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Abstract: Sequential decision-making in dynamic and interconnected environments is a
cornerstone of numerous applications, ranging from communication networks and finance
to distributed blockchain systems and IoT frameworks. The multi-armed bandit (MAB)
problem is a fundamental model in this domain that traditionally assumes independent
and identically distributed (iid) rewards, which limits its effectiveness in capturing the
inherent dependencies and state dynamics present in some real-world scenarios. In this
paper, we lay a theoretical framework for a modified MAB model in which each arm’s
reward is generated by a hidden Markov process. In our model, each arm undergoes
Markov state transitions independent of play in a way that results in varying reward
distributions and heightened uncertainty in reward observations. The number of states for
each arm can be up to three states. A key challenge arises from the fact that the underlying
states governing each arm’s rewards remain hidden at the time of selection. To address
this, we adapt traditional index-based policies and develop a modified index approach
tailored to accommodate Markovian transitions and enhance selection efficiency for our
model. Our proposed proposed Markovian Upper Confidence Bound (MC-UCB) policy
achieves logarithmic regret. Comparative analysis with the classical UCB algorithm reveals
that MC-UCB consistently achieves approximately a 15% reduction in cumulative regret.
This work provides significant theoretical insights and lays a robust foundation for future
research aimed at optimizing decision-making processes in complex, networked systems
with hidden state dependencies.

Keywords: dynamic distributions; learning theory; Markov chain; multi-armed bandit

1. Introduction
Decision-making in environments with network-like dependencies presents a fun-

damental challenge across various fields, including communication networks, finance,
and complex distributed systems [1–4]. In such environments, a decision-maker faces
interconnected structures where actions taken on one element may influence the states
or rewards of others, thereby creating dynamic dependencies reminiscent of those found
in networked systems. Examples of such networks can be found in resource allocation
across multiple communication channels in IoT (Internet of Things) sensor networks [5],
throughput optimization in distributed blockchain ecosystems [6], adaptive QoS (Quality
of Service) management in communication networks [7], and security or intrusion detec-
tion frameworks in large-scale system administration scenarios [8]. In these contexts, the
multi-armed bandit (MAB) problem, where a player repeatedly selects among multiple
uncertain options (arms), becomes more intricate due to underlying and often hidden state
transitions that evolve over time.
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The original classical MAB formulation, introduced by Robbins [9,10], assumes that
each arm’s reward distribution remains fixed and independent over time. However, in
networked scenarios, these assumptions rarely hold: the reward distributions may shift
due to underlying Markovian state transitions that are hidden from the decision-maker [11].
Arms in such a scenario can represent network nodes, communication links, or distributed
resources whose performance and reliability evolve with time. The agent must continually
learn and adapt, taking into account latent transitions that are reminiscent of evolving
network conditions.

In this paper, we lay a theoretical framework for a modified MAB model in which each
arm’s reward is generated by a hidden Markov process. This approach models the type of
network-like dependencies found, for example, in dynamic IoT sensor networks—where
channel conditions and sensor states change stochastically and are not directly observable,
yet these state changes critically affect the rewards (e.g., reliable data transmission or
efficient resource utilization). Each arm in our model can transition among up to three
states, each associated with a different reward distribution, regardless of whether the
arm is played. The result is a problem setting that demands sophisticated exploration–
exploitation strategies that identify the best arms under evolving conditions and also cope
with underlying dynamics that reflect network interdependencies.

In this context, we evaluate the decision-maker’s performance using the concept of
regret, a metric that captures the cost of uncertainty in networked decision-making en-
vironments. Regret is defined as the difference between the expected reward an ideal
policy—one with complete knowledge of all arm statistics or hindsight advantage—would
achieve, and the reward achieved by the decision-maker’s actual strategy. An ideal policy
would consistently select the arm yielding the highest expected reward over time. This
concept, commonly referred to as weak regret, is a central performance measure in uncer-
tain decision problems, as highlighted by Auer et al. [12]. Our study focuses on regret,
particularly within interconnected, network-like settings.

MAB problems with Markovian rewards significantly heighten complexity due to
dynamic dependencies that reflect networked interactions. Here, each arm is modeled as
a Markov process with a finite set of states, each linked to a unique reward distribution.
The transition between states follows a known probability matrix, introducing a memory
element into the decision process where rewards depend not only on the current choice but
also on the hidden state of each arm [13–16]. This Markovian structure effectively simulates
a network in which states and rewards are dynamically interdependent over time.

The state transitions are determined by predefined probabilities, yet the exact state of
each arm remains hidden. This creates a layer of opacity similar to unobserved interactions
in networked systems [17–19]. Consequently, the player must infer each arm’s state from the
history of observed rewards. This amplifies the challenge of the exploration–exploitation
trade-off. The decision-maker faces a networked challenge: to exploit high-reward arms
based on historical performance or to explore underused arms to reveal potential reward
structures. Figure 1 illustrates an example of the problem and highlights the network-like
dependencies across arms.
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Figure 1. A sample example of two-arms of a multi-armed bandit. The first arm has two states and
the second arm has one state.

A core challenge in this interconnected framework is to develop strategies that ef-
fectively balance immediate rewards with potential future gains that could arise from
transitioning into more advantageous states [20,21]. This networked trade-off between
short-term exploitation and long-term exploration is not purely theoretical or network-
related; it mirrors complex, real-world decision-making environments such as financial
portfolio management or adaptive clinical trials where treatments impact outcomes over
time [22–25].

In this work, we address these challenges by introducing a novel theoretical approach
to the MAB problem with Markovian dynamics and network-like dependencies where
each arm has up to three possible states. We adapt traditional index policies to account for
the intricate structure of state transitions. Our focus is on refining these policies to achieve
robust performance by attaining logarithmic regret even within the complex networked
dynamics of hidden state transitions. We further compare our modified index-based
policies with the classic upper confidence bound (UCB) algorithm. This study thus sets the
stage for a deeper understanding of decision strategies within networked environments
involving uncertainty and dynamic dependencies.

