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Abstract: Relaying with network coding forms a basis for a variety of collaborative communication
systems. A linear block coding framework for multi-way relaying using network codes introduced in
the literature shows great promise for understanding, analyzing, and designing such systems. So far,
this technique has been used with low-density parity check (LDPC) codes and belief propagation (BP)
decoding. Polar codes have drawn significant interest in recent years because of their low decoding
complexity and good performance. Our paper considers the use of polar codes also as network
codes with differential binary phase shift keying (DBPSK), bypassing the need for channel state
estimation in multi-way selective detect-and-forward (DetF) cooperative relaying. We demonstrate
that polar codes are suitable for such applications. The encoding and decoding complexity of such
systems for linear block codes is analyzed using maximum likelihood (ML) decoding for LDPC
codes with log-BP decoding and polar codes with successive cancellation (SC) as well as successive
cancellation list (SCL) decoding. We present Monte-Carlo simulation results for the performance of
such a multi-way relaying system, employing polar codes with different lengths and code rates. The
results demonstrate a significant performance gain compared to an uncoded scheme. The simulation
results show that the error performance of such a system employing polar codes is comparable to
LDPC codes with log-BP decoding, while the decoding complexity is much lower. Furthermore, we
consider a hard threshold technique at user terminals for determining whether a relay transmits or not.
This technique makes the system practical without increasing the complexity and can significantly
reduce the degradation from intermittent relay transmissions that is associated with such a multi-way
relaying protocol.

Keywords: cooperative communication systems; polar codes; relaying systems; network codes;
channel codes

1. Introduction

Cooperative communication is an important paradigm for improving the operation
and performance of wireless telecommunication networks [1–5]. Relaying techniques are
principal enablers for cooperative communication, which are commonly used in wireless
systems [6–9]. In such systems, user terminal (source) nodes transmit information carrying
signals to the relays and the destination nodes. The relay nodes then forward information
related signals to the destination following specific protocols. Finally, destination nodes
decode the information from user terminal based on the signals received from these termi-
nals and relay nodes. With the aid of relays that provide additional paths for information
transmission, the error performance and power efficiency of such systems is improved
compared to non-cooperative schemes [10]. Common protocols for relaying systems are
broadly classified into amplify-and-forward (AF) and decode-and-forward (DF) meth-
ods [11]. With the AF protocol, the relays amplify the received signals from the terminals
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and forward them to the destination. In the DF protocol, the relays first decode the signals
from the terminals and extract the information, which is then re-encoded and forwarded to
the destination. Detect-and-forward (DetF) relaying, considered in Zhang and Leib [7] as
well as in Hou and Leib [12], is closely related to DF, except that each relay only detects
(demodulates) the signal, without decoding. These protocols are further classified into
selective AF and selective DF techniques [13], where the relays operate selectively on the
signals received from the terminals according to specific criteria. Using selective techniques,
the performance is improved over conventional all-participation relaying [14].

Network coding, first proposed by Ahlswede [15], requires computation within the
network. In a network-coded system, intermediate nodes form and transmit functions of
the information they receive; a technique that can improve throughput. Network coding has
found many applications in modern communication networks [16] as well as in cooperative
communication [17,18]. Furthermore, network coding serves as a basis for many relaying
protocols [19,20]. Three-node two-way relay networks (TWRNs) are a simple model of a
cooperative communication system. In TWRNs, two terminals exchange information with
the aid of one relay. In traditional TWRNs, a full information exchange cycle requires four
phases, where each terminal consumes one phase to transmit to the relay and other terminal,
then the relay consumes two phases to transmit to each of the two terminals. With network
coding, the transmission is reduced to three phases, where the relay requires only one phase
to transmit the properly combined data [7,21] to both terminals. This model can be further
generalized to multi-way relay networks (MWRNs) [10,22], where multiple terminals
exchange information with the aid of multiple relays. A linear block-coding framework for
network-coded MWRNs with differential modulation that is based on systematic codes
has been proposed in [12], which addresses the use of low-density parity check (LDPC)
codes in systematic form as network codes. Decoding has been performed using the Belief
Propagation (BP) algorithm. A simpler alternative is offered by systematic equivalent polar
codes used as network codes for MWRNs, which is the main subject of the present paper.

Polar codes were first proposed by Arikan [23] and have drawn increasing research
interest [24]. Polar codes are linear block codes that can achieve capacity over binary-input
discrete memoryless channels (B-DMC). Compared with other advanced codes such as
Turbo codes [25] and LDPC codes [26], polar codes have the advantage of lower encoding
and decoding complexities with successive cancellation (SC) decoding. Furthermore,
polar codes are more flexible in rate-adaptation, meaning that changing the number of
information bits given a fixed codeword length will not affect the encoder structure. Polar
codes have been widely used in communication systems, including 5G networks and
beyond [27–29]. One disadvantage of polar codes is that when the codeword length is not
long enough, the error performance with SC decoding is mediocre. Successive cancellation
list (SCL) decoding for polar codes was proposed in Tal and Vardi [30] for improving error
rate performance. The use of polar codes in relaying systems has been considered in [31–34].
The original polar codes are non-systematic and therefore not suitable for the MWRN
of [12]. The first systematic polar encoding algorithm was proposed by Arikan [35]. Most
research on systematic polar encoding has focused on the implementation and optimization
of this algorithm [36–38]. A modified systematic encoding method was proposed by
Sarkis et al. [39,40], where the information bits are preserved at the input of the encoder.
However, the above approaches mainly focus on reducing the encoding complexity, and
none of the encoding functions are implemented by directly using a systematic generator
matrix as required in the MWRN system of [12]. Therefore, an appropriate systematic
encoding method of polar codes needs to be devised in order to make polar codes suitable
for the MWRN system of [12].

This paper considers polar codes with Differential Binary Phase Shift Keying (DBPSK)
modulation for MWRN. Compared to similar relaying systems employing LDPC codes,
polar codes reduce the decoding complexity while still maintaining a comparable error
performance. In this paper, we show how to employ systematic equivalent polar codes in
MWRN and present the corresponding SC and SCL decoding algorithms for such systems.
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Then we analyze and compare the encoding and decoding complexity with maximum
likelihood (ML) decoding for any linear block code, for LDPC codes with log-BP decoding,
and for polar codes with SC and SCL decoding. While many other decoding techniques
exist for polar codes [24,41–47], in this paper, we choose to consider the classical SC and
SCL algorithms, providing results that can be used as benchmarks when considering other
techniques. Because of the selective DetF relaying protocol used in MWRNs, the relays
transmit intermittently. Different transmission cases are considered based on whether
the terminals know which relays transmit or not. Simulation results show that MWRNs
with polar codes provide significant gain compared to uncoded schemes. For short polar
codes, the error performance is compared with ML decoding. For longer polar codes, the
performance is compared with LDPC codes with log-BP decoding. The rest of this paper is
organized as follows. Section 2 introduces the system model and analyzes the encoding and
decoding complexity with ML decoding and LDPC codes with log-BP decoding. Section 3
demonstrates how to employ systematic equivalent polar codes in MWRN with DBPSK
and analyzes the corresponding decoding complexity. Section 4 presents performance
simulation results of MWRN employing polar codes and a comparison with ML decoding,
as well as with LDPC codes using log-BP decoding. Section 5 presents the conclusions.

