin structure factor at the four different ordering
wave vectors at Q1–Q4. The real-space spin configuration of the 4Q I state, shown in
Figure 4a, is nontrivial. It consists of vortex–antivortex pairs that appear in each of the xy
planes. For instance, in the z = 0 plane, two distinct vortex and antivortex pairs are present,
giving rise to a characteristic local magnetic structure. These vortex–antivortex pairs for
different z ̸= 0 planes are related to the ordering wave vectors. The intricate arrangement
of these vortices in the xy planes leads to noncoplanar spin textures, which are essential for
the formation of local scalar spin chirality, as shown in Figure 5a. It is noted that there is no
uniform scalar spin chirality in the whole system. The phase transitions from the 4Q I state
to the 4Q′ I and 1Q states are of first-order, the former of which are shown in Figure 3b.
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Meanwhile, in the high-field region, the system undergoes another significant transfor-
mation. The 1Q state is replaced by another quadruple-Q state denoted as the 4Q II state, as
shown in Figure 1. As shown by the real-space spin configuration in Figure 4b, the z-spin
oscillation almost vanishes, which indicates that the spin configuration is characterized
by a superposition of quadruple-Q fan states with the xy-spin oscillations at Q1–Q4. The
scalar spin chirality aligns in a checkerboard manner, which reflects the periodic alignment
of the vortex and antivortex in terms of the xy-spin component, as shown in Figure 5b [94].
The phase transition between the 4Q I and 4Q II states is of first-order with the jump in the
magnetization, as shown in Figure 3c.
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Figure 2. Real-space spin configurations of (a) the 1Q state at K = 0 and H = 0.5, (b) the 2Q′ state at
K = 0.1 and H = 0.1, and (c) the 4Q′ I state at K = 0.14 and H = 0.5 in the body-centered tetragonal
lattice with N = 10. The arrows represent the direction of the spin moments, and the contour shows
the z-spin component.
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Figure 3. Magnetic field H dependence of the magnetization Mz at (a) K = 0.08, (b) K = 0.16,
and (c) K = 0.24. The vertical dashed lines represent the phase boundaries between different
magnetic phases.
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Figure 4. Real-space spin configurations of (a) the 4Q I state at K = 0.2 and H = 0.5 and (b) the 4Q II
state at K = 0.2 and H = 1 in the body-centered tetragonal lattice with N = 10. The arrows represent
the direction of the spin moments, and the contour shows the z-spin component.
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Figure 5. Real-space scalar spin chirality configurations of (a) the 4Q I state at K = 0.2 and H = 0.5
and (b) the 4Q II state at K = 0.2 and H = 1 in the body-centered tetragonal lattice with N = 10.
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3.2. With the High-Harmonic Wave–Vector Interaction

We next explore the influence of the high-harmonic wave–vector interaction, which is
introduced as a mechanism to stabilize the SkX. The resulting magnetic phase diagram as a
function of α and H is shown in Figure 6. We here choose K = 0.2, since the instabilities
toward the quadruple-Q states (4Q I and 4Q II states) are found for K ≥ 0.2. As α varies,
four additional phases emerge, including two distinct SkX phases. For α ≳ 0.1, the SkX I
phase develops between the 4Q I and 4Q II phases. In contrast, the 4Q′ II phase is stabilized
in the low-field region for α ≳ 0.28, preceding the appearance of the SkX I phase. At larger
values of α, the 2Q and SkX II phases appear for α ≳ 0.7 and α ≳ 0.9, respectively. The detailed
characteristics of the spin and scalar chirality configurations for each phase are discussed below.

 0.0
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 0.0  0.2  0.4  0.6  0.8

4Q’  II
4Q I

4Q II

SkX I

2Q

SkX II

Figure 6. Magnetic phase diagram in the plane of the high-harmonic wave–vector interaction α and
the magnetic field H on the body-centered tetragonal lattice at K = 0.2. SkX I and SkX II stand for the
skyrmion crystal with the skyrmion numbers of one and two, respectively.

For the 4Q′ II state, the spin configuration in real space is illustrated in Figure 7a.
Similarly to the 4Q′ I state, the bubble appears in each xy plane. However, unlike skyrmions,
it does not carry out nonzero winding numbers. In other words, the 4Q′ II state is a
topologically trivial state without a net scalar spin chirality. We also show the real-space
distribution of the scalar spin chirality in Figure 8a. In terms of the spin structure factor,
the four intensities at Q1–Q4 are split into two distinct intensities. The magnetic phase
transition between the 4Q I and 4Q′ II states is identified as first-order, accompanied
by discontinuous changes in the intensities of the spin structure factor, although the
magnetization varies continuously, as illustrated in the case of α = 0.4 in Figure 9a.