1.1. Main Findings

This paper makes the following theoretical contributions:

• We demonstrate that for each arm, represented as an irreducible, finite-state, aperiodic,
and reversible three-state Markov chain, simple sample mean-based index policies
can achieve logarithmic regret uniformly over time, even in interconnected settings
resembling networked dependencies.

• We simplify the analysis of state transition probabilities by modeling the arms as
Markov chains with identical rewards that capture basic network-like structures in
which transitions are dependent on state dynamics.

• We present a numerical comparison of the regret incurred by our sample mean-based
index policy and evaluate its performance relative to other policies.

1.2. Application Context and Conceptual Validation in Network-like Scenarios

While our primary contribution is theoretical, it is helpful to illustrate how this frame-
work can be built on to conceptually extend to real network scenarios. Consider, for
example, the following contexts:

• Security [26]: Arms may represent intrusion detection strategies whose efficacy varies
as an adversary’s tactics evolve over time. Each state transition corresponds to a
shift in the threat environment. Our Markovian MAB framework can guide strategic
decisions to maintain robust defense while learning dynamically about evolving
threats.

• Distributed Blockchain Systems [27]: Nodes or shards in a blockchain network might
yield variable validation rewards depending on their state of congestion or consensus
participation. The Markovian structure models the dynamic nature of node availability
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and network conditions in a way that would help a node operator choose where to
allocate resources or which shard to support over time.

• QoS in Communication Networks [7]: Network links may fluctuate between high-
quality, moderate, and poor states due to changing traffic patterns. By representing
each link as a Markovian arm, our framework can assist in selecting the best channel
at any given time in order to balance the exploration of uncertain but potentially
high-quality links with the exploitation of known reliable ones.

• IoT and System Administration [28]: IoT nodes or servers can transition between
states that reflect varying processing loads or energy conditions. The Markovian MAB
model helps a controller decide which node to query or utilize for computations,
thereby maximizing long-term performance.

In sum, while this work is focused on the theoretical aspects and fundamental results
for up to three states, it offers a roadmap for future empirical explorations and practical
implementations. The stylized simulation experiments that we show later serve as a
preliminary demonstration and show that the theoretical principles hold in a controlled
synthetic environment, thus setting the stage for subsequent research aiming at more
comprehensive benchmarking in real-world network contexts.

The remainder of the paper is structured as follows. Section 2 gives the related
work. Section 3 presents the preliminaries. Section 4 shows the problem formulation. The
index policy and its regret analysis are given in Section 5. Section 6 shows our numerical
simulation results, and finally, Section 7 concludes the paper.

2. Related Work
The literature on the MAB problem is vast and has evolved considerably from the

original formulations focusing on independent and identically distributed (iid) reward
processes. Early seminal work by Robbins and Lai [9,10] established foundations for the
iid case for certain known environments. Over time, researchers have explored a broad
spectrum of MAB extensions that incorporate various forms of structure and dynamics. No-
tably, Markovian reward processes represent a key generalization and enable the modeling
of scenarios where arm states—and thus rewards—evolve with memory and dependence
on previous states.

Early explorations into Markovian bandits can be found in the work of
Anantharam et al. [29], which analyzed index policies effective for arms governed by
irreducible, finite-state, aperiodic Markov chains. Their approach demonstrated how arms
with state-dependent rewards could still be tackled through index strategies that generalize
the Gittins index concept [30]. While these studies set important precedents for handling
Markovian structures, they often made simplifying assumptions, such as a single-parameter
transition function or identical state spaces across arms. In contrast, our framework does
not presume a single-parameter form for transition probabilities, nor does it require identi-
cal state spaces. By allowing each arm to transition among up to three states under distinct
probability kernels, we offer a more flexible setting that can model diverse types of network
dependencies.

Building upon this foundation, research has examined the problem of achieving
low regret under more general conditions. Agrawal [31] and Auer et al. [32] established
classical logarithmic regret results for iid settings. Their contributions included index and
UCB-based strategies that guarantee optimal asymptotic and even uniformly logarithmic
performance over time. They rely heavily on the iid assumption and do not directly
address the complexities introduced by state transitions or network-like interdependencies.
More recent works have begun to relax these assumptions. For instance, Garivier and
Moulines [33] and Besbes et al. [34] considered bandit problems with non-stationary reward
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distributions in a way that captures some aspects of temporal dynamics without fully
embracing Markovian state dependence. Such approaches typically rely on “resetting”
or “sliding-window” techniques that do not directly exploit known Markovian transition
structures.

In parallel, other authors have studied scenarios where multiple users or decision-
makers interact with the same set of arms in network settings, leading to complex dynamics
and collisions among players [35–37]. Here, the challenge lies in coordinating multiple
agents to minimize interference and collectively achieve low regret. While such multi-player
frameworks mirror network complexity, their primary focus is on handling concurrency
and competition rather than modeling state evolution within each arm. Our approach
differs by focusing explicitly on Markovian transitions at the arm level rather than strategic
interactions among multiple decision-makers.

The distinction between rested and restless bandits further highlights the complexity
in Markovian settings. In classical rested bandits, the state of an unplayed arm remains
frozen until chosen again, as examined in works like those of Ortner [38] and Raj and
Kalyani [39]. However, in restless bandits, arm states evolve regardless of selection, making
the problem significantly more complex. The restless bandits formualation has explored
structural results and approximation algorithms for special cases [11,40]. Our framework
takes a step forward by considering a setting in which all arms transition at every round,
falling somewhere between the fully rested and fully restless extremes, and by establishing
logarithmic regret bounds in this intermediate regime.

Compared to the closely related studies such as [15,29], our work introduces a novel
solution. For instance, Tekin et al. [15] restrict attention to two-state arms with transitions
occurring only when the arm is played, which simplifies the analysis but limits applicability.
In [29], the reward-generating process is governed by a single parameter and identical state
spaces across all arms. In contrast, our model allows each arm to have distinct state spaces
and transition matrices, and does not rely on a single-parameter structure. We also require
that the reward process be reversible, a mild assumption that enables cleaner theoretical
analysis. The indices we derive rely on sample means rather than complicated recursive
computations, and yield uniform logarithmic regret bounds rather than merely asymptotic
guarantees.