2. System Model and Complexity Analysis

For readers’ convenience, Table 1 provides a list of symbols used in this paper
with their definitions.

Table 1. Table of main symbols.

Symbol Definition

Tk k-th user terminal

Rl l-th relay

S Set of terminals and relays

mi Information symbol with values in {0, 1}

ai[k] BPSK symbol with values in {1,−1}

bi[k] Differentially encoded symbol with values in {1,−1}

fi j Channel coefficient from node i to node j

yi j[k] Received signal at node j from node i

ni j Noise samples in the channel from node i to node j

N0 Variance in additive channel noise

Eb Bit energy

Pi Transmission power of node i

φij[k] Phase of yij[k]y∗ij[k − 1]

θi[k] Phase of ai[k]

θn[k] Phase noise term affecting the decision variable

Gsys Systematic generator matrix of a linear block code

Gnonsys Nonsystematic generator matrix of a linear block code

PK×L Parity submatrix of a systematic generator matrix

I(W) Symmetric capacity of channel W

W(y|x) Transition probabilities of a channel

Z(W) Bhattacharyya parameter of channel W

W(i)
N i-th synthesized channel from a collection of N channels
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Table 1. Cont.

Symbol Definition

GN Encoding matrix of a length N polar code

F Basic submatrix of a polar code encoding matrix

GA Submatrix of GN that contains all the rows with indices in A

L(i)
N (·, ·) Log likelihood ratio (LLR) for bit channel i

PM(i)
l Path metric of the l-th candidate at bit i

GA p Resulting matrix from permuting the columns of GA

GAA Submatrix of GA p of elements Gi,j of GN with i ∈ A, j ∈ A

CN (·, ·) Complex normal (Gaussian) distribution

2.1. A Linear Block Coding Framework for Multi-Way Relaying

Consider a wireless system with K user terminals denoted by T1, T2, . . . , TK and L
relays denoted by R1, R2, . . . RL as in ref. [12]. The transmission protocol of the system is
based on time division multiple access, and it is presented in Table 2. Each node in the
system operates in half-duplex mode and consumes one phase to transmit one symbol in
one transmission time slot. Each relay is associated with a relevant group of user terminals
whose information symbols are used to form the symbol forwarded by the relay. The relays
utilize the selective DetF protocol, which means that a relay will forward the combined
signal from its relevant group of terminals only if it correctly detects all the signals received
from the terminals in its relevant group. Otherwise, the relay will remain silent. The set of
all nodes is denoted by S = {T1, T2, . . . , TK, R1, R2, . . . , RL}. When 1 ≤ i ≤ K, the ith node
of S is Ti. When K + 1 ≤ i ≤ K + L, the ith node of S is Ri−K.

Table 2. Transmission protocol used in this system.

Transmitter Receiver

Phase 1 T1 T2, . . . , TK , R1, R2, . . . , RL

Phase 2 T2 T1, T3, . . . , TK , R1, R2, . . . , RL

. . . . . . . . .

Phase K TK T1, . . . , TK−1, R1, R2, . . . , RL

Phase K + 1 R1 T1, T2, . . . , TK

Phase K + 2 R2 T1, T2, . . . , TK

. . . . . . . . .

Phase K + L RL T1, T2, . . . , TK

One transmission time slot is composed of N = K + L phases. The relation between
the transmission time slots and phases is presented in Figure 1. During the first K phases
in a time slot, each terminal Ti broadcasts its own information symbol to all L relays
R1, R2, . . . RL and K − 1 terminals T1, . . . Ti−1, Ti+1 . . . , TK. During the subsequent L phases,
every relay utilizes the selective DetF protocol to transmit a combined signal from its
relevant group to the other K − 1 terminals. Hence, complete exchange of one information
symbol from all terminals including relay forwardings is achieved during a single time
slot. All nodes employ DBPSK; hence, channel state information (CSI) is not required for
decoding. The information symbol vector is denoted by m = (m1, m2, . . . , mK+L), where
mi ∈ {0, 1} is the information symbol transmitted by node i. The BPSK symbol at node i at
time slot k is denoted by ai[k], which can be represented as follows:

ai[k] = 1 − 2mi[k], k ∈ Z (1)



Network 2024, 4 317
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phase ...

2
phase ...
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Figure 1. Relation between transmission time slots and phases.

Hence, ai[k] ∈ {1,−1}. After differential encoding, the corresponding DBPSK sym-
bol is as follows:

bi[k] = ai[k]bi[k − 1] (2)

In this paper, we denote the channel coefficient from node i to node j by fij. Fur-
thermore, we assume that all channels are reciprocal quasi-static [48] and hence fij = f ji
following the Rayleigh model. This represents slow rate fading, where the channels remain
constant over a time slot. However, they change independently between different time slots.
With Rayleigh fading, fij are zero-mean circularly symmetric complex Gaussian (CSCG)
with normalized power E{| fij|2} = 1. Then, the received signal at node j from node i is
as follows:

yij[k] =
√

Pi fijbi[k] + nij[k] (3)

where the noise samples nij[·] are uncorrelated zero-mean CSCG with variance σ2
n = N0,

and Pi is the transmission power of node i. All the nodes in the system are assumed to use
the same transmission power.

In this work, we assume the relays know whether a detected symbol is correct, as
in [49]. Practical techniques that can be used to achieve such conditions are discussed
in [50]. The relays employ conventional differential detection (CDD) to demodulate the
received signals from the terminals. Using CDD, the symbols are detected based on the
phase of yij[k]y∗ij[k − 1]. The phase of yij[k]y∗ij[k − 1] is denoted by φij[k], and the phase of
ai[k] is denoted by θi[k], where θi[k] = 0 or π for BPSK. Based on (2) and (3),

yij[k]y∗ij[k − 1] = (
√

Pi fijbi[k] + nij[k])(
√

Pi f ∗ijb
∗
i [k − 1] + n∗

ij[k − 1])

=Pi| fij|2ai[k] +
√

Pi fijbi[k]n∗
ij[k − 1] +

√
Pi f ∗ijb

∗
i [k − 1]nij[k] + nij[k]n∗

ij[k − 1]

=Pi| fij|2ejθi [k] +
√

Pi fijbi[k]n∗
ij[k − 1] +

√
Pi f ∗ijb

∗
i [k − 1]nij[k] + nij[k]n∗

ij[k − 1]

=|yij[k]y∗ij[k − 1]|ejφij [k]

(4)

where
φij[k] = θi[k] + θn[k] (5)

and θn[k] is the phase noise due to the following term:√
Pi fijbi[k]n∗

ij[k − 1] +
√

Pi f ∗ijb
∗
i [k − 1]nij[k] + nij[k]n∗

ij[k − 1].

