Characterization of Poultry Litter Biochar and Activated Biochar as a Soil Amendment for Valorization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar and Activated Biochar
2.2. Physical and Chemical Properties of Biochars
2.3. Biochar Surface Characteristics
2.4. Surface Characterization of Unactivated Biochar (UB) and Activated Biochar (AB)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biochar Yield and C and N Content
3.2. Physical and Chemical Properties
3.2.1. pH and EC
3.2.2. Bulk Density, Water Holding Capacity, and Hydrophobicity
3.2.3. Nutrient Concentration
3.2.4. Concentration of Heavy Metals
3.3. Biochar Surface Characteristics
3.3.1. Point of Zero Charge
3.3.2. Infrared Analysis
3.3.3. X-ray Diffraction Analysis
3.3.4. X-ray Photoelectron Spectroscopy Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA-NASS (United States Department of Agriculture—National Agricultural Statistics Service). Poultry Production and Value. Available online: https://usda.library.cornell.edu/concern/publications/m039k491c (accessed on 24 August 2020).
- Ashworth, A.J.; Chastain, J.P.; Moore, P.A. Nutrient Characteristics of Poultry Manure and Litter. In Animal Manure: Production, Characteristics, Environmental Concerns, and Management; Waldrip, H., Pagliari, P.H., He, Z., Eds.; Soil Science Society of America Monongraph; John Wiley & Sons, Ltd.: Madison, WI, USA, 2020; pp. 63–87. [Google Scholar]
- Sharpley, A.N.; Herron, S.; Daniel, T. Overcoming the Challenges of Phosphorus-Based Management in Poultry Farming. J. Soil Water Conserv. 2007, 62, 375–389. [Google Scholar]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.; Panneerselvam, P. Uses and Management of Poultry Litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef]
- Sharpe, R.R.; Schomberg, H.H.; Harper, L.A.; Endale, D.M.; Jenkins, M.B.; Franzluebbers, A.J. Ammonia Volatilization from Surface-Applied Poultry Litter under Conservation Tillage Management Practices. J. Environ. Qual. 2004, 33, 1183–1188. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-Energy in the Black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Sadaka, S.S.; Allen, F.L.; Sharara, M.A.; Keyser, P.D. Influence of Pyrolysis Temperature and Production Conditions on Switchgrass Biochar for Use as a Soil Amendment. BioResources 2014, 9, 7622–7635. [Google Scholar] [CrossRef]
- Sadaka, S.; Sharara, M.; Ashworth, A.; Keyser, P.D.; Allen, F.L.; Wright, A. Characterization of Biochar from Switchgrass Carbonization. Energies 2014, 7, 548–567. [Google Scholar] [CrossRef]
- Lei, O.; Zhang, R. Effects of Biochars Derived from Different Feedstocks and Pyrolysis Temperatures on Soil Physical and Hydraulic Properties. J. Soils Sediments 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of Biochar and Hydrochar Addition on Water Retention and Water Repellency of Sandy Soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does Biochar Influence Soil Physical Properties and Soil Water Availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar Impact on Nutrient Leaching from A Midwestern Agricultural Soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and Inorganic Contaminants Removal from Water with Biochar, A Renewable, Low Cost and Sustainable Adsorbent—A Critical Review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J.; et al. Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Song, W.; Guo, M. Quality Variations of Poultry Litter Biochar Generated at Different Pyrolysis Temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of Biochar from Fast Pyrolysis and Gasification Systems. Environ. Prog. Sustain. Energy 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water Uptake in Biochars: The Roles of Porosity and Hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic Properties of Biochars Produced at Different Temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Herath, H.