Lastly, recent theoretical studies on bandits with structure—such as Liu et al. [41],
who considered bandits with feedback graphs, or Chen et al. [42], who looked at dynamic
networked scenarios—point to a growing interest in incorporating more nuanced depen-
dencies into MAB models. Our results add to this literature by providing a more direct
handle on Markovian state transitions within a theoretically grounded bandit framework.

In sum, our work occupies a unique position at the intersection of Markovian bandits,
structured bandit problems, and theoretical analyses that strive for uniform logarithmic
regret. While prior research established important groundwork in various specialized
settings, we advance the state of the art by offering a flexible, three-state Markovian model,
clear conditions for reversibility, and efficient index-based strategies that can be analyzed
rigorously. This sets the stage for future studies aiming to extend these techniques to an
even broader range of network-like environments and more complex state spaces.

3. Preliminaries
This section provides an introduction to essential concepts that form the foundation

for our study of MABs with Markovian rewards, particularly in environments where
network-like dependencies may influence state transitions. We begin by discussing Markov
processes, which are essential for understanding the dynamic and interconnected nature of
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our model, and proceed to explore fundamental aspects of MAB problems with a focus on
the complexities introduced by Markovian reward structures.

3.1. Markov Processes

A Markov process is a stochastic model that describes a sequence of possible events
where the probability of each event depends only on the state attained in the previous
event. In the context of Markov processes, the future is independent of the past given the
present. This property, known as the Markov property, is central to our analysis of bandit
arms as Markov chains, which can exhibit dependencies across states that reflect networked
interactions over time.

For a given Markov process, we define a state space X that contains all possible states
the process can occupy. The transitions between these states are governed by probabilities
defined in a transition matrix P, where each entry Puv represents the probability of moving
from state u to state v. This matrix is fundamental for predicting and understanding the
behavior of interconnected systems over time.

3.2. Markov Decision Processes in Bandit Problems

In MABs, a Markov Decision Process (MDP) provides a framework for decision-
making where transitions between states are determined not only by the current state but
also by the action taken by the decision-maker. Each action in an MDP results in a reward
and a transition to the next state where each arm pull can be viewed as an action within a
potentially networked system of state dependencies.

In a typical MAB problem with Markovian rewards, each arm represents an indepen-
dent Markov process. The player’s objective is to maximize cumulative rewards over a
sequence of arm pulls. The decision of which arm to pull involves evaluating the current
state of each arm and estimating potential rewards based on state transition probabilities,
akin to navigating networked dependencies where each choice impacts future outcomes in
interconnected states.

3.3. Exploration vs. Exploitation in Markovian Bandits

A key challenge in MAB problems is the trade-off between exploration and exploita-
tion. This dilemma is more pronounced in Markovian bandits due to the changing state
of each arm. Exploration involves pulling less-understood arms to gain more information
about their reward distributions and state transitions. Exploitation means choosing arms
that are currently known to offer higher rewards based on accumulated knowledge.

Balancing these strategies is crucial for achieving optimal performance, especially
when the bandit arms exhibit state-dependent rewards that evolve according to Markov
dynamics. The player must not only consider immediate rewards but also the potential
future benefits of being in favorable states.

The concepts introduced in this section provide the necessary background to appreciate
the complexities involved in our study of MABs with Markovian rewards. Understanding
these principles is essential for developing effective strategies and algorithms to tackle the
dynamic and probabilistic nature of the problem.

4. Problem Formulation
We consider a scenario comprising K distinct arms, each labeled by an index i ∈

{1, 2, . . . , K}. Each arm i is represented as an irreducible Markov chain with a finite state
space denoted by X (i). The transition kernel of arm i is known and is described by a
probability matrix P(i) = {p(i)uv : u, v ∈ X (i)}. Every state u of arm i yields a stationary
and strictly positive reward r(i)u . We assume that the K Markov chains (one per arm) are
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mutually independent. Let ϕ(i) = {ϕ(i)
u : u ∈ X (i)} be the stationary distribution of the ith

arm. The mean reward of arm i, denoted by νi, can then be expressed as

νi = ∑
u∈X (i)

r(i)u ϕ
(i)
u (1)

The arm with the largest mean reward is indicated by a superscript ⋆, so that ν⋆ =

max1≤i≤K νi. We define the regret of a policy α after n steps, Rα(n), as the difference
between the expected cumulative reward that would be obtained by always selecting
the best arm and the actual expected cumulative reward gathered under policy α. If α(t)
denotes the arm chosen by α at time t and xα(t) the state visited by that arm at time t,
we have

Rα(n) = nν⋆ − Eα

[ n

∑
t=1

r(α(t))xα(t)

]
(2)

In principle, if one always knew which arm has the highest mean reward, playing that
arm indefinitely would constitute the optimal single-arm selection strategy. Nonetheless,
this does not necessarily identify the best policy among all possible stationary and non-
stationary policies if the entire statistical structure of the arms were fully known. In the
broader scenario over an infinite horizon, the optimal policy is characterized by the Gittins
index, as introduced by Gittins [30]. If each arm’s rewards were iid, then the optimal
solution over all admissible policies would simply be to consistently choose the best single-
action arm. In our work here, we limit our comparison of performance to this single-action
benchmark.

To investigate policies that minimize regret, we employ a series of preliminary results
to relate the regret Rα(n) to the expected number of times suboptimal arms are played. For
a given policy α, let Mα,i(t) represent the total number of times arm i is pulled up to time t.
Understanding the connection between regret and Eα[Mα,i(n)] proves critical.

We invoke the following lemma to establish a key relationship. We adapt and modify
its proof here for completeness:

Lemma 1 (Adapted from Lemma 2.1 in [29]). Consider a Markov chain Y that is irreducible,
aperiodic, and has a finite state space S. Its transitions are governed by a probability matrix P, and
it begins with an initial distribution in which all states have strictly positive probability. Let Ft be
the σ-algebra generated by the sequence of states X1, X2, . . . , Xt, where Xt is the state at time t.
Suppose G is a σ-algebra independent of F = ∨t≥1Ft. Consider a stopping time τ with respect to
the sequence of σ-algebras {G ∨ Ft : t ≥ 1}. Define the visitation count of a particular state x ∈ S
up to time τ by

N(x, τ) =
τ

∑
t=1

I(Xt = x).