Hence the detection decision rule for the received symbol from node i at node j is as follows:

m̂i[k] =

{
0 if − π/2 ≤ φij[k] < π/2
1 otherwise

(6)

If a relay Rl correctly detects all the symbols from all the terminals in its relevant
group, then it will perform a binary linear combination of the corresponding symbols
using a parity check column from a systematic generator matrix. The combined signal
will be transmitted to all the terminals at transmission phase K + l. If Rl fails to detect all
the symbols correctly, it will remain silent at phase K + l, and the terminals will receive
only noise.
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2.2. Linear Block Code Representation of the Multi-Way Relaying System

Based on [12], this scheme can be represented by a (K + L, K) binary linear block code
with a systematic generator matrix:

Gsys =
[
IK×K PK×L

]
=


1 0 · · · 0 p1,1 p1,2 · · · p1,L
0 1 · · · 0 p2,1 p2,2 · · · p2,L
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 pK,1 pK,2 . . . pK,L

 (7)

where the identity matrix IK×K corresponds to the first K phases involving user-to-user
transmissions, and and the parity check submatrix PK×L corresponds to the subsequent L
phases involving network-coded transmissions from relays. The element at the ith row and
jth column of P is denoted by Pi,j, which can assume the values 0 or 1. The elements 1 on
the jth column of P correspond to the terminals in the relevant group of Rj ( i.e., Ti is in the
relevant group of Rj if Pi,j = 1).

The codeword of one transmission time slot is denoted by x = (x1, x2, . . . , xK+L),
and the information bits from the terminals are denoted by mT = (m1, m2, . . . , mK). With
all operations performed in the binary field GF(2), the vectors x and mT are related by
the following:

x = mTGsys = (mT , mTP) (8)

Therefore, for 1 ≤ j ≤ K, xj = mj. For K + 1 ≤ j ≤ K + L,

xj =
K

∑
i=1

Pi,jmi. (9)

2.3. Maximum Likelihood (ML) Decoding

At terminal node j, a ML decoder for DBPSK employs the decision rule [12]:

ĉ = argmax
c

p(yj[k]|c, yj[k − 1]) (10)

where yj[k] = (y1j[k], y2j[k], . . . , yNj[k]), yj[k − 1] = (y1j[k − 1], y2j[k − 1], . . . , yNj[k − 1])
and c = (a1[k], a2[k], . . . , aN [k]). In our system, all transmissions are independent over
independent channels; thus, for the modulated symbols ai[k] and bi[k − 1], the channel
fading coefficient fij and noise samples nij[k] are all independent for different nodes i. Thus,
y1j[k], y2j[k], . . . , yNj[k] are independent. Therefore,

p(yj[k]|c, yj[k − 1]) = p(y1j[k], . . . , yNj[k]|a1[k], . . . , aN [k], y1j[k − 1], . . . , yNj[k − 1])

=
N

∏
i=1

p(yij[k]|a1[k], . . . , aN [k], y1j[k − 1], . . . , yNj[k − 1])

=
N

∏
i=1

p(yij[k]|ai[k], yij[k − 1])

(11)

where yij[k] only depends on ai[k] and yij[k − 1].
Furthermore, we have the following:

p(yij[k]|ai[k], yij[k − 1]) =
p(yij[k], ai[k], yij[k − 1])

p(ai[k], yij[k − 1])

=
p(yij[k], ai[k], yij[k − 1])/p(ai[k])

p(ai[k], yij[k − 1]/p(ai[k]))

=
p(yij[k], yij[k − 1]|ai[k])

p(yij[k − 1]|ai[k])
=

p(yij[k], yij[k − 1]|ai[k])
p(yij[k − 1])

(12)
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where yij[k − 1] does not depend on ai[k].
Using (10) to (12), we have the following:

ĉ = argmax
c

p(yj[k]|c, yj[k − 1]) = argmax
c

N

∏
i=1

p(yij[k], yij[k − 1]|ai[k])
p(yij[k − 1])

= argmax
c

N

∏
i=1

p(yij[k], yij[k − 1]|ai[k])

(13)

where p(yij[k − 1]) does not depend on the choice of c. Using similar derivation steps to
those in [12], and given the fact that in our system, ai[k] are real, we obtain the final ML
decoding metric for DBPSK:

ĉ = argmax
c

N

∑
i=1

ai[k](y∗ij[k]yij[k − 1] + yij[k]y∗ij[k − 1]) (14)

2.4. Complexity Analysis for General Linear Block Codes and LDPC Codes

In this section, we analyze the complexity of encoding and decoding at each node. The
complexity is measured by the number of basic operations that one algorithm consumes to
encode or decode a codeword. Decoding complexities of different algorithms are compared
by calculating the number of basic operations an algorithm employs for decoding one
codeword at a node. In some cases, we use the order of magnitude O(·) complexity metric
when considering the asymptotic behavior for large systems.

Assume a linear block code. In our system, the encoding process is performed using a
systematic generator matrix. For a (N, K) systematic linear block code, the encoding process
is equivalent to the multiplication of a 1×K information vector by a K× N generator matrix.
The total complexity of this operation is O(KN). However, in our system, the encoding
process is performed by N nodes, and each node only calculates one bit of a codeword.
The terminals transmit one information symbol to the other nodes, and there are no other
calculations. For relay nodes, the CDD calculation (4) for one node involves a complex
multiplication with complexity O(1). Consider the worst case, when the relevant group
sizes associated with the relays approach the maximal value K. In this case, each relay
performs K CDDs and K − 1 binary additions of the K detected symbols. Therefore, the
encoding complexity for relay nodes is O(K).

Next, we analyze the number of different operations required at each terminal node
with ML decoding and LDPC codes with log-BP decoding. Calculating the sign function or
comparing two real numbers is regarded as one comparison operation. Looking up one
number or value from a existing table is regarded as one table look-up operation. Multiply-
ing a number by 1 or –1 is not considered as a multiplication in the following analysis.

When using ML decoding with (14), two multiplications and one addition are needed
to calculate one term in the summation; hence, 2N multiplications and N + N − 1 = 2N − 1
additions are required for the summation corresponding to one codeword. For a (N, K)
linear block code, there are a total of 2K possible codewords. Their value are pre-stored in
a table; hence, there are a total of 2K table look-ups of codewords, 2K+1N multiplications,
and 2K(2N − 1) additions. Finally, finding the codeword that maximizes the summation in
(14) requires 2K comparisons. We see the exponential dependency on K in the complexity
results for ML decoding of general linear block codes, which poses a significant challenge
for long codes of non-vanishing small rates.

We now assume an LDPC code with average variable node degree distribution dv
and average check node distribution dc. The number of operations required at each step
for binary LDPC codes with log-BP decoding is presented in Table 3, where Imax is the
maximum number of iterations. The steps are divided based on the descriptions in [12].
The number of operations required for updating the variables L(quv(z)) and L(ruv(z)) are
analyzed in [51], and the results are summarized in Table 3. Calculating tentative LLR
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for each symbol in x[k] is similar to updating L(quv(z)), which involves Ldcdv additions.
Then, making tentative decisions for each symbol requires N comparisons. Finally, x̂ · H is
calculated to determine whether to stop the iterations. This requires N(dc) multiplications,
N(dc − 1) additions, and table look-ups of non-zero elements of H. To achieve a better
error performance, Imax needs to be set to a relatively large value, resulting in a high
decoding complexity.

Table 3. Number of operations at each step of low-density parity check (LDPC) codes with log-belief
propagation (BP) decoding.

