Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chlorella Protothecoides and Culture Conditions of the Stock Culture
2.2. Quantitation by Chlorophyll
- A665–absorbance at 665 nm
- ν–volume of methanol (mL)
- l–spectrophotometric cell length (cm)
- V–volume of sample (mL)
2.3. Growth Curves
2.4. Copper Removal Capacity by C. protothecoides
- Cs: Concentration of Cu2+ in the solution (mg Cu2+/L)
- C0: Initial concentration of Cu2+ in the solution (mg Cu2+/L)
2.5. Tryptic Digestion for Mass Spectrometry Analysis
2.6. Protein Identification by NanoLC-ESI-Q-TOF System
2.7. Peaks Database Searching
2.8. Statistical Analysis
3. Results
3.1. Growth Curves
3.2. Copper Removal Capacity by C. protothecoides
3.3. Protein Identification by NanoLC-ESI-Q-TOF System
4. Discussion
4.1. Growth Curves
4.2. Copper Removal Capacity by C. protothecoides
4.3. Protein Identification by NanoLC-ESI-Q-TOF System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Technavio. Global Mining Waste Management Market 2018–2022; Technavio (Infinitti Research Ltd.): London, UK, 2018. [Google Scholar]
- MacFarlane, G.; Burchett, M. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey Mangrove, Avicennia marina (Forsk.) Vierh. Mar. Pollut. Bull. 2001, 42, 233–240. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.J.; Maeng, S.K.; Kim, H.J.; Kim, H.S.; Song, K.G. Ozonation of piggery wastewater for enhanced removal of contaminants by S. quadricauda and the impact on organic characteristics. Bioresour. Technol. 2014, 159, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Rayu, S.; Karpouzas, D.G.; Singh, B.K. Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation 2012, 23, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Hlihor, R.M.; Gavrilescu, M.; Tavares, T.; Favier, L.; Olivieri, G. Bioremediation: An overview on current practices, advances, and new perspectives in environmental pollution treatment. BioMed Res. Int. 2017, 2017, 6327610. [Google Scholar] [CrossRef] [Green Version]
- Bulgariu, L.; Gavrilescu, M. Bioremediation of heavy metals by microalgae. In Handbook of Marine Microalgae: Biotechnology Advances; Kim, S.-K., Ed.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 457–469. [Google Scholar]
- Birungi, Z.S.; Chirwa, E.M.N. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J. Hazard. Mater. 2015, 299, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghmaeian, K.; Jaafari, J. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) algae cells using response surface methodology (RSM). Chemosphere 2018, 217, 447–455. [Google Scholar] [CrossRef]
- Kalra, R.; Gaur, S.; Goel, M. Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production. J. Water Process Eng. 2021, 40, 101794. [Google Scholar] [CrossRef]
- Derner, R.B.; Ohse, S.; Villela, M.; Carvalho, S.M.; Fett, R. Microalgas, produtos e aplicações. Cienc. Rural 2006, 36, 1959–1967. [Google Scholar] [CrossRef]
- Han, S.Q.; Zhang, Z.H.; Yan, S.H. Present situation and developmental trend of wastewater treatment and eutrophication waters purification with alga technology. Agro-Environ. Develop. 2000, 63, 13–16. [Google Scholar]
- Olguin, E.J. Phycoremediation: Key issues for cost-effective nutrient removal process. Biotechnol. Adv. 2003, 22, 81–91. [Google Scholar] [CrossRef]
- Kshirsagar, A.D. Bioremediation of wastewater by using microalgae: An experimental study. Int. J. Life Sci. Biotechnol. Pharma Res. 2013, 2, 339–346. [Google Scholar]