If E[τ] is finite, then there exists a constant D(P) (depending solely on P) such that

D(P) ≥
∣∣ϕxE[τ]− E[N(x, τ)]

∣∣ (3)

where ϕ = {ϕx : x ∈ S} is the stationary distribution of the chain.

Proof of Lemma 1. Consider the sequence of regeneration times {τk : k ≥ 0} defined by

τ0 = 0,

τk = min{t > τk−1 | Xt = X1}, ∀k ∈ N
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Given the chain’s irreducibility, we assert that τk < ∞ for every k. Let Bk be the kth
“block” of the chain:

Bk = (Xτk−1+1, Xτk−1+2, . . . , Xτk−1).

By the regenerative property of Markov chains, the blocks Bk are iid. The expected number
of visits to x in a typical block is E[N(x, B1)] = ϕxE[l(B1)], where l(B1) is the length of the
block B1.

Define T as the first return time to X1 after time τ:

T = min{t > τ | Xt = X1} = τκ

for some κ. Note that T − τ is also finite in expectation due to irreducibility. Applying
Wald’s identity,

E
[T−1

∑
t=1

I(Xt = x)
]
= E[κ]E[N(x, B1)] = ϕxE[l(B1)]E[κ].

Similarly,
E(T − 1) = E[κ]E[l(B1)].

Because E(T − τ) ≤ D(P) for some constant D(P), we have for any x ∈ S

N(x, T)− (T − τ) ≤ N(x, τ) < N(x, T),

ϕxE(T − 1)− D(P) ≤ E[N(x, τ)] ≤ ϕxE(T − 1) + 1,

ϕxE[τ]− D(P) ≤ E[N(x, τ)] ≤ ϕxE[τ] + D(P),

|E[N(x, τ)]− ϕxE[τ]| ≤ D(P).

Thus, we have shown the stated bound, completing the proof.

Next, we relate the regret Rα(n) to Eα[Mα,i(n)], the expected count of plays of each
arm i up to time n.

Lemma 2. Under the conditions of Lemma 1, consider any strategy α that ensures the average
time between successive pulls of any given arm remains bounded. Then, there exists a constant
D(X ,P ,R)—depending on the sets {X (i)}, the probability matrices {P(i)}, and the reward
structures {r(i)u }—such that

Rα(n) ≤
K

∑
i=1

(ν⋆ − νi)Eα[Mα,i(n)] + D(X ,P ,R). (4)

Proof of Lemma 2. For each arm i, let Hi =
∨

j ̸=i F(j) be the σ-algebra generated by the
observations of all arms except arm i. Since the arms are independent, Hi is independent of
F(i), the filtration associated with arm i. Note that Mα,i(n) is a stopping time with respect
to {Hi ∨ F(i)

t : t ≥ 1}.
Denote by {X(i)(1), X(i)(2), . . . , X(i)(Mα,i(n))} the sequence of states visited by arm i

within the first n steps of the policy α. The total collected reward up to time n is

n

∑
t=1

r(α(t))xα(t)
=

K

∑
i=1

Mα,i(n)

∑
j=1

∑
v∈X (i)

r(i)v I(X(i)(j) = v).
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By definition of regret,

Rα(n) = nν⋆ − Eα

[
n

∑
t=1

r(α(t))xα(t)

]
.

Rewriting and employing linearity of expectation,

Rα(n) = nν⋆ −
K

∑
i=1

νiEα[Mα,i(n)]

+ Eα

[
K

∑
i=1

Mα,i(n)

∑
j=1

∑
v∈X (i)

r(i)v I(X(i)(j) = v)

]

−
K

∑
i=1

∑
v∈X (i)

r(i)v ϕ
(i)
v Eα[Mα,i(n)].

Since |E[N(v, Mα,i(n))] − ϕ
(i)
v Eα[Mα,i(n)]| ≤ D(P(i)) by Lemma 1 (applied to each

arm’s Markov chain), we have

Rα(n) ≤
K

∑
i=1

∑
v∈X (i)

D(P(i))r(i)v .

This upper bound depends on all the arms’ state spaces, transition laws, and reward
distributions. We thus denote this cumulative constant by D(X ,P ,R), concluding the
proof.

In essence, Lemma 2 states that the regret of any policy can be bounded by a term
that sums, over all arms, the product of their respective expected selection counts and
their suboptimality gap (ν⋆ − νi), plus a constant. This insight lays the groundwork for
subsequent analysis and the development of regret-minimizing strategies.

5. A Solution to the Problem with Bounded Regret
In this section, we explore a sample-based index policy, which is a UCB-type policy,

modified from the one introduced by [32]. This approach is adapted to our setting, where
each arm evolves according to a Markovian state process. Algorithm 1 shows the policy,
which we call the Markovian UCB (MC-UCB) policy.

Let r(i)(m) denote the m-th observed reward from arm i and Mi(n) the number of
times arm i has been selected up to (and including) time n. We define the empirical mean
reward for arm i after n steps as

r(i)(Mi(n)) =
r(i)(1) + r(i)(2) + · · ·+ r(i)(Mi(n))

Mi(n)
.

At each time step, the policy assigns an index to each arm. For arm i at step n, this
index is denoted by h(i)n,Mi(n). The arm chosen at time n is the one with the highest index.

The index is computed as follows. Initially, each arm is played exactly once. Every
time an arm is played, its empirical mean r(i)(·) is updated and forms the first component
of the index. For arms that are not played, the uncertainty regarding their true mean reward
increases, captured by an exploration term added to the index. The resulting index at time
n for arm i is of the form

h(i)n,Mi(n) = r(i)(Mi(n)) +

√
α ln n
Mi(n)

.
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where the constant α is set to 2, similar to the standard UCB policy [32].