Multiplication Addition Comparison Table Look-Up

Initialization 3N 2N - -

Update
L(ruv(z))

- 6(3dc − 4)LImax 2(3dc − 4)LImax 2(3dc − 4)LImax

Update
L(quv(z))

- Ldc(dv − 1)Imax - -

Tentative LLRs - Ldcdv Imax NImax -

x̂ · HT Ndc Imax N(dc − 1)Imax - NLImax

In Table 3, we notice the terms composed of four-factor multiplications involved in the
number of additions required to update L(quv(z)) and to calculate tentative LLRs. These
contribute significantly to increasing complexity in LDPC decoding. Next, we consider
polar codes for our multi-way relaying system, analyze complexity, and compare them
with the results of the LDPC codes.

3. Polar Codes for the Multi-Way Relaying System
3.1. Background on Polar Codes

Let W : X → Y be a binary-input discrete memoryless channel (B-DMC) with input
and output alphabets X = {0, 1} and Y = R (the set of real numbers), respectively. The
transition probability of the channel is denoted by W(y|x), where x ∈ X , y ∈ Y . Let the
subvector (mi, . . . mj) of m be denoted by mj

i . If i > j, then mj
i is the null vector.

There are two parameters that indicate the channel quality for polar codes: the sym-
metric capacity I(W) and the Bhattacharyya parameter Z(W). These are defined in [23]
as follows:

I(W) = ∑
y∈Y

∑
x∈X

1
2

W(y|x)log
W(y|x)

1
2 W(y|0) + 1

2 W(y|1)
(15)

Z(W) = ∑
y∈Y

√
W(y|0)W(y|1) (16)

where the logarithm is taken with a basis of 2. The symmetric capacity I(W) is the highest
rate for reliable communication with equal input probabilities, and the Bhattacharyya
parameter Z(W) is an upper bound to the error probability under ML decoding when
transmitting over W. It was shown in [23] that for any B-DMC, the following two inequali-
ties hold:

I(W) ≥ log
2

1 + Z(W)
(17)

I(W) ≤
√

1 − Z(W)2 (18)

Based on (17) and (18), I(W) ≈ 1 iff Z(W) ≈ 0, which indicates that the channel is reliable.
Polar codes exploit the channel polarization phenomenon. In channel polarization, N

independent copies of a B-DMC employing channel combining and channel splitting are
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transformed into N synthesized bit channels {W(i)
N : 1 ≤ i ≤ N}, where W(i)

N denotes the

i-th such synthesized channel. As N tends to infinity, the symmetric capacity I(W(i)
N ) tends

towards 0 or 1; hence, it is polarized. The transition probability of the ith bit channel W(i)
N

is as follows [23]:

W(i)
N (yN

1 , mi−1
1 |mi) = ∑

mN
i+1

1
2N−1 WN(yN

1 |mN
1 ) (19)

For an (N, K) polar code, the information bits are arranged to be located at the K most
reliable bit locations and are transmitted over the best K bit channels. The other N − K
bits are called frozen bits, and their values are known to the decoder. Frozen bits do not
carry information and are set to fixed values. In this work, all frozen bits are set to 0. The
process of selecting the information bit indices of polar codes is called the construction of
polar codes.

We define set A as the collection of all information bit indices of a polar code. We
denote the information bits of the polar code by mA and the frozen bits by mAc . The
encoding matrix of a (N, K) polar code is as follows [23]:

GN = F
⊗

log2 N (20)

where F =

[
1 0
1 1

]
is the fundamental building matrix (called the kernel matrix), and

⊗
n

denotes the nth-fold Kronecker product of a matrix.
Using operations performed over the binary field GF(2), we can express the original

polar encoded codeword as follows:

x = mGN = mAGA + mAc GAc (21)

where GA is the submatrix of GN that contains all the rows of GN with indices in A , GAc

is the submatrix of GN that contains all the rows of GN with indices in Ac, and m is an
input vector containing information bits and frozen bits. When all the frozen bits are set to
0, (21) becomes:

x = mAGA (22)

showing that GA is the generator matrix. When encoding with (22), mA does not appear in
the resultant codeword x; thus, the original polar codes are non-systematic and cannot be
used for our multi-way relaying system. Gnonsys ≜ GA is defined as the non-systematic
generator matrix of polar codes.

As an example, consider an (8, 5) polar code with frozen bits set Ac = {1, 2, 3} and
information bits set A = {4, 5, 6, 7, 8}. The polar encoding for this code is shown in Figure 2.
The encoding process of an (N, K) polar code consists of log2N + 1 stages denoted by
S0, S1, S2 . . . Slog2 N . The input to the encoder m is at S0. At each subsequent stage, there are
N/2 = 4 binary additions. For this (8, 5) polar code,

GN = F
⊗

3 =


F 0 0 0
F F 0 0
F 0 F 0
F F F F

 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


(23)
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The nonsystematic generator matrix Gnonsys selects the rows in A of GN , i.e., the last five
rows to transmit information bits:

Gnonsys =


1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 (24)

Reed–Muller (RM) codes [52] are closely related to polar codes. Both codes with
codeword length N use the same matrix GN for code construction. While the generator
matrix of polar codes selects the most reliable rows with the lowest error probabilities of GN
based on the specific channel and SNR, the generator matrix of (r, n) RM codes with order
r and codeword length N = 2n selects the rows of GN with Hamming weights w ≥ 2n−r.
Equivalently, polar codes freeze the least-reliable channels, while RM codes freeze the
channels with the lowest Hamming weights. Consequently, polar codes have a better error
performance, since the code design is channel-specific to improve error performance, while
RM codes have a higher minimum Hamming distance.

m4

m5

m7

x6

x7

x8

m6

m8

S0

0

0

0

x1

x3

x4

x5

x2

S1 S2 S3

Figure 2. Encoder of a (8, 5) polar code.

The Log likelihood ratio (LLR) for the ith bit channel is given by the following:

L(i)
N (y, m̂i−1

1 ) ≜ ln
W(i)

N (y, m̂i−1
1 |mi = 0)

W(i)
N (y, m̂i−1

1 |mi = 1)
(25)

With SC decoding, each bit is decoded successively from m1 to mN . The decoder employs
the following decision rule for the ith bit:

m̂i =


0 if i ∈ Ac

0 if L(i)
N (y, m̂i−1

1 ) ≥ 0, i ∈ A
1 if L(i)

N (y, m̂i−1
1 ) < 0, i ∈ A

(26)

The calculation of (25) can be performed recursively in the log domain [53]:

L(2i−1)
N (yN

1 , m̂2i−2
1 ) ≈ sign(L(i)

N/2(y
N/2
1 , m̂2i−2

1,o + m̂2i−2
1,e )) · sign(L(i)

N/2(y
N
N/2+1, m̂2i−2

1,e ))

·min(|L(i)
N/2(y

N/2
1 , m̂2i−2

1,o + m̂2i−2
1,e )|, |L(i)

N/2(y
N
N/2+1, m̂2i−2

1,e )|)
(27)

L(2i)
N (yN

1 , m̂2i−1
1 ) = (1 − 2m̂2i−1)[L

(i)
N/2(y

N/2
1 , m̂2i−2

1,o + m̂2i−2
1,e )] + L(i)

N/2(y
N
N/2+1, m̂2i−2

1,e ) (28)
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where m2i−2
1,o is the subvector of m2i−2

1 with odd indices,and m2i−2
1,e is the subvector of m2i−2

1

with even indices. The recursion continues until we reach the calculation of LLR of W(1)
1 .