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on Soil Physical Properties in Two Contrasting Soils: An Alfisol and an Andisol. Geoderma 2013, 209–210, 188–197. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; van Groenigen, J.W. Biochar Application Does Not Improve the Soil Hydrological Function of a Sandy Soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of Biochar Amendment on Soil Aggregates and Hydraulic Properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef]
- Abiven, S.; Schmidt, M.W.I.; Lehmann, J. Biochar by Design. Nat. Geosci. 2014, 7, 326–327. [Google Scholar] [CrossRef]
- Rangraz, Y.; Heravi, M.M. Recent Advances in Metal-Free Heteroatom-Doped Carbon Heterogonous Catalysts. RSC Adv. 2021, 11, 23725–23778. [Google Scholar] [CrossRef]
- Xu, M.; Li, D.; Yan, Y.; Guo, T.; Pang, H.; Xue, H. Porous High Specific Surface Area-Activated Carbon with Co-Doping N, S and P for High-Performance Supercapacitors. RSC Adv. 2017, 7, 43780–43788. [Google Scholar] [CrossRef]
- Kasera, N.; Hall, S.; Kolar, P. Effect of Surface Modification by Nitrogen-Containing Chemicals on Morphology and Surface Characteristics of N-Doped Pine Bark Biochars. J. Environ. Chem. Eng. 2021, 9, 105161. [Google Scholar] [CrossRef]
- Gao, F.; Qu, J.; Zhao, Z.; Wang, Z.; Qiu, J. Nitrogen-Doped Activated Carbon Derived from Prawn Shells for High-Performance Supercapacitors. Electrochimica Acta 2016, 190, 1134–1141. [Google Scholar] [CrossRef]
- Pontiroli, D.; Scaravonati, S.; Magnani, G.; Fornasini, L.; Bersani, D.; Bertoni, G.; Milanese, C.; Girella, A.; Ridi, F.; Verucchi, R.; et al. Super-Activated Biochar from Poultry Litter for High-Performance Supercapacitors. Microporous Mesoporous Mater. 2019, 285, 161–169. [Google Scholar] [CrossRef]
- Pei, X.; Peng, X.; Jia, X.; Wong, P.K. N-Doped Biochar from Sewage Sludge for Catalytic Peroxydisulfate Activation Toward Sulfadiazine: Efficiency, Mechanism, and Stability. J. Hazard. Mater. 2021, 419, 126446. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Yang, Q.; Sun, K.; Peng, H.; Ran, F.; Zhao, X.; Lei, Z. Nitrogen-Doped Porous Carbon Derived from Biomass Waste for High-Performance Supercapacitor. Bioresour. Technol. 2015, 197, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Sundriyal, S.; Shrivastav, V.; Pham, H.D.; Mishra, S.; Deep, A.; Dubal, D.P. Advances in Bio-Waste Derived Activated Carbon for Supercapacitors: Trends, Challenges and Prospective. Resour. Conserv. Recycl. 2021, 169, 105548. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, S.; Yue, Q.; Ortaboy, S.; Gao, B.; Sun, Y. Synthesis and Characterization of Heteroatom-Enriched Biochar from Keratin-Based and Algous-Based Wastes. Adv. Powder Technol. 2016, 27, 1280–1286. [Google Scholar] [CrossRef]
- Self-Davis, M.L.; Moore, P.A. Determining Water-Soluble Phosphorus in Animal Manure. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, Southern Cooperative Series Bulletin; Pierzynski, G.M., Ed.; North Carolina State University: Raleigh, NC, USA, 2000; Volume 396, pp. 74–76. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; Greenberg, A.E., Clesceri, L.S., Eaton, A.D., Eds.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- USEPA. Methods for Chemical Analysis of Water and Wastes; USEPA Rep. EPA/600/4-79/020; USEPA: Washington, DC, USA, 1979.