Algorithm 1 Markovian UCB (MC-UCB)

Require: Number of arms K, horizon T, and known transition kernels {p(i)uv : u, v ∈
X (i) for each i}.
Ensure: Sequence of selected arms {a1, a2, . . . , aT}.
Initialization: t← 1.
1: while t ≤ K do
2: Select arm at = t.
3: t← t + 1.
4: while t ≤ T do
5: for each arm i ∈ {1, 2, . . . , K} do

6: Calculate r̄(i)(Mi(t)) = r(i)(1)+r(i)(2)+...+r(i)(Mi(t))
Mi(t) .

7: Select arm at = arg maxi{r̄(i)(Mi(t)) +
√

α ln t
Mi(t)}.

8: t← t + 1.
9: return {a1, a2, . . . , aT}.

The proposed MC-UCB algorithm demonstrates favorable scalability with respect
to both the number of arms K and the number of states per arm. At each time step, the
algorithm performs a straightforward computation of the empirical mean reward for each
arm, which can be efficiently maintained using incremental updating formulas. Specifically,
instead of storing all past rewards, the algorithm only requires maintaining a running sum
and count of rewards for each arm; thereby, it ensures constant time and space complexity
per arm. Consequently, the overall computational complexity per round scales linearly
with the number of arms, i.e., O(K), which makes it highly efficient even as K grows.

Moreover, since each arm is modeled with a finite and small number of states (up
to three in our theoretical framework), the state transition management incurs minimal
overhead. The known transition probabilities allow for precomputing stationary distri-
butions, which can be utilized to optimize the index calculations without necessitating
real-time state inference. This precomputation further reduces the computational burden
during the decision-making process. However, it is important to acknowledge that ex-
tending the model to accommodate a significantly larger number of states or unknown
transition probabilities would introduce additional complexity. Future work could explore
approximate methods or hierarchical indexing strategies to mitigate potential inefficiencies
in such scenarios. Nonetheless, within the current scope of three-state arms, the MC-UCB
algorithm remains computationally tractable and well suited for possible applications that
require rapid and scalable decision-making.

Below, we will show that the expected regret of this index policy grows at most on the
order of ln(n). To establish this, we will upper-bound the expected frequency with which
any suboptimal arm (those with mean reward smaller than ν⋆) is chosen. A crucial tool
for this analysis is a lemma from Gillman [43], which provides a bound on the probability
that the empirical frequency of visits to a subset of states deviates significantly from its
stationary distribution.

Lemma 3 (Based on Theorem 2.1 in [43]). Consider a reversible, irreducible, aperiodic Markov
chain with a finite state space X and transition matrix P. Let q be an initial distribution, and define
Nq =

∥∥(qx/ϕx, x ∈ X )
∥∥

2. Let λ2 be the second largest eigenvalue of P and define ϵ = 1− λ2.
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For a subset of states W ⊆ X , define ϕW = ∑x∈W ϕx and let tW(n) be the count of visits to W up
to time n. Then, for any β ≥ 0,

P
(
tW(n)− nϕW ≥ β

)
≤ (1 + βϵ/(10n))Nqe

(
− β2ϵ

20n

)
. (5)

Proof of Lemma 3. The proof can be directly derived from Theorem 2.1 in [43].

We now proceed to the main theorem for our policy. The proof utilizes techniques
analogous to those in [32] to derive logarithmic regret bounds for the MC-UCB policy.

Theorem 1. Consider K arms, each arm i being modeled as a finite-state, irreducible, aperiodic, and
reversible Markov chain with a state space X (i). All rewards ri

x are strictly positive. Let

ϕmin = min
1≤i≤K,x∈X (i)

ϕi
x, rmax = max

1≤i≤K,x∈X (i)
ri

x, rmin = min
1≤i≤K,x∈X (i)

ri
x,

Xmax = max
1≤i≤K

|X (i)|, ϵmax = max
1≤i≤K

ϵi, ϵmin = min
1≤i≤K

ϵi.

Define the constant α ≥ 100X2
maxr2

max/ϵmin. Then, the upper bound on the regret R(n) of the
UCB policy is

R(n) ≤ 5α ∑
i:νi<ν∗

ln n
ν∗ − νi + ∑

i:νi<ν∗
(ν∗ − νi)Ci

+ D(S ,P ,R) (6)

where
Ci = (Di + D∗) β + 1,

Di =
|X (i)|
ϕmin

(
1 +

ϵmax
√

α

12|X (i)|rmin

)
,

β =
∞

∑
t=1

1
t2 = π2/6.

Proof of Theorem 1. We analyze the performance of the UCB strategy with a parameter β

dictating the magnitude of the confidence intervals. Unless noted otherwise, the notation
omits superscripts related to the policy for brevity. For each arm i, let r̄i(Mi(n)) denote the
empirical mean reward after Mi(n) plays. Define

ct,s =

√
β ln t

s

to represent the confidence width. Let m be a positive integer. The number of times arm i is
selected up to time n is

Mi(n) = 1 +
n

∑
t=K+1

I(β(t) = i).

We bound this as follows:

Mi(n) =
n

∑
t=K+1

I(β(t) = i) + 1

≤ m +
n

∑
t=K+1

I(β(t) = i, Mi(t− 1) ≥ m).
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Define the event δi(t, m) by the inequality

r̄∗(M∗(t− 1)) + ct−1,M∗(t−1) ≤ r̄i(Mi(t− 1)) + ct−1,Mi(t−1),

and let ξ i(t, m) correspond to

min
0<s<t

(
r̄∗(s) + ct−1,s

)
≤ max

m<si<t

(
r̄i(si) + ct−1,si

)
.

Since {β(t) = i, Mi(t− 1) ≥ m} implies δi(t, m), and δi(t, m) implies ξ i(t, m), we have

Mi(n) ≤ m +
n

∑
t=K+1

I(ξ i(t, m)).

Expanding over all indices, one can rewrite as follows:

Mi(n) ≤ m +
∞

∑
t=1

t−1

∑
s=1

t−1

∑
si=m

I
(
r̄∗(s) + ct,s ≤ r̄i(si) + ct,si

)
.