In this case,

L(1)
1 (yi) = ln

W(yi|0)
W(yi|1)

(29)

is called the channel LLR, which can be calculated from the channel. A more detailed
description of SC decoding can be found in [23].

The SCL algorithm is a modified version of SC decoding and follows a similar serial
decoding process from m1 to mN . While SC decoding only considers the best decoding
result, SCL decoding forms a list of Lmax best possible decoding results. The decoding
result in the SCL algorithm is named as a candidate path having a path metric. In the log
domain, the path metric PM of the lth candidate path at the ith bit is defined as follows [54]:

PM(i)
l = −lnp(m̂i

1|ŷN
1 ) =

i

∑
j=1

ln(1 + e−(1−2m̂j)L(j)
N ) (30)

A smaller path metric corresponds to a higher p(m̂i
1|ŷN

1 ), which indicates a higher like-
lihood for that candidate path. The updating rule of the path metric at bit index i is
as follows:

PM(i)
l =

{
PM(i−1)

l if m̂i =
1
2 (1 − sign(L(i)

N ))

PM(i−1)
l + |L(i)

N | otherwise
(31)

Equation (31) indicates that if the decoding result of list l for bit i does not coincide with
the corresponding LLR, then a penalty |L(k)

N | is added to the path metric.
Before decoding m1, the initial path metrics are all set to 0. When decoding a frozen

bit, the value 0 is appended to all candidate paths, and the path metrics are updated. When
decoding an information bit mi, instead of making a hard decision using (26), the SCL
decoder appends both possible decoding results of 0 or 1 to the identical copies of the
current decoding candidates, which doubles the number of active candidate paths. When
the number of candidate paths exceeds Lmax, only the Lmax candidate paths with the lowest
path metrics are kept, and others are pruned. After decoding mN , the active candidate path
with the lowest path metric is selected to be the final decoding result. By using a lazy-copy
technique to duplicate the candidate paths, the decoding complexity of SCL decoding is
O(Lmax NlogN) [30].

3.2. Systematic Polar Encoding for the Multi-Way Relaying System

For any non-systematic linear block code with generator matrix Gnonsys, there ex-
ists a systematic equivalent code with systematic generator matrix Gsys [55], satisfying
the following relation:

Gnonsys = BGsys (32)

where B is a K × K invertible matrix. A code and its systematic equivalent form have the
same codewords. Only the mappings of the information vector to codewords are different.
These mappings are related through a linear reversible transformation represented by the
matrix B of (32).

We define GAA as the K × K submatrix of GN of (20) that consists of elements Gi,j
with i ∈ A, j ∈ A. The matrix GN is lower triangular with diagonal elements Gd,d = 1,
1 ≤ d ≤ N. The diagonal elements of GAA are Gi,i with i ∈ A, which are also diagonal
elements of GN . Therefore, the diagonal elements of GAA are also all equal to 1, and GAA is
invertible. The systematic encoder in [35] chooses B = GAA. However, with this selection,
the information bits are located at all bit indices in A of the codeword x, which we denote
as xA. In our system, the bits transmitted by the terminals mT are located at the first K bit
indices of x. Therefore, the columns of GA are first permuted before the construction of the
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equivalent systematic generator matrix. We define the resultant matrix from permuting the
columns of GA as GAp, which has the following form:

GAp =
[
GAA GAAc

]
(33)

where GAAc is a K × L submatrix of GN that consists of all elements Gi,j with i ∈ A, j ∈ Ac.
The systematic generator matrix of the system is formed as follows:

Gsys = G−1
AAGAp = G−1

AA
[
GAA GAAc

]
=

[
IK×K G−1

AAGAAc
]
=

[
IK×K PK×L

]
(34)

The codeword x can be obtained from either mT or mA:

x = mTGsys = mAGAp = mAGAAGsys (35)

Therefore, the information bits transmitted by the terminals, mT , and the information bits
of the original non-systematic polar code, mA, are related by the following:

mT = mAGAA (36)

Encoding at the terminals is performed using mT , while polar decoding retrieves mA.
However, after mA is recovered using the SC or SCL algorithm, mT can be obtained from
(36). Notice that (36) can also be viewed as an encoding of mA using the generator matrix
GAA, which can be implemented recursively as in polar encoding.

3.3. Polar Decoding of the Multi-Way Relaying System

At each terminal receiver, the received symbols in one time slot are first reversely
permuted to make the input order consistent with the non-systematic polar code required
by SC or SCL decoders. The input channel LLRs of the decoder are calculated as follows:

L(y
′
ij[k]) = ln

p(y
′
ij[k]|y

′
ij[k − 1], xi[k] = 0)

p(y′
ij[k]|y

′
ij[k − 1], xi[k] = 1)

= ln
p(y

′
ij[k], y

′
ij[k − 1]|xi[k] = 0)/p(y

′
ij[k − 1]|xi[k] = 0)

p(y′
ij[k], y′

ij[k − 1]|xi[k] = 1)/p(y′
ij[k − 1]|xi[k] = 1)

= ln
p(y

′
ij[k], y

′
ij[k − 1]|xi[k] = 0)/p(y

′
ij[k − 1])

p(y′
ij[k], y′

ij[k − 1]|xi[k] = 1)/p(y′
ij[k − 1])

= ln
p(y

′
ij[k], y

′
ij[k − 1]|xi[k] = 0)

p(y′
ij[k], y′

ij[k − 1]|xi[k] = 1)
= ln

p(y
′
ij[k], y

′
ij[k − 1]|ai[k] = 1)

p(y′
ij[k], y′

ij[k − 1]|ai[k] = −1)

(37)

where p(y
′
ij[k − 1]) does not depend on p(xi[k]); thus, p(y

′
ij[k − 1]|xi[k]) = p(y

′
ij[k − 1]).

The conditional PDF p(y
′
ij[k], y

′
ij[k − 1]|ai[k]) follows a multivariate complex Gaussian

distribution when ai[k] is known, and it has the following form [56]:

p(y
′
ij[k],y

′
ij[k − 1]|ai[k]) =

1
π2(2Piσ2

n + σ4
n)

exp{− 1
2Piσ2

n + σ4
n
[(Pi + σ2

n)(|y
′
ij[k]|2 + |y′

ij[k − 1]|2)

− Piai[k](y∗
′

ij [k]y
′
ij[k − 1] + y

′
ij[k]y

∗′
ij [k − 1])])}

(38)



Network 2024, 4 325

In the log domain,

ln(p(y
′
ij[k], y

′
ij[k − 1]|ai[k]))

= ln[
1

π2(2Piσ2
n + σ4

n)
]− 1

2Piσ2
n + σ4

n
[(Pi + σ2

n)(|y
′
ij[k]|2 + |y′

ij[k − 1]|2)

− Piai[k](y∗
′

ij [k]y
′
ij[k − 1] + y

′
ij[k]y

∗′
ij [k − 1])]

(39)

Therefore, the channel LLRs in (37) can be written as follows:

L(y
′
ij[k]) = ln(p(y

′
ij[k], y

′
ij[k − 1]|ai[k] = 1))− ln(p(y

′
ij[k], y

′
ij[k − 1]|ai[k] = −1))

=
1

2Piσ2
n + σ4

n
[Pi(1 − (−1))(y∗

′
ij [k]y

′
ij[k − 1] + y

′
ij[k]y

∗′
ij [k − 1])]