- Andrade, C.J.; Andrade, L.M. An overview on the application of genus Chlorella in biotechnological processes. J. Adv. Res. Biotechnol. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Andrade, C.J.; Andrade, L.M. Microalgae for bioremediation of textile wastewater: An overview. MOJ Food Process. Technol. 2018, 6, 432–433. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Teixeira, C.M.L.L.; Dantas, F.M.L. Reaproveitamento de resíduos da indústria de biodiesel para produção de biomassa microalgal. In Proceedings of the VI Workshop Redealgas, Arraial do Cabo, Brazil, 26–30 November 2017. [Google Scholar]
- Ettajani, H.; Berthet, B.; Amiard, J.C.; Chevolot, L. Determination of cadmium partitioning in microalgae and oysters: Contribution to the assessment of trophic transfer. Arch. Environ. Contam. Toxicol. 2001, 40, 209–221. [Google Scholar] [CrossRef]
- Tsuji, N.; Hirayanagi, N.; Iwabe, O.; Namba, T.; Tagawa, M.; Miyamoto, S.; Miyasaka, H.; Takagi, M.; Hirata, K.; Miyamoto, K. Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta. Phytochemistry 2003, 62, 453–459. [Google Scholar] [CrossRef]
- Zhou, G.J.; Peng, F.Q.; Zhang, L.J.; Ying, G.G. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 2012, 19, 2918–2929. [Google Scholar] [CrossRef]
- Kwon, H.K.; Jeon, J.Y.; Oh, S.J. Potential for heavy metal (copper and zinc) removal from contaminated marine sediments using microalgae and light emitting diodes. Ocean Sci. J. 2017, 52, 57–66. [Google Scholar] [CrossRef]
- Raven, J.A.; Evans, M.C.W.; Korb, R.E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 1999, 60, 111–150. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Santos, F.M.L.F. Crescimento de Microalgas e Remoção de Nutrientes em Ambientes Poluídos com Metais Pesados. Dissertação Faculdade de Engenharia da Universidade do Porto, Porto, 2017. Repositório Aberto da Universidade do Porto. Available online: https://repositorio-aberto.up.pt/bitstream/10216/106496/2/205643.pdf (accessed on 30 March 2022).
- Rugnini, L.; Costa, G.; Congestri, R.; Bruno, L. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Sci. Total Environ. 2017, 601–602, 959–967. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, J.; Wei, J.; Huang, J.; Sun, Y.; Zhang, L.; Huang, Y.; Yang, Z. Growth and photosynthetic responses of Ochromonas gloeopara to cadmium stress and its capacity to remove cadmium. Environ. Pollut. 2021, 27, 116496. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Carvalho, A.P.; Cardozo, K.H.M.; Malcata, F.X.; Maria dos Anjos, F.; Colepicolo, P. Effect of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (varliui Zhang & Xia). Rev. Bras. Farmacogn. 2011, 21, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.C.; Echeveste, P.; Lombardi, A.T. Higher biomolecules yield in phytoplankton under copper exposure. Ecotoxicol. Environ. Saf. 2018, 161, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.S.; Parrish, C.C.; Espíndola, E.L.G. Effects of copper on photosynthetic and physiological parameters of a freshwater microalga (Chlorophyceae). Algal Res. 2021, 54, 102223. [Google Scholar] [CrossRef]
- Andrade, L.M.; Tito, C.A.; Mascarenhas, C.; Lima, F.A.; Dias, M.; Andrade, C.J.; Mendes, M.A.; Nascimento, C.A.O. Chlorella vulgaris phycoremediation at low Cu+2 contents: Proteomic profiling of microalgal metabolism related to fatty acids and CO2 fixation. Chemosphere 2021, 284, 131272. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Sigaud-Kutner, T.C.S.; Leitao, M.A.; Okamoto, O.; Morse, D.; Colepicolo, P. Heavy metal-induced oxidative stress in algae. J. Phycol. 2003, 39, 1008–1018. [Google Scholar] [CrossRef]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef]
- Ciero, L.; Bellato, C.M. Proteoma: Avanços recentes em técnicas de eletroforese bidimensional e espectrometria de massa. Biotecnol. Cienc. Desenvolv. 2002, 5, 158–164. [Google Scholar]