With the increase in H in the 4Q′ II state, SkX I appears in the phase diagram in Figure 6.
The spin configuration is characterized by the equal intensity of the spin structure factor
at Q1–Q4. The real-space spin configuration is given in Figure 7b, where the skyrmion
core at Sz

i = −1 is found around z = 4. Owing to the positive winding number around
the skyrmion core, the scalar spin chirality around the skyrmion core becomes negative,
as shown in Figure 8b, which results in the skyrmion number of −1. It is noted that the
antiskyrmion crystal with a skyrmion number of +1 has the same energy as the SkX with a
skyrmion number of −1, since there is no magnetic anisotropy in the present model [95].
The region of the SkX I phase extends as α increases, which indicates that the high-harmonic
wave–vector interaction plays a significant role in stabilizing the SkX spin texture. The
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phase transitions between the SkX I and other magnetic phases are characterized by the
first-order transitions owing to the different skyrmion numbers. The magnetization process
shows a jump structure below and above the SkX I phase, as shown in Figure 9a.
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Figure 7. Real-space spin configurations of (a) the 4Q′ II state at α = 0.4 and H = 0.6 and (b) the SkX
I at α = 0.4 and H = 0.7 in the body-centered tetragonal lattice with N = 10. The arrows represent
the direction of the spin moments, and the contour shows the z-spin component.

We find another SkX phase (SkX II phase) when the high-harmonic wave–vector interac-
tion is almost comparable to the dominant interaction, i.e., α ∼ 1. This spin configuration in
real space is shown in Figure 10a, which includes two vortices with the positive winding num-
ber (+1) around the region with the negative z-spin polarization and two antivortices with the
negative winding number (−1) around the region with the positive z-spin polarization in each
xy plane. In other words, the SkX II phase consists of two vortices with the skyrmion number
−1/2 and two antivortices with the skyrmion number −1/2, which results in the skyrmion
number of two in the magnetic unit cell. Such a feature is found in the real-space scalar spin
chirality in Figure 11b. According to the high skyrmion number, the scalar spin chirality in
the SkX II is larger than that in the SkX I, as shown in Figure 9b. This square SkX II phase has
also been found in different spin models with bond-dependent magnetic anisotropy [96,97].
The SkX II turns into the SkX I by applying the magnetic field with a jump of the skyrmion
number (scalar spin chirality) as well as the magnetization, as shown in Figure 9b.

In the high-field regime, the 2Q state emerges as the stable phase, replacing the 4Q
II state. This phase is predominantly characterized by the superposition of two in-plane
spin density waves with identical intensities. Figure 10b illustrates the real-space spin
structure of this state, where the z-component of the spin exhibits oscillations due to
contributions from high-harmonic wave vectors. The noncoplanar spin arrangement leads
to the formation of a scalar spin chirality density wave, with its periodicity determined by
the high-harmonic wave vectors, as depicted in Figure 11b. As the magnetic field strength
increases, this state gradually changens into the fully polarized phase.
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Figure 8. Real-space scalar spin chirality configurations of (a) the 4Q′ II state at α = 0.4 and H = 0.6
and (b) the SkX I at α = 0.4 and H = 0.7 in the body-centered tetragonal lattice with N = 10.
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4. Summary
We have explored the potential emergence of SkXs formed by three-dimensional

ordering wave vectors in the centrosymmetric body-centered tetragonal-lattice system. By
conducting numerical simulations using a simulated annealing approach for an effective
spin model incorporating bilinear and biquadratic interactions, we have identified key
factors for stabilizing SkXs and other multiple-Q magnetic states. Initially, we demonstrated
that three distinct quadruple-Q states appear in the phase diagram as the biquadratic
interaction and magnetic field are varied, although no SkX phase emerges under these
conditions. However, we found that introducing high-harmonic wave–vector interactions
leads to the stabilization of two types of SkXs with skyrmion numbers of one and two,
depending on the interaction strength. These findings suggest that three-dimensional
ordering wave vectors can generate a rich variety of topological spin textures through the
superposition of multiple spin density waves propagating along different spatial directions.
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