- Zarcinas, B.A.; Cartwright, B.; Spouncer, L.R. Nitric Acid Digestion and Multi-Element Analysis of Plant Material by Inductively Coupled Plasma Spectrometry. Commun. Soil Sci. Plant Anal. 1987, 18, 131–146. [Google Scholar] [CrossRef]
- Lima, I.M.; Marshall, W.E. Granular Activated Carbons from Broiler Manure: Physical, Chemical and Adsorptive Properties. Bioresour. Technol. 2005, 96, 699–706. [Google Scholar] [CrossRef]
- Usevičiūtė, L.; Baltrėnaitė, E. Methods for Determining Lignocellulosic Biochar Wettability. Waste Biomass Valorization 2019, 11, 4457–4468. [Google Scholar] [CrossRef]
- Bisdom, E.; Dekker, L.; Schoute, J. Water Repellency of Sieve Fractions from Sandy Soils and Relationships with Organic Material and Soil Structure. Geoderma 1993, 56, 105–118. [Google Scholar] [CrossRef]
- Augoustides, V.; Kasera, N.; Kolar, P. Chemical Characterization Data of Raw Loblolly Pine Bark Nuggets. Chem. Data Collect. 2021, 33, 100727. [Google Scholar] [CrossRef]
- SAS Institute. SAS 9.4; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Saxton, A.M. A Macro for Converting Mean Separation Output to Letter Groupings in Proc Mixed. In Proceedings of the SAS Users Group International 23, Nashville, TN, USA, 22–25 March 1998; pp. 1243–1246. [Google Scholar]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using Poultry Litter Biochars as Soil Amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of Slow and Fast Pyrolysis Biochar on Soil C and N Turnover Dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W.; Busscher, W.J.; Johnson, M.G. Designing Relevant Biochars as Soil Amendments Using Lignocellulosic-Based and Manure-Based Feedstocks. J. Soils Sediments 2014, 14, 330–343. [Google Scholar] [CrossRef]
- Liang, Y.; Cao, X.; Zhao, L.; Xu, X.; Harris, W. Phosphorus Release from Dairy Manure, the Manure-Derived Biochar, and Their Amended Soil: Effects of Phosphorus Nature and Soil Property. J. Environ. Qual. 2014, 43, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liang, X.; Niyungeko, C.; Sun, T.; Liu, F.; Arai, Y. Effects of Biochar Amendments on Soil Phosphorus Transformation in Agricultural Soils. Adv. Agron. 2019, 158, 131–172. [Google Scholar] [CrossRef]
- Parvage, M.M.; Ulén, B.; Eriksson, J.; Strock, J.; Kirchmann, H. Phosphorus Availability in Soils Amended with Wheat Residue Char. Biol. Fertil. Soils 2012, 49, 245–250. [Google Scholar] [CrossRef]
- Bruun, S.; Harmer, S.L.; Bekiaris, G.; Christel, W.; Zuin, L.; Hu, Y.; Jensen, L.S.; Lombi, E. The Effect of Different Pyrolysis Temperatures on the Speciation and Availability in Soil of P In Biochar Produced from the Solid Fraction of Manure. Chemosphere 2017, 169, 377–386. [Google Scholar] [CrossRef]
- USEPA (United States Enviornmental Protection Agency). A Plain English Guide to the EPA Part 503 Biosolids Rule; Technol. Rep. EPA/832-R-93-003; U.S. Environmental Protection Agency, Office of Wastewater Management: Washington, DC, USA, 1994.
- Breton, L.A.; Mahdi, Z.; Pratt, C.; El Hanandeh, A. Modification of Hardwood Derived Biochar to Improve Phosphorus Adsorption. Environments 2021, 8, 41. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Aziz, A.M.; Al-Tamer, M.H. Biodiesel Production from Silybum Marianum L. Seed Oil with High FFA Content Using Sulfonated Carbon Catalyst for Esterification and Base Catalyst for Transesterification. Energy Convers. Manag. 2016, 108, 255–265. [Google Scholar] [CrossRef]
- Nuradila, D.; Ghani, W.A.W.A.K.; Alias, A.B. Biochar dan Pemangkin Berasaskan Tempurung Kelapa Sawit Untuk Penghasilan Biodiesel. Malays. J. Anal. Sci. 2017, 21, 197–203. [Google Scholar]