- Guarnieri, M.T.; Nag, A.; Yang, S.; Pienkos, P.T. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation. J. Proteom. 2013, 93, 245–253. [Google Scholar] [CrossRef]
- Abreu, F.C.P.; da Costa, P.N.M.; Brondi, A.M.; Pilau, E.J.; Gozzo, F.C.; Eberlin, M.N.; Trevisan, M.G.; Garcia, J.S. Effects of cadmium and copper biosorption on Chlorella vulgaris. Bull. Environ. Contam. Toxicol. 2014, 93, 405–409. [Google Scholar] [CrossRef]
- Bai, X.; Song, H.; Lavoie, M.; Zhu, K.; Su, Y.; Ye, H.; Si, C.; Fu, Z.; Qian, H. Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Sci. Rep. 2016, 6, 25494. [Google Scholar] [CrossRef] [PubMed]
- Gasch, A.P.; Spellman, P.T.; Kao, C.M.; Carmel-Harel, O.; Eisen, M.B.; Storz, G.; Botstein, D.; Brown, P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000, 11, 4241–4257. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.A. Algal Culturing Techniques; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Kerby, N.W.; Stewart, W.D.P. The biotechnology of microalgae and cyanobacteria. In Biochemistry of the Algae and Cyanobacteria; Rogers, L.J., Gallon, J.R., Eds.; Oxford Clarendon Press: Oxford, UK, 1989; pp. 319–334. [Google Scholar]
- Lavens, P.; Sorgeloos, P. Manual on the Production and Use of Live Food for Aquaculture; FAO Fisheries Technical Paper No. 361; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996. [Google Scholar]
- Henriques, M.; Silva, A.; Rocha, J. Extraction and quantification of pigments from a marine microalga: A simple and reproducible method. Comm. Curr. Res. Educat. Topics Trends Appl. Microbiol. 2007, 2, 586–593. [Google Scholar]
- Veglio, F.; Esposito, A.; Reverberi, A.P. Standardization of heavy metal biosorption tests: Equilibrium and modelling study. Process Biochem. 2003, 38, 953–961. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.; Zhang, W.; Zhang, Z.; Lajoie, G.A.; Ma, B. PEAKS DB: De Novo sequencing assisted database to search for sensitive and accurate peptide identification. Mol. Cell. Proteom. 2012, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, V.; Ginkel, S.W.V.; Park, S.; Igou, T.; Yi, C.; Fu, H.; Johnston, R.; Snell, T.; Chen, Y. Use of copper to selectively inhibit Brachionus calyciflorus (predator) growth in Chlorella kessleri (prey) mass cultures for algae biodiesel production. Int. J. Mol. Sci. 2015, 16, 20674–20684. [Google Scholar] [CrossRef] [Green Version]
- Heberle, H.; Meirelles, G.V.; Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Andrade, L.M.; Kowalski, P.; Mendes, M.A.; Nascimento, C.A.O. Comparative study of different matrix/solvent systems for the analysis of crude lyophilized microalgal preparations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 295–303. [Google Scholar] [CrossRef]
- Sabatini, S.E.; Juárez, Á.B.; Eppis, M.R.; Bianchi, L.; Luquet, C.L.; Molina, M.C.R. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol. Environ. Saf. 2009, 72, 1200–1206. [Google Scholar] [CrossRef]
- Guanzon, N.G.; Nakahara, H.; Yoshida, Y. Inhibitory effects of heavy metals on growth and photosynthesis of three freshwater microalgae. Fish. Sci. 1994, 60, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Coe, J.C.; Kupitz, C.; Basu, S.; Conrad, C.E.; Roy-Chowdhury, S.; Fromme, R.; Fromme, P. Chapter twenty-two—crystallization of photosystem II for time-resolved structural studies using an X-ray free electron laser. In Methods in Enzymology: Membrane Proteins-Engineering, Purification and Crystallization; Shukla, A.K., Ed.; Academic Press: Amsterdam, Holland, 2015; pp. 459–482. [Google Scholar]
- Kawakami, K.; Shen, J.-R. Chapter One—Purification of fully active and crystallizable photosystem II from thermophilic cyanobacteria. In Methods in Enzymology—Enzymes of Energy Technology; Armstrong, F., Ed.; Academic Press: Amsterdam, Holland, 2018; pp. 1–16. [Google Scholar]