To have r̄∗(s) + ct,s ≤ r̄i(si) + ct,si , at least one of the following must hold:

r̄∗(s) ≤ ν∗ − ct,s, r̄i(si) ≥ νi + ct,si , or ν∗ < νi + 2ct,si .

To prevent ν∗ < νi + 2ct,si from holding, choose

si ≥
3α ln n

(ν∗ − νi)2

to ensure 2ct,si ≤ ν∗ − νi. Let k =
⌈
3α ln n/(ν∗ − νi)2⌉. Consequently,

E[Mi(n)] ≤
⌈

3α ln n
(ν∗ − νi)2

⌉
+

∞

∑
t=1

t−1

∑
s=1

t−1

∑
si=k

P(r̄∗(s) ≤ ν∗ − ct,s)

+
∞

∑
t=1

t−1

∑
s=1

t−1

∑
si=k

P(r̄i(si) ≥ νi + ct,si ).

We now employ the Markov chain deviation bounds. For each arm i, let qi be the
initial distribution and

Nqi =

∥∥∥∥∥∥
(

qi
y

ϕi
y

)
y∈X (i)

∥∥∥∥∥∥
2

.

Since qi
y > 0 and ϕi

x ≥ ϕmin, we have Nqi ≤ 1/ϕmin (using Minkowski’s inequality).
Thus, consider the probability

P
(
r̄i(si) ≥ νi + ct,si

)
.

Rewriting this event in terms of state visits and leveraging the deviation bounds
(analogously to Lemma 3’s result but adapted here), we obtain
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P
(

r̄i(si) ≥ νi + ct,si

)
≤ ∑

y∈X (i)

P
(
−ri

yni
y(si) + ri

ysiϕ
i
y ≤ −

sict,si

|X (i)|

)

= ∑
y∈X (i)

P
(

ri
yni

y(si)− ri
ysiϕ

i
y ≥

sict,si

|X (i)|

)

≤ ∑
y∈X (i)

(
1 +

ϵi√β ln t/si

12|X (i)|ri
y

)
Nqi t

− βϵi

25|X (i) |
2

ri
y

2
(7)

≤ ∑
y∈X (i)

(
1 +

ϵmax
√

βt
12|X (i)|rmin

)
Nqi t

− βϵmin
25S2

maxr2
max

≤ ∑
y∈X (i)

√
t

(
1 +

ϵmax
√

β

12rmin

)
Nqi t

− βϵmin
25S2

maxr2
max

Substituting the value of Nqi ,

P(r̄i(si) ≥ νi + ct,si ) ≤ ∑
y∈X (i)

(
1 +

ϵmax
√

β ln t/si

12|X (i)|rmin

)
|X (i)|
ϕmin

t
− βϵmin

25X2
maxr2

max .

A similar bound holds for P(r̄∗(s) ≤ ν∗ − ct,s), replacing |X (i)| and rmin by their
respective terms from the best arm’s chain X (∗). These upper bounds produce a geometric
decay in t, ensuring summability. Detailed manipulation leads to

(ν∗ − νi)E[Mi(n)] ≤ 4α
ln n

(ν∗ − νi)
+ (ν∗ − νi)Ci.

Summing over all suboptimal arms i such that νi < ν∗,

∑
i:νi<ν∗

(ν∗ − νi)E[Mi(n)] ≤ 4α ∑
νi<ν∗

ln n
(ν∗ − νi)

+ ∑
i:νi<ν∗

(ν∗ − νi)Ci.

Incorporating the additional constant term D(S ,P ,R) from Lemma 2, we finally
establish

R(n) ≤ 5α ∑
i:νi<ν∗

ln n
ν∗ − νi + ∑

i:νi<ν∗
(ν∗ − νi)Ci + D(S ,P ,R).

This proves the stated theorem.

The obtained bound on R(n) is of order ln n, similar to known asymptotic results,
but holds uniformly in n. The constant factors, however, depend on various parameters,
including the stationary distributions, the eigenvalue gaps ϵi, and the reward range. Proper
selection of a sufficiently large α (based on ϵmin, Xmax, and rmax) makes our result stronger.
Although setting a large α is not necessary for the asymptotic scaling, it simplifies the
analysis and ensures that the exploration term dominates initially in a way that would
result in uniformly logarithmic regret over time.

Such constants are influenced by the intricate structure of the underlying Markov
chains. In special cases, these complexities can be simplified. In the next section, we present
a specific example of the index policy.
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The above analysis and the resulting logarithmic regret guarantees rely critically on
the assumption that the state transition probabilities for each arm are precisely known.
Under this assumption, the decision-maker can form accurate estimates of each arm’s
mean reward and state distribution over time. If these transition probabilities are even
slightly uncertain, the issue becomes significantly more complex. Suppose there exists a
small but fixed deviation δ > 0 such that for each arm i, the true transition probability p(i)uv

satisfies
∣∣p(i)uv − p̂(i)uv

∣∣ ≤ δ for the available (estimated) probabilities { p̂(i)uv}. Although δ can
be arbitrarily small, it introduces a persistent, non-vanishing discrepancy that compounds
over time and directly impacts the estimation of the arms’ stationary distributions and
expected rewards.

To illustrate the effect of this discrepancy, consider the long-term frequency of visits
to a particular state x ∈ X (i). When the transition probabilities are exact, our analysis
ensures that the empirical frequency closely matches the true stationary distribution ϕ

(i)
x .

However, with even a small error δ, let the induced perturbed stationary measure be ϕ
(i),δ
x .

As n→ ∞, the difference |ϕ(i)
x − ϕ

(i),δ
x | does not vanish, and any reward estimation relying

on the exact stationary distribution becomes systematically biased. This persistent bias
undermines the correctness of confidence intervals derived under the assumption of known
transition probabilities. Consequently, the index computations that yield logarithmic regret
bounds no longer hold, and the regret is no longer guaranteed to remain bounded by a
term of order ln n. Thus, incorporating uncertainty in transition probabilities would require
a fundamentally different approach, and at present, the theoretical techniques employed
here do not extend to handle unknown or partially known transition probabilities without
sacrificing the uniform logarithmic regret properties.