- Zhang, H.; Wang, T.; Sui, Z.; Zhang, Y.; Sun, B.; Pan, W.-P. Enhanced Mercury Removal by Transplanting Sulfur-Containing Functional Groups to Biochar Through Plasma. Fuel 2019, 253, 703–712. [Google Scholar] [CrossRef]
- del Bosque, I.S.; Martínez-Ramírez, S.; Blanco-Varela, M. FTIR Study of the Effect of Temperature and Nanosilica on the Nano Structure of C–S–H Gel Formed by Hydrating Tricalcium Silicate. Constr. Build. Mater. 2014, 52, 314–323. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, H.; Wang, Y.; Shan, R. Transesterification of Vegetable Oil on Low Cost and Efficient Meat and Bone Meal Biochar Catalysts. Energy Convers. Manag. 2017, 150, 214–221. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Shahab, A.; Zhang, K.; Zeng, H.; Bacha, A.-U.; Nabi, I.; Ullah, H. Comparative study on Characterization and Adsorption Properties of Phosphoric Acid Activated Biochar and Nitrogen-Containing Modified Biochar Employing Eucalyptus as a Precursor. J. Clean. Prod. 2021, 303, 127046. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Wang, X.; Feng, K.; Su, J.; Dong, J. The Mechanism of Cadmium Sorption by Sulphur-Modified Wheat Straw Biochar and Its Application Cadmium-Contaminated Soil. Sci. Total Environ. 2020, 714, 136550. [Google Scholar] [CrossRef]
- Azargohar, R.; Nanda, S.; Kozinski, J.A.; Dalai, A.K.; Sutarto, R. Effects of Temperature on the Physicochemical Characteristics of Fast Pyrolysis Bio-Chars Derived from Canadian Waste Biomass. Fuel 2014, 125, 90–100. [Google Scholar] [CrossRef]
- Subedi, R.; Taupe, N.; Ikoyi, I.; Bertora, C.; Zavattaro, L.; Schmalenberger, A.; Leahy, J.; Grignani, C. Chemically and Biologically-Mediated Fertilizing Value Of Manure-Derived Biochar. Sci. Total Environ. 2016, 550, 924–933. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Chiu, P.C.; Imhoff, P.T.; Guo, M. Phosphorus Release Behaviors of Poultry Litter Biochar as a Soil Amendment. Sci. Total Environ. 2015, 512–513, 454–463. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H. Production of Biodiesel from Palm Fatty Acid Distillate Using Sulfonated-Glucose Solid Acid Catalyst: Characterization and Optimization. Chin. J. Chem. Eng. 2015, 23, 1857–1864. [Google Scholar] [CrossRef]
- Fan, Q.; Sun, J.; Chu, L.; Cui, L.; Quan, G.; Yan, J.; Hussain, Q.; Iqbal, M. Effects of Chemical Oxidation on Surface Oxygen-Containing Functional Groups and Adsorption Behavior of Biochar. Chemosphere 2018, 207, 33–40. [Google Scholar] [CrossRef]
Biochar 1 | Yield 2 | C | N | C:N Ratio |
---|---|---|---|---|
――――――― % ――――――― | ||||
UB-400 | 52.79 a 3 | 44.49 a | 3.07 b | 14.5 c |
UB-500 | 44.48 ab | 41.17 b | 2.34 d | 17.6 b |
UB-600 | 39.49 b | 37.74 c | 1.83 f | 20.7 a |
UB-700 | 37.50 b | 38.19 c | 2.11 e | 18.14 b |
AB-400 | 40.48 4 | 37.41 c | 3.27 a | 11.45 d |
AB-500 | 35.68 | 37.68 c | 2.67 c | 14.13 c |
AB-600 | 28.43 | 37.75 c | 2.20 de | 17.15 b |
AB-700 | 24.89 | 31.57 d | 1.84 f | 17.2 b |
Biochar 1 | pH | EC 2 | Bulk Density | WHC | Hydrophobicity Class |
---|---|---|---|---|---|
mS cm−1 | g cm−3 | g g−1 | |||
UB-400 | 10.70 c 3 | 10.76 c | 0.49 b | 0.52 d | Very strongly hydrophobic |
UB-500 | 11.38 b | 10.59 c | 0.40 c | 0.67 c | Hydrophilic |
UB-600 | 12.71 a | 21.40 a | 0.48 b | 0.64 c | Hydrophilic |
UB-700 | 12.65 a | 20.87 b | 0.44 bc | 0.69 c | Hydrophilic |
AB-400 | 6.03 f | 3.75 f | 0.28 d | 1.29 a | Hydrophilic |
AB-500 | 9.07 e | 6.26 e | 0.47 b | 0.86 b | Hydrophilic |
AB-600 | 9.77 d | 6.73 d | 0.50 ab | 0.84 b | Hydrophilic |
AB-700 | 9.07 e | 6.41 de | 0.56 a | 0.89 b | Slightly hydrophobic |
Biochar 1 | NO3-N | NH4-N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|---|
Total nutrients (g kg−1) | |||||||