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis. New Microbes New Infect. 2015, 3, 37–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrozza, M.J.; Utley, R.T.; Workman, J.L.; Côté, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 2003, 19, 321–329. [Google Scholar] [CrossRef]
- Barros, D.; Pradhan, A.; Mendes, V.M.; Manadas, B.; Santos, P.M.; Pascoal, C.; Cássio, F. Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environ. Sci. Nano 2019, 6, 1207–1218. [Google Scholar] [CrossRef]
- Vingiani, G.M.; Luca, P.; Ianora, A.; Dobson, A.D.W.; Lauritano, C. Microalgal enzymes with biotechnological applications. Mar. Drugs 2019, 17, 459. [Google Scholar] [CrossRef] [Green Version]
- Sauser, K.R.; Liu, J.K.; Wong, T.-Y. Identification of a copper-sensitive ascorbate peroxidase in the unicellular green alga Selenastrum capricornutum. BioMetals 1997, 10, 163–168. [Google Scholar] [CrossRef]
Sample | Uniprot Access | Score | Molecular Mass (Da) | No. of Peptides | Protein |
---|---|---|---|---|---|
Control | A0A2P6TDA6_CHLSO | 302.46 | 26,968 | 27 | Chlorophyll a-b binding protein |
ATPB_CHLVU | 295.87 | 51,644 | 31 | ATP synthase subunit beta | |
PSBC_CHLVU | 287.16 | 52,048 | 30 | Photosystem II CP43 reaction center protein | |
Q85YT9_CHLVU | 277.71 | 49,722 | 26 | Ribulose-bisphosphate carboxylase large chain | |
A9XHZ1_CHLVU | 271.19 | 70,833 | 25 | Heat shock 70 | |
PSBB_CHLVU | 271.16 | 56,130 | 24 | Photosystem II CP47 reaction center protein | |
ATPA_CHLVU | 253.95 | 54,709 | 25 | ATP synthase subunit alpha | |
PSBA_CHLVU | 247.13 | 38,986 | 16 | Photosystem II protein D1 | |
CYF_CHLVU | 235.09 | 34,213 | 16 | Cytochrome f | |
PSBD_CHLVU | 230.53 | 39,429 | 15 | Photosystem II D2 protein | |
0.3mg of Cu2+/L | A0A2P6TDA6_CHLSO | 297.06 | 26,968 | 24 | Chlorophyll a-b binding protein |
PSBC_CHLVU | 281.31 | 52,048 | 26 | Photosystem II CP43 reaction center protein | |
A9ZM90_CHLVU | 281.15 | 52,490 | 29 | Ribulose-bisphosphate carboxylase large chain | |
A9XHZ1_CHLVU | 266.36 | 70,833 | 26 | Heat shock 70 | |
ATPB_CHLVU | 265.86 | 51,644 | 28 | ATP synthase subunit beta | |
PSBB_CHLVU | 259.39 | 56,130 | 25 | Photosystem II CP47 reaction center protein | |
ATPA_CHLVU | 253.66 | 54,709 | 28 | ATP synthase subunit alpha | |
PSBA_CHLVU | 237.31 | 38,986 | 18 | Photosystem II protein D1 | |
PSBD_CHLVU | 234.49 | 39,429 | 15 | Photosystem II D2 protein | |
PSAA_CHLVU | 224.73 | 83,227 | 21 | Photosystem I P700 chlorophyll an apoprotein A1 | |
0.6 mg of Cu2+/L | A0A2P6TDA6_CHLSO | 317.52 | 26,968 | 20 | Chlorophyll a-b binding protein |
F2YGQ1_CHLVA | 288.18 | 52,167 | 26 | Photosystem II CP43 reaction center protein | |
A9ZM90_CHLVU | 284.66 | 52,490 | 28 | Ribulose bisphosphate carboxylase large chain | |
ATPB_CHLVU | 278.65 | 51,644 | 29 | ATP synthase subunit beta | |
A9XHZ1_CHLVU | 272.86 | 70,833 | 25 | Heat shock 70 | |
PSBB_CHLVU | 267.41 | 56,130 | 26 | Photosystem II CP47 reaction center protein | |
ATPA_CHLVU | 264.82 | 54,709 | 23 | ATP synthase subunit alpha | |
PSBA_CHLVU | 252.26 | 38,986 | 18 | Photosystem II protein D1 | |
A0A345 × 1B8_CHLVU | 250.01 | 20,493 | 17 | Photosynthesis I subunit | |
PSBD_CHLVU | 241.49 | 39,429 | 14 | Photosystem II D2 protein | |
0.9 mg of Cu2+/L | A0A2P6TDA6_CHLSO | 312.92 | 26,968 | 21 | Chlorophyll a-b binding protein |
A9ZM90_CHLVU | 266.08 | 52,490 | 22 | Ribulose bisphosphate carboxylase large chain | |
PSBC_CHLVU | 264.92 | 52,048 | 22 | Photosystem II CP43 reaction center protein | |
PSBB_CHLVU | 263.61 | 56,130 | 23 | Photosystem II CP47 reaction center protein | |
A9XHZ1_CHLVU | 255.53 | 70,833 | 19 | Heat shock 70 | |