6. Simulations
While this work is primarily theoretical as it mainly establishes regret bounds for

MABs with up to three states per arm under known Markovian transition probabilities, it
is nonetheless instructive to provide numerical simulations.

6.1. Experimental Setup

We consider a set of K = 5 arms, each modeled as a three-state Markov chain. The
transition probabilities for each arm’s Markov chain, as well as the rewards associated with
each state, are randomly generated at the start of every simulation run. This randomized
setup ensures that the results represent average-case performance over a wide variety of
synthetic conditions rather than tuning to any particular fixed scenario.

Specifically, for each arm i ∈ {1, . . . , 5}, we construct its state transition probability
matrix P(i) and reward vector ν(i) as follows:

1. State Transition Probabilities: We draw each nonzero transition probability p(i)uv from
a Beta distribution (to ensure values between 0 and 1) and then normalize each row so
that they form a valid probability distribution. For example, for each row u, we sample
three preliminary values from Beta(α, β) with parameters (α, β) fixed with (α, β) = (2, 2)
for a moderate spread, and then normalize the row so that ∑v p(i)uv = 1. Each run of
the simulation independently re-samples these probabilities. This ensures diverse state
transition dynamics for each arm across runs.
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2. Reward Distributions: Each state of each arm is assigned a reward distribution
centered around a mean value drawn uniformly from [0, 1]. Specifically, for arm i and state
u, we let

µ
(i)
u ∼ Uniform(0, 1).

We then model the reward at each round from that state as

r(i)t,u ∼ N̄ (µ
(i)
u , σ2),

where the value of σ is the standard deviation for all states and arms and N̄ (µ
(i)
u , σ2) is the

truncated normal distribution. Truncation ensures that rewards remain within [0, 1]. By
re-sampling these mean rewards and their underlying realizations in every run, we capture
a broad spectrum of synthetic arm behaviors.

3. Multiple Simulation Runs: To assess performance stability, we run each experiment
for Nruns = 104 independent runs (which goes beyond any reasonable confidence level
value). Each run involves simulating T = 104 time steps, allowing sufficient duration
for the algorithms to settle into steady behaviors. Due to this extensive repetition, we
approximate the long-run expected cumulative rewards and regret for each algorithm,
mitigating the variance from any particular random draw.

This highly synthetic and randomized environment aims to stress-test the MC-UCB
policy under different Markovian conditions to demonstrate how our theory-based ap-
proach scales to a few arms and stochastic transitions.

6.2. Compared Algorithms and Metrics

We compare the proposed MC-UCB algorithm with two baseline MAB algorithms
adapted to Markovian settings:

• Classical UCB: Uses sample means and confidence bounds assuming iid rewards,
ignoring the underlying Markov structure. Although it cannot fully exploit the known
transitions, it serves as a canonical benchmark.

• ϵ-Greedy: Selects a random arm with probability ϵ and the best empirical mean arm
otherwise. We set ϵ = 0.1, 0.5 as a fixed exploratory parameter.

We measure cumulative regret, defined as the difference between the cumulative
reward of an omniscient oracle that always picks the optimal state–arm combination and
the cumulative reward earned by the policy. Given our theoretical results, we expect
MC-UCB to achieve lower regret growth rates compared to the baseline methods.

6.3. Numerical Results

The results of the simulations are presented in Figures 2 and 3, which illustrate the
cumulative regret for the algorithms across multiple values of σ (reward standard deviation)
and the number of rounds. The comparison includes MC-UCB, UCB, and ϵ-Greedy with
ϵ = 0.1 and ϵ = 0.5.

In Figure 2, we observe that as the value of σ increases, the overall regret grows for all
algorithms. However, the rate at which regret accumulates varies significantly across the
algorithms. The MC-UCB algorithm consistently outperforms the baselines as it exhibits
the lowest cumulative regret across all values of σ.
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Figure 2. The simulation results for the specified settings under various values of σ.

Specifically, the following trends can be identified:

• Effect of Increasing σ: As the value of σ increases, the cumulative regret grows
at a faster rate for all algorithms. This is expected because higher variability in
rewards makes it more challenging to distinguish between the optimal and suboptimal
arms. Nevertheless, MC-UCB demonstrates a robust ability to adapt to this increased
variability and to maintain a clear performance advantage over the classical UCB and
ϵ-Greedy algorithms.

• Comparison with ϵ-Greedy: The ϵ-Greedy algorithms, with ϵ = 0.1 and ϵ = 0.5,
perform consistently worse than MC-UCB. Notably, ϵ = 0.5 results in lower regret
compared to ϵ = 0.1, as the excessive exploration prevents the algorithm from exploit-
ing the optimal arms efficiently. This is especially prominent in settings with low σ,
where unnecessary exploration leads to regret accumulation.
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• Performance of Classical UCB: The classical UCB algorithm achieves lower regret than
the ϵ-Greedy variants but fails to match the performance of MC-UCB. The classical
UCB assumes iid rewards and does not account for the Markovian structure, which
limits its ability to leverage state transitions effectively. This leads to slower learning
of the optimal arms.

• MC-UCB’s Adaptability: Across all settings of σ, MC-UCB demonstrates superior
performance, particularly as the number of rounds increases. MC-UCB achieves faster
convergence to the optimal arms and maintains lower cumulative regret by leveraging
the Markovian structure. This advantage becomes more pronounced at higher σ

values, where the increased reward variability exacerbates the shortcomings of the
baseline algorithms.

Figure 3. Full view of how the total regret changes under the different algorithms as the value of σ

changes.

Figure 3 provides a three-dimensional view of the total regret for each algorithm as a
function of σ and the number of rounds. The plots reveal a clear trend: while all algorithms
experience regret growth with increasing σ, MC-UCB consistently maintains the smallest
regret surface. In contrast, the classical UCB and ϵ-Greedy algorithms exhibit higher regret
surfaces, with ϵ-Greedy particularly struggling under larger σ values.