=
2Pi

2Piσ2
n + σ4

n
[(y∗

′
ij [k]y

′
ij[k − 1] + y

′
ij[k]y

∗′
ij [k − 1])]

(40)

The LLR becomes

ln
p(y

′
ij[k]|y

′
ij[k − 1], xi[k] = 0)

p(y′
ij[k]|y

′
ij[k − 1], xi[k] = 1)

= ln
p(y

′
ij[k], y

′
ij[k − 1]|xi[k] = 0)

p(y′
ij[k], y′

ij[k − 1]|xi[k] = 1)

= ln
p(y

′
ij[k], y

′
ij[k − 1]|mi[k] = 0)

p(y′
ij[k], y′

ij[k − 1]|mi[k] = 1)

= ln
p(y

′
ij[k], y

′
ij[k − 1]|mi[k] = 0)p(mi[k] = 0)/p(y

′
ij[k], y

′
ij[k − 1])

p(y′
ij[k], y′

ij[k − 1]|mi[k] = 1)p(mi[k] = 1)/p(y′
ij[k], y′

ij[k − 1])

= ln
p(mi[k] = 0|y′

ij[k], y
′
ij[k − 1])

p(mi[k] = 1|y′
ij[k], y′

ij[k − 1])

(41)

Each terminal Ti knows its own information bit mi[k]; thus, when mi[k] = 0,

ln
p(y

′
ij[k]|y

′
ij[k − 1], xi[k] = 0)

p(y′
ij[k]|y

′
ij[k − 1], xi[k] = 1)

= ln
1
0
= ∞ (42)

Similarly when mi[k] = 1,

ln
p(y

′
ij[k]|y

′
ij[k − 1], xi[k] = 0)

p(y′
ij[k]|y

′
ij[k − 1], xi[k] = 1)

= ln
0
1
= −∞ (43)

Therefore, the decoder at Ti sets the channel LLR corresponding to mi[k] to the following:

L(y
′
ij[k]) =

{
∞ if mi[k] = 0
−∞ if mi[k] = 1

(44)

In the simulations, the positive infinity and negative infinity in (44) are set to 1012 and
10−12, respectively.

Next, we consider the channel LLRs for the silent relays. In our system, if a relay
detects a wrong symbol and does not transmit, the terminals will receive only noise;
hence, this sample should not be taken into account in the decoding process. This idea
is encapsulated by the notion of the erasure channel. The basic binary erasure channel
(BEC) model [23] is shown in Figure 3. The transition probabilities of BEC are given by
W(0|0) = W(1|1) = 1 − p, W(ε|0) = W(ε|1) = p, where ε is the erasure symbol. In
general, if the received signal is unreliable and hence cannot be demodulated properly,
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then the receiver declares an erasure denoted by a specific symbol, ε. In our system, an
erasure corresponds to the event that a relay remains silent and hence the terminal receives
only noise.

0 0

11

x y1 − p

1 − p

p

εp

Figure 3. BEC channel model.

Since p(yij[k] = ε|yij[k − 1], xi[k] = 0) = p(yij[k] = ε|yij[k − 1], xi[k] = 1), the corre-
sponding channel LLR is set to the following:

L(y
′
ij[k]) = ln

p(y
′
ij[k] = ε|y′

ij[k − 1], xi[k] = 0)

p(y′
ij[k] = ε|y′

ij[k − 1], xi[k] = 1)
= ln1 = 0 (45)

Hence, such a sample does not influence the decoding process.
The polar decoding process for the multi-way relaying system is summarized as

follows [57]:

a. Reversely permute the received signal vector y into y
′

based on π−1.
b. Calculate channel LLRs L(y

′
ij[k]) according to (40) and (45).

c. Perform SC or SCL decoding of polar codes to recover m̂A.
d. Obtain m̂T from m̂A using (36) implemented recursively through polar encoding.

3.4. Complexity Analysis of Polar Codes and Comparison

The encoding process of polar codes in the MWRN considered in this work is identical
to the process described in Section 2; thus, the encoding complexity is the same. For
the decoding process, each terminal first performs a reverse permutation of the received
signal vector y. The complexity of the reverse permutation is O(N). Since we use the
original SC and SCL decoders, the complexities of SC and SCL decoding in our system are
still O(NlogN) [23] and O(Lmax NlogN) [30]. For the final polar re-encoding process, we
use the recursive structure of polar encoding, which has a complexity of O(NlogN). In
summary, the total decoding complexity at each terminal is O(NlogN) for SC decoding
and O(Lmax NlogN) for SCL decoding. The complexity at each node when employing polar
codes is presented in Table 4.

Table 4. Complexity at each node when employing polar codes.

Encoding Decoding

Terminal - O(NlogN) for SC, O(Lmax NlogN) for SCL

Relay O(K) -

Next, we analyze the number of required operations at each step for polar codes with
SC decoding. The indices used for the reverse permutation are pre-stored in a table; thus,
the reverse permutation step only requires N table look-ups. Calculating one channel LLR
using (40) requires three multiplications and two additions; thus, calculating the total N
channel LLRs requires 3N multiplications and 2N additions. According to (27), each term
requires three comparisons and one multiplication, and each term in (28) requires one
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comparison and one addition. There are N/2log2N terms; hence, (27) requires N/2log2N
multiplications and 3N/2log2N additions, and (28) requires N/2log2N multiplications
and N/2log2N additions in total. The bit decision step in (26) requires N table look-ups to
check whether the bit is frozen and K LLR comparisons for the decision of information bits.
The re-encoding process consists of log2N stages. At each stage, there are N/2 additions.
The total number of operations of each step for SC decoding is summarized in Table 5. For
SCL decoding, the number of operations is related to the location of frozen bits and the
path metrics, which is about Lmax times of SC decoding.

The total number of required operations for polar codes with ML and SC decoding,
as well as LDPC codes with log-BP decoding, is summarized in Table 6. For example, a
(512, 416) polar code requires 3840 multiplications and 5632 additions to decode a code-
word using the SC technique. The (437, 361) LDPC code in [12] has dc = 20 and dv = 3.48.
When ignoring the operations in the initializations, the log-BP decoder requires 8740 multi-
plications and 42,898 additions for one iteration. This indicates that even when Imax = 1,
the total number of operations required by polar codes with SC decoding is much lower
than that of LDPC codes with log-BP decoding. The SC decoding complexity behaves as
Nlog2N, which in general, is lower than the complexities of the other two algorithms, log-
BP and ML. Therefore, the low decoding complexity of polar codes make them attractive
for MWRN applications.

Table 5. Number of operations at each step of successive cancellation (SC) decoding for the multi-way
relaying system.

Multiplication Addition Comparison Table Look-Up

Reverse permutation - - - N

Channel LLRs 3N 2N - -

(27) N/2log2N - 3N/2log2N -

(28) - N/2log2N N/2log2N -

Bit decision - - K N

Re-encoding - N/2log2N - -

Table 6. Number of operations for different decoding techniques in the multi-way relaying system.