PSBA_CHLVU | 244.60 | 38,986 | 15 | Photosystem II protein D1 | |
ATPA_CHLVU | 243.16 | 54,709 | 21 | ATP synthase subunit alpha | |
ATPB_CHLVU | 242.18 | 51,644 | 24 | ATP synthase subunit beta | |
Q9SLP7_CHLVU | 239.30 | 10,804 | 13 | Antifreeze protein | |
A0A3M7KX29_AUXPR | 232.79 | 217,317 | 11 | Histone acetyltransferase | |
A0A2P6TDA6_CHLSO | 312.92 | 26,968 | 21 | Chlorophyll a-b binding protein |
Protein | Control | 0.3 mg of Cu2+/L | 0.6 mg of Cu2+/L | 0.9 mg of Cu2+/L |
---|---|---|---|---|
ENTH domain-containing protein | + | + | - | - |
Dihydroxy-acid dehydratase | + | + | - | - |
Elongation factor G | + | + | + | + |
Protein | Control | 0.3 mg of Cu2+/L | 0.6 mg of Cu2+/L | 0.9 mg of Cu2+/L | |
---|---|---|---|---|---|
Px | Ascorbate peroxidase | + | + | + | + |
Catalase | + | - | + | - | |
Cytochrome c peroxidase | - | + | + | + | |
Glutaredoxin-dependent peroxiredoxin | + | + | + | + | |
L-ascorbate peroxidase | + | + | + | ++ | |
Peroxidase 4 domain-containing protein | + | + | + | + | |
Putative L-ascorbate peroxidase chloroplastic isoform X1 | + | + | + | + | |
SOD | Superoxide dismutase | ++ | ++ | ++ | + |
30S ribosomal protein S17 | - | - | - | + |
Protein | Control | 0.3 mg of Cu2+/L | 0.6 mg of Cu2+/L | 0.9 mg of Cu2+/L |
---|---|---|---|---|
30S ribosomal protein S17 * | - | - | - | + |
Acetolactate synthase | + | - | + | - |
Ascorbate peroxidase * | + | + | + | + |
Catalase * | + | - | + | - |
Chaperone chloroplastic-like | - | + | + | + |
Clp R domain-containing protein | - | - | + | - |
Cytochrome c peroxidase * | - | + | + | + |
Deoxyribodipyrimidine photo-lyase | + | - | - | - |
DNA_MISMATCH_REPAIR_2 domain-containing protein | + | + | + | + |
DnaJ-like protein | - | - | + | - |
Flagellar outer dynein arm heavy chain beta | + | + | + | + |
General transcription and DNA repair factor IIH helicase subunit XPD | + | + | + | + |
Hsp100 family | + | + | + | + |
L-ascorbate peroxidase * | + | + | + | ++ |
Peptide-methionine (R)-S-oxide reductase * | + | - | + | + |
Peroxidase-4-domain-containing protein * | + | + | + | + |
Photosystem II protein D1 | + | + | + | + |
Pre-mRNA-processing factor 19 | - | +++ | +++ | +++ |
Superoxide dismutase * | ++ | ++ | ++ | + |
Thioredoxin reductase * | + | + | - | - |
Ubiquitin receptor RAD23 | - | ++++ | - | ++ |
Uncharacterized E1ZQY5 | + | - | + | - |
Uncharacterized E1Z452 | - | - | + | - |
Uncharacterized E1Z369 *# | - | - | - | + |
Uracil-DNA glycosylase | + | + | + | + |
Ycf3-interacting chloroplastic isoform X1 *# | - | - | - | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, L.M.; Tito, C.A.; Mascarenhas, C.; Lima, F.A.; Dias, M.; Andrade, C.J.; Mendes, M.A.; Nascimento, C.A.O. Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response. Biomass 2022, 2, 116-129. https://doi.org/10.3390/biomass2030008
Andrade LM, Tito CA, Mascarenhas C, Lima FA, Dias M, Andrade CJ, Mendes MA, Nascimento CAO. Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response. Biomass. 2022; 2(3):116-129. https://doi.org/10.3390/biomass2030008
Chicago/Turabian StyleAndrade, Lidiane Maria, Caique Alves Tito, Camila Mascarenhas, Fabíola Aliaga Lima, Meriellen Dias, Cristiano José Andrade, Maria Anita Mendes, and Claudio Augusto Oller Nascimento. 2022. "Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response" Biomass 2, no. 3: 116-129. https://doi.org/10.3390/biomass2030008
APA StyleAndrade, L. M., Tito, C. A., Mascarenhas, C., Lima, F. A., Dias, M., Andrade, C. J., Mendes, M. A., & Nascimento, C. A. O. (2022). Phycoremediation of Copper by Chlorella protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response. Biomass, 2(3), 116-129. https://doi.org/10.3390/biomass2030008