UB-400 | NA 2 | NA | 40.00 f 3 | 70.33 d | 54.67 d | 13.98 e | 5.50 f |
UB-500 | NA | NA | 45.80 e | 80.50 c | 56.167 d | 16.07 c | 6.18 ef |
UB-600 | NA | NA | 51.33 cd | 87.83 b | 67.50 c | 18.03 b | 7.47 e |
UB-700 | NA | NA | 55.17 b | 95.83 a | 69.17 c | 18.77 a | 7.67 e |
AB-400 | NA | NA | 27.65 g | 6.80 f | 34.82 e | 4.78 f | 65.33 a |
AB-500 | NA | NA | 49.32 d | 49.62 e | 67.50 c | 15.25 d | 47.42 b |
AB-600 | NA | NA | 52.50 c | 47.68 e | 78.50 b | 16.47 c | 37.53 c |
AB-700 | NA | NA | 62.83 a | 47.53 e | 83.83 a | 18.35 ab | 35.28 d |
Water-soluble nutrients (mg kg−1) | Water-soluble nutrients (g kg−1) | ||||||
UB-400 | 0.64 c | 72.02 c | 0.41 e | 26.27 b | 0.04 d | 0.07 e | 1.34 c |
UB-500 | 2.45 c | 85.93 b | 0.82 c | 27.57 b | 0.01 h | 0.03 f | 1.24 c |
UB-600 | 12.34 b | 73.81 c | 3.60 a | 46.33 a | 0.01 h | <0.01 h | 1.04 d |
UB-700 | 60.75 a | 102.12 a | 1.76 b | 48.26 a | 0.02 f | <0.01 h | 0.70 e |
AB-400 | BDL | 80.17 bc | 3.57 a | 6.02 e | 1.76 a | 1.90 a | 6.77 b |
AB-500 | BDL | 10.75 d | 0.19 f | 17.21 cd | 0.20 c | 0.19 c | 13.02 a |
AB-600 | BDL | 7.76 d | 0.70 d | 19.44 c | 0.02 e | 0.09 d | 12.54 a |
AB-700 | 1.71 c | 8.16 d | 0.08 g | 16.55 d | 0.43 b | 0.38 b | 11.39 a |
Biochar 1 | As | Cd | Cu | Cr | Mo | Ni | Pb | Se | Zn |
---|---|---|---|---|---|---|---|---|---|
mg kg−1 | |||||||||
UB-400 | 1.27 cd 2 | 0.63 c | 1188 e | 12.43 c | 9.62 e | 18.32 f | 1.28 ns | 2.27 ns | 1407 f |
UB-500 | 0.95 de | 0.65 bc | 1242 e | 12.52 c | 9.68 e | 19.1 ef | 1.18 ns | 1.85 ns | 1603 e |
UB-600 | 1.10 de | 0.15 d | 1740 cd | 12.55 c | 11.03 c | 19.53 ef | 1.47 ns | 2.05 ns | 1943 c |
UB-700 | 0.78 e | BDL 3 | 1900 b | 12.52 c | 10.70 cd | 20.7 e | 0.68 ns | 1.80 ns | 1757 d |
AB-400 | 1.53 bc | 0.77 ab | 1663 d | 17.5 b | 17.62 a | 35.55 c | 1.97 ns | 1.22 ns | 1258 g |
AB-500 | 1.92 ab | 0.85 a | 1880 bc | 17.98 b | 11.35 bc | 30.83 d | 1.63 ns | 1.20 ns | 1993 bc |
AB-600 | 1.90 ab | 0.80 a | 2012 b | 33.38 a | 12.12 b | 49.18 a | 1.82 ns | 1.03 ns | 2082 b |
AB-700 | 2.13 a | 0.18 d | 2488 a | 33.40 a | 9.83 de | 46.12 b | 1.70 ns | 1.52 ns | 2395 a |
Ceiling conc. limit 4 | 75 | 85 | 4300 | 3000 | 75 | 420 | 840 | 100 | 7500 |
Pyrolysis Conditions | Elements | UB (At%) | AB (At%) |
---|---|---|---|
400 °C | C | 64.6 | 32.1 |
N | 7.1 | 0.9 | |
S | - | 2.1 | |
P | 0.9 | - | |
O | 21.8 | 47.7 | |
500 °C | C | 36.8 | 35.2 |
N | 2.3 | - | |
S | - | - | |
P | - | 5.8 | |
O | 37.7 | 51.0 | |
600 °C | C | 22.4 | 32.4 |
N | - | 4.4 | |
S | 1.7 | 1.1 | |
P | 0.6 | 4.8 | |
O | 42.3 | 50.9 | |
700 °C | C | 25.6 | 26.9 |
N | - | 1.3 | |
S | - | - | |
P | - | 3.7 | |
O | 47.2 | 56.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katuwal, S.; Ashworth, A.J.; Rafsan, N.-A.-S.; Kolar, P. Characterization of Poultry Litter Biochar and Activated Biochar as a Soil Amendment for Valorization. Biomass 2022, 2, 209-223. https://doi.org/10.3390/biomass2040014
Katuwal S, Ashworth AJ, Rafsan N-A-S, Kolar P. Characterization of Poultry Litter Biochar and Activated Biochar as a Soil Amendment for Valorization. Biomass. 2022; 2(4):209-223. https://doi.org/10.3390/biomass2040014
Chicago/Turabian StyleKatuwal, Sheela, Amanda J. Ashworth, Nur-Al-Sarah Rafsan, and Praveen Kolar. 2022. "Characterization of Poultry Litter Biochar and Activated Biochar as a Soil Amendment for Valorization" Biomass 2, no. 4: 209-223. https://doi.org/10.3390/biomass2040014
APA StyleKatuwal, S., Ashworth, A. J., Rafsan, N. -A. -S., & Kolar, P. (2022). Characterization of Poultry Litter Biochar and Activated Biochar as a Soil Amendment for Valorization. Biomass, 2(4), 209-223. https://doi.org/10.3390/biomass2040014