Multiplication Addition Comparison Table Look-Up

ML 2K+1N 2K(2N − 1) 2K 2K

SC 3N + N/2log2N N(2 + log2N) 2Nlog2N + K 2N

log-BP N(3 + dc Imax) [L(2dcdv + 17dc − 24)
+N(dc − 1)]Imax + 2N

(2(3dc − 4)L + N)Imax (2(3dc − 4) + N)LImax

3.5. A Hard Threshold Technique at the Terminals

In practice, it is not possible for a terminal to know whether a relay transmits. In
ref. [12], a hard threshold method at the terminals is proposed to overcome this problem. A
terminal will consider a relay as active if the magnitude of the received signal passes the
threshold. This can be cast as a binary hypothesis testing problem on the received sample
Y at the terminal:

H1 : Y ∼ CN (0, Pi + N0),

H0 : Y ∼ CN (0, N0).
(46)

The corresponding likelihood ratio test is as follows:

Λ =
pY|H1(y|H1)

pY|H0(y|H0)

H1
≷
H0

µ (47)
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The probability of correct detection is denoted by Pd = {Λ > µ|H1}, and the probability
of a false alarm is denoted by Pf = {Λ > µ|H0}. In [58], it is shown that the threshold µ
that maximizes (Pd − Pf ) is µ = 1. Ref. [12] shows that this test becomes the following
when simplified:

|Y|
H1
≷
H0

√
(N0 +

N2
0

Pi
)ln(

Pi
N0

+ 1) ≜ ζ (48)

We consider a similar technique adapted for our MWRN with polar codes. In our
system, if the received signal from a relay does not pass the threshold ζ, then the channel
output most likely consists only of noise, indicating that the corresponding relay is silent.
Hence, in this case, the signal at the terminal is interpreted as an erasure for decoding
purposes, and the corresponding LLR L(y

′
ij[k]) is taken as in (45). The receiver algorithm

with the hard threshold for our system is presented in Figure 4.
At each terminal, comparing the received signals from all the relays with the hard

threshold requires a complexity of O(L). Hence, adding the threshold does not affect
the decoding process complexity. Therefore, when employing the threshold method, the
complexity is still O(NlogN) for SC decoding and O(Lmax NlogN) for SCL decoding at
each terminal.

No

Yes|y′
ij[k]| > ζ polar decoding

m̂A

| · |

re-encoding

π−1

x̂

y y
′

m̂K

L|y′
ij[k]| = 0

Figure 4. Receiver model of the terminals with the hard threshold.

4. Simulation Settings and Results

A performance analysis of our system with polar codes is conducted using extensive
Monte-Carlo simulations implemented in MATLAB (version 2019).

4.1. Construction of Polar Codes

For computer simulations, we use the modified Monte-Carlo method from [59] to
construct polar codes. At each designed Eb/N0, we transmit 109 all-zero codewords over a
quasi-static Rayleigh fading channel and decode the codewords with polar SC decoding.
Since polar codes are linear codes, this can be viewed as treating all bits as frozen bits.
With all-zero codewords, the encoding step can be omitted, and the decoding process is
simplified. As the decoding proceeds, if bit mi is decoded incorrectly as 1, we record an
error at bit index i and correct it to 0. Then the decoding process continues. We collect the
errors of each bit index from 1 to N at each Eb/N0, and the L bit indices with the largest
numbers of errors are selected to be the frozen bit indices. This ensures that the frozen bits
indices correspond to least-reliable bits.

4.2. Testing the SC and SCL Decoders

To verify the correct operation of the SC and SCL decoders, we first reproduce the
decoding results of [60]. That system employs a (1024, 512) polar code constructed using
frozen bit indices, as suggested for 5G [61]. The verification procedure is conducted over
AWGN channels with quadrature phase shift keying (QPSK) modulation. Each QPSK
symbol s carries two information bits. The additive noise samples are uncorrelated zero
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mean CSCG random variables with variance σ2
n . The two information bits correspond

to the symbols b1 and b2. We define sets Si(0) and Si(1) , i = 1 or 2 of QPSK symbols as
corresponding to information bits bi = 0 or bi = 1, respectively. The channel LLR for bi is
calculated as in [62]:

L(bi) = ln
p(y|bi = 0)
p(y|bi = 1)

= ln
∑s∈Si(0) e

− |y−s|2

σ2
n

∑s∈Si(1) e
− |y−s|2

σ2
n

, i = 1, 2 (49)

In Figure 5, we present the frame error rate (FER) performance of the (1024, 512) polar code
with SC and SCL decoding. Compared with the corresponding results from [60], which we
also include in Figure 5 for convenience, we see a good match. Our simulation results are
consistent with the results in [60], indicating that our implementations for the SC and SCL
decoders operate correctly.
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Figure 5. Frame error rate (FER) performance of a (1024, 512) polar code with successive cancellation
(SC) and successive cancellation list (SCL) decoders over an additive white Gaussian noise (AWGN)
channel and comparison with the results from ref. [60] (marked as [ref]).

4.3. Simulation Results for the Multi-Way Relaying System

We consider four different cases based on the terminals’ knowledge of the relays’
transmission: (a) the ideal case when all relays transmit; (b) the case when the terminals
do not know which relay transmits (case 1); (c) the case when the terminals know which
relay transmits (case 2); (d) the case when the terminals do not know which relay transmits,
but they use the hard threshold method. In (a), all the terminal–relay transmissions are
perfect, and the relays detect all the signals correctly and hence transmit continuously. In
(b), although some relays remain silent, the terminals assume the relays always transmit,
and all channel LLRs are calculated using (40). In (c), the terminals know which relays
transmit and modify all the channel LLRs corresponding to the relays that do not transmit
based on (45). In (d), the terminals employ the hard threshold technique to modify the
channel LLRs corresponding to the relay signals that do not pass the threshold.



Network 2024, 4 330

In this work, we consider equal power allocation to all nodes and hence assume unity
transmission power P = 1 in all simulations. For each bit error rate (BER) point, we
simulate at least 1000 randomly generated codewords with independent channel fading
realizations and collect at least 500 bit errors. The list size for SCL decoding is set to
Lmax = 8. The bit energy Eb is related to the transmission power through the following:

Eb = P · N
K

(50)

The BER performance of a system with five terminals and three relays employing
a (8, 5) polar code with SC decoding is shown in Figure 6. The performance results for
uncoded DBPSK transmission over a Rayleigh fading channel and a polar code with ML
decoding are also included as references. We see that SC decoding achieves the same
diversity order as ML decoding. When all the relays transmit, the error performance of SC
decoding is very close to the performance of ML decoding. In the non-ideal case 1, we see
that SC decoding provides a small advantage over ML decoding, showing that it enjoys
a robustness to intermittent relay transmissions. At a BER of 10−5, the performance gap
between SC and ML decoding in case 1 is about 0.8 dB. For case 2, when the terminals
know which relays transmit, the performance of ML and SC decoding becomes essentially
the same. In summary, the error performance of polar codes with SC decoding is very
close to ML decoding for short polar codes. The performance with SCL decoding for our
multi-way relaying system with such short polar codes is essentially the same as with SC
decoding; hence, we do not include these results. We will see that with longer polar codes,
SCL decoding provides performance advantages over SC decoding.
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Figure 6. Bit error rate (BER) performance of a (8, 5) polar code with the successive cancellation (SC)
and maximum likelihood (ML) decoders.