6.4. Robustness and Sensitivity to System Variations

Our experiments incorporate stochastic variability in both transitions and rewards.
While we have maintained fixed distributions for sampling these parameters, the repeated
randomization and large number of runs ensure that the results are not tailored to a single
contrived example. Over thousands of simulations, the MC-UCB algorithm consistently
outperforms the baselines, indicating that its theoretical properties are robust to different
random initializations and transitions. However, we must emphasize that these simula-
tions remain limited in scale and scope. Larger state spaces could invalidate our current
theoretical guarantees and cause the underlying assumptions of our derivations to fail.
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6.5. Additional Markovian Network Scenario and Results

To further illustrate the flexibility of MC-UCB under a Markovian reward structure, we
also conduct a complementary numerical experiment wherein the arms represent network
links transitioning among three distinct quality states (High, Medium, and Low). The rewards
are interpreted as throughput (in Mbps), reflecting the link’s capacity at each time step.
Unlike the fully randomized approach in the previous settings, here we fix the transition
matrices and reward means (sampled from the dataset [44]) to highlight how variability in
observation noise (i.e., the standard deviation σ) impacts each algorithm’s performance.

We consider a simple network setting that translates to K = 3 arms, each with a
three-state Markov chain. The probability of remaining in or transitioning between these
states is encoded by a fixed transition matrix P(i) for each arm i ∈ {1, 2, 3}. For example,
an arm in a High state remains there with probability 0.80, transitions to Medium with
probability 0.15, and drops to Low with probability 0.05. We interpret the per-round reward
r(i)t as a throughput measurement drawn from a Gaussian distribution with mean µ

(i)
u (the

average throughput for state u of arm i) and variance σ2. Thus, higher reward corresponds
to higher link throughput. We vary the standard deviation σ ∈ {2.0, 3.0, 4.0} to simulate
increasingly fluctuating network conditions.

We employ the same core policy classes introduced previously, with the key difference
being that we now deal with throughput (Mbps) as reward:

1. MC-UCB: Our proposed Markovian UCB policy that can exploit knowledge of the
transition probabilities.

2. Classical UCB: A reference baseline assuming iid rewards.
3. Baseline-Greedy: A purely greedy strategy, always picking the arm with the highest

observed average so far.

We set the horizon to T = 10,000 rounds. At each round, the selected arm yields
a random throughput sample from N (µ

(i)
u , σ2) for its current state u, and all arms then

transition. Our performance metric is the time-averaged throughput achieved by each
policy, since throughput is a key measure of network performance.

For each fixed σ, we run three numerical evaluations on the network simulations (one
for each policy) and compute the running average throughput over time. We then plot the
final average–throughput curves for each policy. The transition matrices, state means, and
values of σ remain consistent in all runs to isolate the effect of observation noise (reward
variability).

Figure 4 illustrates the key results for each σ. The results clearly demonstrate the
consistent superiority of the MC-UCB algorithm across all tested noise levels (σ). For
σ = 2.0, MC-UCB quickly stabilizes around 6 Mbps, outperforming both classical UCB
and Baseline-Greedy, which exhibit slower convergence and slightly lower steady-state
throughput. As the noise level increases to σ = 3.0, MC-UCB maintains a noticeable advan-
tage, achieving higher initial throughput and stabilizing at a value above 6 Mbps, whereas
the other algorithms lag behind, converging closer to 5.5 Mbps. Even under the highest
noise level, σ = 4.0, MC-UCB continues to outperform its counterparts, demonstrating
faster convergence and sustaining higher throughput near 6 Mbps, while classical UCB
and Baseline-Greedy fall short. These results highlight the robustness and adaptability of
MC-UCB, making it the most effective approach in scenarios with varying noise conditions.
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Figure 4. Results on network-like settings under different algorithms for various levels of noise (σ).

6.6. Simulation Summary

Using purely synthetic data, the simulation results validate the effectiveness of the pro-
posed MC-UCB algorithm within Markovian MAB settings, where it consistently surpasses
classical UCB and ϵ-Greedy algorithms under various experimental conditions. Specifi-
cally, MC-UCB exhibits a 15% lower cumulative regret on average compared to classical
UCB for the specified settings. This demonstrates that MC-UCB successfully leverages
the Markovian structure for efficient adaptation to state transitions. This is particularly
evident as the reward variability increases (with a larger σ), where MC-UCB shows superior
adaptability and maintains its performance advantage. This shows the robust adaptability
of MC-UCB across scenarios with both low and high variability compared to the other
baseline algorithms. The algorithm’s scalability is confirmed as MC-UCB’s regret curves
ascend at a slower rate over increasing rounds, which showcases its long-term efficiency.
The ϵ-Greedy algorithms, especially at ϵ = 0.1, encounter issues with excessive exploitation
in a way that leads to significantly higher regret. In contrast, while classical UCB performs
better than ϵ-Greedy, it fails to match MC-UCB’s performance due to its inefficiency in
handling state transitions. Overall, MC-UCB’s integration of the Markovian structure
allows it to effectively balance exploration and exploitation.

Furthermore, in this supplemental experiment that we conducted on the simulated
network and that was derived from the dataset in [44], the Markovian perspective allows



Network 2025, 5, 3 20 of 22

our MC-UCB algorithm to handle state transitions adeptly, which translates to more stable
performance in highly variable settings (large σ) and to higher throughput overall. This
supplemental experiment thus complements the more extensive randomized evaluations
by focusing on a single, fixed set of state transitions under network settings, which further
highlights MC-UCB’s efficacy in network-like applications.

7. Conclusions
In this study, we have addressed the multi-armed bandit (MAB) problem with a

Markovian rewards structure where each arm can transition between up to three states,
which simulates dependencies often seen in networked systems. We demonstrated that a
sample mean-based index policy, when adjusted for the complexity of our model, achieves
logarithmic regret uniformly over time. This effectiveness depends on setting the explo-
ration constant large enough relative to the eigenvalue gaps of the arms’ stochastic matrices.
We also presented an example using a simplified two-state Markovian reward model. The
numerical analysis suggests that the index policy remains near optimal even if the explo-
ration constant does not strictly meet the theoretical sufficiency condition. This robustness
indicates that our policy can be effective in a wide range of practical scenarios, including
applications with network-like dependencies.
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