The BER performance of three longer polar codes with a rate of 0.8125, when used in
our multi-way relaying system with all relays transmitting, is shown in Figure 7. All the
codes have a significant performance gain compared to the uncoded scheme. At a BER of
10−5, with SC decoding, the (512, 416) code has a performance gain of 2.5 dB compared
to the (128, 104) code. With SCL decoding, the performance gain increases to 4 dB. This
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suggests that a longer polar code can provide better error performance in our muli-way
relaying system. Furthermore, when comparing SC decoding with SCL decoding, for
the same code, we see a significant advantage of the later in the form of coding gains
in the range of 1.5–3 dB. It is to be noted that the multi-way relaying system employing
the (512, 416) code can support 416 users, and the one employing the (128, 104) code
can support 104 users. This indicates the ability of the multi-way relaying system using
polar codes to support a large number of users, similar to the system in ref. [12] that uses
LDPC codes.
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Figure 7. Bit error rate (BER) performance of three long polar codes when all relays transmit.

The BER performance of a (512, 416) polar code with SC and SCL decoding is il-
lustrated in Figure 8 and Figure 9, respectively. Compared to the (8, 5) polar code, the
(512, 416) polar code provides a more significant performance gain with both decoding
methods over the uncoded scheme in all cases. The SCL decoding method has a better
performance of about 2 dB to achieve a BER of 10−6 in all four cases compared to SC
decoding. The results when the thresholding technique is employed at user terminals
are also included in Figures 8 and 9. It is seen that with the thresholding technique, the
performance loss with respect to case 2 is reduced from 4 dB to about 1.7 B at a BER of 10−6,
demonstrating the effectiveness of this practical approach.

The required Eb/N0 to achieve a BER of 10−6 for the (512, 416) polar code is presented
in Table 7. This table also presents similar results for various LDPC codes employing log-BP
decoding from [12]. The (437, 361) LDPC code is constructed using the method given
in ref. [63]. All the codes have comparable codeword lengths and rates equal or higher
than 0.8. In the ideal case when all the relays transmit, the (512, 416) polar code with SCL
decoding can achieve a better performance than the two LDPC codes with log-BP decoding.
This illustrates the effectiveness of polar codes with SCL decoding for our system when
all relays transmit. In the other three non-ideal cases, the polar code with SCL decoding
also achieves a performance gain of about 2 dB compared to the (480, 400) LDPC code. In
these cases, the BER performance with SC decoding is better than or comparable to the
(480, 400) LDPC code. However, the polar code with SCL decoding has a performance loss
of about 1.6 dB compared to the (437, 361) LDPC code in these three cases. This is because
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the relays of the polar code system have larger relevant group sizes. The average relevant
group size of the relays in the (512, 416) polar code system is 69, while the average group
size is only 19 for the (437, 361) LDPC code system. With a larger relevant group, for the
same Eb/N0, the relays have a higher probability of detecting a wrong symbol and hence
remain silent. This explains the performance degradation of polar codes in non-ideal cases
when compared to LDPC codes with a smaller average group size. Although there is a
small performance gap between the polar codes and some LDPC codes, the low decoding
complexity analyzed in Section 3 makes polar codes competitive for application in our
system. A specific construction method for polar codes that also takes into account the
relays’ average group sizes could result in even better performance.

Table 7. Required Eb/N0 to achieve a BER of 10−6 for polar and low-density parity check
(LDPC) codes.

Rate All Relay Case 2 Add Threshold Case 1

(512, 416) polar, SC 0.8125 17.1 dB 24 dB 25.4 dB 28.3 dB

(512, 416) polar, SCL 0.8125 14.7 dB 22 dB 23.8 dB 26 dB

(480, 400) LDPC 0.8 15.3 dB 22.8 dB 26 dB 28.2 dB

(437, 361) LDPC 0.826 15.2 dB 20.4 dB 22.1 dB 24.5 dB
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Figure 8. Bit error rate (BER) performance of a (512, 416) polar code with successive cancellation
(SC) decoding.

It was observed in [35] that systematic polar codes have a better BER performance
compared to non-systematic polar codes. To test the effects of systematic polar encoding in
our multi-way relaying system, we first generate the information bits of polar codes mA,
then the terminal bits mT are obtained from (36). The BER performance of m̂A and m̂T for
the (512, 416) polar code with SC decoding is presented in Figure 10, and the performance
with SCL decoding is presented in Figure 11. The curves corresponding to m̂T and m̂A
are marked with “Ter.” and “polar”, respectively. In all cases, m̂T results in a better error
performance compared to m̂A. The performance advantage of using systematic codes over
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equivalent non-systematic codes is in the range of 0.8–1.5 dB. This indicates that our system
maintains the performance advantages of systematic encoding for polar codes.
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Figure 9. Bit error rate (BER) performance of a (512, 416) polar code with successive cancellation list
(SCL) decoding.
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Figure 11. Bit error rate (BER) comparison of m̂T and m̂A of a (512, 416) polar code with successive
cancellation list (SCL) decoding.

5. Conclusions

This paper considers polar codes with DBPSK when used as network codes in multi-
way relaying. The use of DBPSK bypasses the need for channel estimation at the receiver
side in such systems. This system can be viewed as a systematic linear block code. We
present a methodology of using equivalent systematic polar encoding in this system, as
well as the the SC and SCL decoding algorithms. Furthermore, this paper also considers the
encoding and decoding complexities of the system for linear block codes with ML decoding,
LDPC codes with log-BP decoding, and polar codes with SC and SCL decoding. It is shown
that polar codes with SC or SCL decoding have a much lower complexity than LDPC codes
with log-BP decoding, making them attractive for practical multi-way relaying. We use
computer simulations to assess the error rate performance of multi-way relaying employing
polar codes with different code lengths and rates. Monte-Carlo simulation results indicate
that the system employing polar codes has a significant performance gain compared to
an uncoded scheme. For short polar codes, SC and SCL decoding can achieve an error
performance that is close to ML decoding. For longer polar codes, the error performance is
comparable to LDPC codes with log-BP decoding. For practical applications, we consider
a hard threshold technique at the terminals to determine whether a relay transmits. This
technique can efficiently reduce the performance loss with respect to the ideal case when
a terminal knows when a relay transmits with SC and SCL decoding. When compared
with the use of LDPC codes in a multi-way relaying system employing log-BP decoding,
polar codes provide similar performance gains. In some cases when the LDPC codes have
relevant groups of terminals of small sizes, and hence are more suitable for multi-way
relaying, polar codes show a small performance loss of about 1.7 dB in practical cases.
Notice that the polar codes we considered in this paper are standard and not specifically
designed for multi-way relaying. It is expected that polar codes that are specifically
designed for multi-way relaying could provide further performance gains; hence, this topic
is of considerable interest for further research. In particular, multi-kernel polar codes offer
extra flexibility that could be very appealing for multi-way relaying applications. Even with
the standard binary polar codes we used in this work, the advantages of low-complexity
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decoding offset the small losses and make polar codes a practical coding technique for
multi-way relaying, which is competitive to LDPC codes. While we consider polar codes in
this paper, the technique of using a systematic equivalent code for transmission and then
a corresponding non-systematic code with structural features that allows for simplified
decoding for information retrieval can be used with any linear block code. This method
increases the class size of linear block codes that can be used as network codes in multi-way
relaying to also include non-systematic codes.
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